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Brain dynamics associated with design creativity tasks are largely unexplored. 
Despite significant strides, there is a limited understanding of the brain-
behavior during design creation tasks. The objective of this paper is to review 
the concepts of creativity and design creativity as well as their differences, and 
to explore the brain dynamics associated with design creativity tasks using 
electroencephalography (EEG) as a neuroimaging tool. The paper aims to 
provide essential insights for future researchers in the field of design creativity 
neurocognition. It seeks to examine fundamental studies, present key findings, 
and initiate a discussion on associated brain dynamics. The review employs 
thematic analysis and a forward and backward snowball search methodology 
with specific inclusion and exclusion criteria to select relevant studies. This search 
strategy ensured a comprehensive review focused on EEG-based creativity and 
design creativity experiments. Different components of those experiments 
such as participants, psychometrics, experiment design, and creativity tasks, 
are reviewed and then discussed. The review identifies that while some studies 
have converged on specific findings regarding EEG alpha band activity in 
creativity experiments, there remain inconsistencies in the literature. The paper 
underscores the need for further research to unravel the interplays between 
these cognitive processes. This comprehensive review serves as a valuable 
resource for readers seeking an understanding of current literature, principal 
discoveries, and areas where knowledge remains incomplete. It highlights both 
positive and foundational aspects, identifies gaps, and poses lingering questions 
to guide future research endeavors.
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1 Introduction

1.1 Creativity, design, and design creativity

Investigating design creativity presents significant challenges due to its multifaceted 
nature, involving nonlinear cognitive processes and various subtasks such as divergent and 
convergent thinking, perception, memory retrieval, learning, inferring, understanding, and 
designing (Gero, 1994; Gero, 2011; Nguyen and Zeng, 2012; Jung and Vartanian, 2018; Xie, 
2023). Additionally, design creativity tasks are often ambiguous, intricate, and nonlinear, 
further complicating efforts to understand the underlying mechanisms and the brain dynamics 
associated with creative design processes.
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Creativity, one of the higher-order cognitive processes, is defined 
as the ability to develop useful, novel, and surprising ideas (Sternberg 
and Lubart, 1998; Boden, 2004; Runco and Jaeger, 2012; Simonton, 
2012). Needless to say, creativity occurs in all parts of social and 
personal life and all situations and places, including everyday 
cleverness, the arts, sciences, business, social interaction, and 
education (Mokyr, 1990; Cropley, 2015b). However, this study 
particularly focuses on reviewing EEG-based studies of creativity and 
design creativity tasks.

Design, as a fundamental and widespread human activity, aiming 
at changing existing situations into desired ones (Simon, 1996), is 
nonlinear and complex (Zeng, 2001), and lies at the heart of creativity 
(Guilford, 1959; Gero, 1996; Jung and Vartanian, 2018; Xie, 2023). 
According to the recursive logic of design (Zeng and Cheng, 1991), a 
designer intensively interacts with the design problem, design 
environment (including stakeholders of design, design context, and 
design knowledge), and design solutions in the recursive environment-
based design evolution process (Zeng and Gu, 1999; Zeng, 2004, 2015; 
Nagai and Gero, 2012). Zeng (2002) conceptualized the design process 
as an environment-changing process in which the product emerges 
from the environment, serves the environment, and changes the 
environment (Zeng, 2015). Convergent and divergent thinking are 
two primary modes of thinking in the design process, which are 
involved in analytical, critical, and synthetic processes. Divergent 
thinking leads to possible solutions, some of which might be creative, 
to the design problem whereas convergent thinking will evaluate and 
filter the divergent solutions to choose appropriate and practical ones 
(Pahl et al., 1988).

Creative design is inherently unpredictable; at times, it may seem 
implausible – yet it happens. Some argue that a good design process 
and methodology form the foundation of creative design, while others 
emphasize the significance of both design methodology and 
knowledge in fostering creativity. It is noteworthy that different 
designers may propose varied solutions to the same design problem, 
and even the same designer might generate diverse design solutions 
for the same problem over time (Zeng, 2001; Boden, 2004). Creativity 
may spontaneously emerge even if one does not intend to conduct a 
creative design, whereas creative design just may not come out no 
matter how hard one tries. A design is considered routine if it operates 
within a design space of known and ordinary designs, innovative if it 
navigates within a defined state space of potential designs but yields 
different outcomes, and creative if it introduces new variables and 
structures into the space of potential designs (Gero, 1990). Moreover, 
it is conceivable that a designer may lack creativity while the product 
itself demonstrates creative attributes, and conversely, a designer may 
exhibit creativity while the resulting product does not (Yang 
et al., 2022).

Several models of design creativity have been proposed in the 
literature. In some earlier studies, design creativity was addressed as 
engineering creativity or creative problem-solving (Cropley, 2015b). 
Used in recent studies (Jia et al., 2021; Jia and Zeng, 2021), the stages 
of design creativity include problem understanding, idea generation, 
idea evolution, and idea validation (Guilford, 1959). Problem 
understanding and idea evaluation are assumed to be  convergent 
cognitive tasks whereas idea generation and idea evolution are 
considered divergent tasks in design creativity. An earlier model of 
creative thinking proposed by Wallas (1926) is presented in four 
phases including preparation, incubation, illumination, and 

verification (Cropley, 2015b). The “Preparation” phase involves 
understanding a topic and defining the problem. During “Incubation,” 
one processes the information, usually subconsciously. In the 
“Illumination” phase, a solution appears, often unexpectedly. Lastly, 
“Verification” involves evaluating and implementing the derived 
solution. In addition to this model, a seven-phase model (an extended 
version of the 4-phase model) was later introduced containing 
preparation, activation, generation, illumination, verification, 
communication, and validation (Cropley, 2015a,b). It is crucial to 
emphasize that these phases are not strictly sequential or distinct in 
that interactions, setbacks, restarts, or premature conclusions might 
occur (Haner, 2005). In contrast to those emperical models of 
creativity, the nonlinear recursive logic of design creativity was 
rigorously formalized in a mathematical design creativity theory 
(Zeng, 2001; Zeng et al., 2004; Zeng and Yao, 2009; Nguyen and Zeng, 
2012). For further details on the theories and models of creativity and 
design creativity, readers are directed to the referenced literature 
(Gero, 1994, 2011; Kaufman and Sternberg, 2010; Williams et al., 
2011; Nagai and Gero, 2012; Cropley (2015b); Jung and Vartanian, 
2018; Yang et al., 2022; Xie, 2023).

1.2 Design creativity neurocognition

First, we would like to provide the definitions of “design” and 
“creativity” which can be  integrated into the definition of “design 
creativity.” According to the Cambridge Dictionary, the definition of 
design is: “to make or draw plans for something.” In addition, the 
definition of creativity is: “the ability to make something new or 
imaginative.” So, the definition of design creativity is: “the ability to 
design something new and valuable.” With these definitions, we focus 
on design creativity neurocognition in this section.

It is of great importance to study design creativity neurocognition 
as the brain plays a pivotal role in the cognitive processes underlying 
design creativity tasks. So, to better investigate design creativity 
we need to concentrate on brain mechanisms associated with the 
related cognitive processes. However, the complexity of these tasks has 
led to a significant gap in our understanding; consequently, our 
knowledge about the neural activities associated with design creativity 
remains largely limited and unexplored. To address this gap, a 
burgeoning field known as design creativity neurocognition has 
emerged. This field focuses on investigating the intricate and 
unstructured brain dynamics involved in design creativity using 
various neuroimaging tools such as electroencephalography (EEG).

In a nonlinear evolutionary model of design creativity, it is 
suggested that the brain handles problems and ideas in a way that 
leads to unpredictable and potentially creative solutions (Zeng, 2001; 
Nguyen and Zeng, 2012). This involves cognitive processes like 
thinking of ideas, evolving and evaluating them, along with physical 
actions like drawing (Zeng et al., 2004; Jia, 2021). This indicates that 
the brain, as a complex and nonlinear system with characteristics like 
emergence and self-organization, goes through several cognitive 
processes which enable the generation of creative ideas and solutions. 
Exploring brain activities during design creativity tasks helps us get a 
better insight into the design process and improves how designers 
perform. As a result, design neurocognition combines traditional 
design study methods with approaches from cognitive neuroscience, 
neurophysiology, and artificial intelligence, offering unique 
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perspectives on understanding design thinking (Balters et al., 2023). 
Although several studies have focused on design and creativity, brain 
dynamics associated with design creativity are largely untouched. It 
motivated us to conduct this literature review to explore the studies, 
gather the information and findings, and finally discuss them. Due to 
the advantages of electroencephalography (EEG) in design creativity 
experiments which will be explained in the following paragraphs, 
we decided to focus on EEG-based neurocognition in design creativity.

As mentioned before, design creativity tasks are cognitive 
activities which are complex, dynamic, nonlinear, self-organized, and 
emergent. The brain dynamics of design creativity are largely 
unknown. Brain behavior recognition during design-oriented tasks 
helps scientists investigate neural mechanisms, vividly understand 
design tasks, enhance whole design processes, and better help 
designers (Nguyen and Zeng, 2014a,b, 2017; Liu et al., 2016; Nguyen 
et al., 2018, 2019; Zhao et al., 2018, 2020; Jia, 2021; Jia et al., 2021; Jia 
and Zeng, 2021). Exploring brain neural circuits in design-related 
processes has recently gained considerable attention in different fields 
of science. Several studies have been conducted to decode brain 
activity in different steps of design creativity (Petsche et al., 1997; 
Nguyen and Zeng, 2010, 2014a,b, 2017; Liu et al., 2016; Nguyen et al., 
2018; Vieira et al., 2019). Such attempts will lead to investigating the 
mechanism and nature of the design creativity process and 
consequently enhance designers’ performance (Balters et al., 2023). 
The main question of the studies performed in design creativity 
neurocognition is whether and how we can explore brain dynamics 
and infer designers’ cognitive states using neuro-cognitive and 
physiological data like EEG signals.

Neuroimaging is a vital tool in understanding the brain’s structure 
and function, offering insights into various neurological and 
psychological conditions. It employs a range of techniques to visualize 
the brain’s activity and structure. Neuroimaging methods mainly include 
magnetic resonance imaging (MRI), computed tomography (CT), 
electroencephalography (EEG), functional near-infrared spectroscopy 
(fNIRS), functional MRI (fMRI), and magnetoencephalography (MEG). 
Neuroimaging techniques have helped researchers explore brain 
dynamics in complex cognitive tasks, one of which is design creativity 
(Nguyen and Zeng, 2014b; Gao et al., 2017; Zhao et al., 2020). While 
several neuroimaging methods exist to study brain activity, 
electroencephalography (EEG) is one of the best methods which has 
been widely used in several studies in different applications. EEG, as an 
inexpensive and simple neuroimaging technique with a high temporal 
resolution and an acceptable spatial resolution, has been used to infer 
designers’ cognitive and emotional states. Zangeneh Soroush et  al. 
(2023a,b) have recently introduced two comprehensive datasets 
encompassing EEG recordings in design and creativity experiments, 
stemmed from several EEG-based design and design creativity studies 
(Nguyen and Zeng, 2014a; Nguyen et al., 2018, 2019; Jia, 2021; Jia et al., 
2021; Jia and Zeng, 2021). In this paper, we review some of the most 
fundamental studies which have employed electroencephalography 
(EEG) to explore brain behavior in creativity and design creativity tasks.

1.3 EEG approach to studying creativity 
neurocognition

EEG stands out as a highly promising method for investigating 
brain dynamics across various fields, including cognitive, clinical, and 

computational neuroscience studies. In the context of design creativity, 
EEG offers a valuable means to explore brain activity, particularly 
considering the physical movements inherent in the design process. 
However, EEG analysis poses challenges due to its complexity, 
nonlinearity, and susceptibility to various artifacts. Therefore, gaining 
a comprehensive understanding of EEG and mastering its utilization 
and processing is crucial for conducting effective experiments in 
design creativity research. This review aims to examine studies that 
have utilized EEG in investigating design creativity tasks.

EEG is a technique for recording the electrical activity of the 
brain, primarily generated by neuronal firing within the human 
brain. This activity is almost always captured non-invasively from the 
scalp in most cognitive studies, though intracranial EEG (iEEG) is 
recorded inside the skull, for instance in surgical planning for 
epilepsy. EEG signals are the result of voltage differences measured 
across two points on the scalp, reflecting the summed synchronized 
synaptic activities of large populations of cortical neurons, 
predominantly from pyramidal cells (Teplan, 2002; Sanei and 
Chambers, 2013).

While the spatial resolution of EEG is relatively poor, EEG offers 
excellent temporal resolution, capturing neuronal dynamics within 
milliseconds, a feature not matched by other neuroimaging modalities 
like functional Near-Infrared Spectroscopy (fNIRS), Positron 
Emission Tomography (PET), or functional Magnetic Resonance 
Imaging (fMRI).

In contrast, fMRI provides much higher spatial resolution, 
offering detailed images of brain activity by measuring blood flow 
changes associated with neuronal activity. However, fMRI’s temporal 
resolution is lower than EEG, as hemodynamic responses are slower 
than electrical activities. PET, like fMRI, offers high spatial resolution 
and involves tracking a radioactive tracer injected into the 
bloodstream to image metabolic processes in the brain. It is 
particularly useful for observing brain metabolism and neurochemical 
changes but is invasive and has limited temporal resolution. fNIRS, 
measuring hemodynamic responses in the brain via near-infrared 
light, stands between EEG and fMRI in terms of spatial resolution. It 
is non-invasive and offers better temporal resolution than fMRI but is 
less sensitive to deep brain structures compared to fMRI and 
PET. Each of these techniques, with their unique strengths and 
limitations, provides complementary insights into brain function 
(Baillet et al., 2001; Sanei and Chambers, 2013; Choi and Kim, 2018; 
Peng, 2019).

This understanding of EEG, from its historical development by 
Hans Berger in 1924 to modern digital recording and analysis 
techniques, underscores its significance in studying brain function 
and diagnosing neurological conditions. Despite advancements in 
technology, the fundamental methods of EEG recording have 
remained largely unchanged, emphasizing its enduring relevance in 
neuroscience (Teplan, 2002; Choi and Kim, 2018).

1.4 Objectives and structure of the paper

Balters et al. (2023) conducted a comprehensive systematic review 
including 82 papers on design neurocognition covering nine topics 
and a large variety of methodological approaches in design 
neurocognition. A systematic review (Pidgeon et al., 2016), reported 
several EEG-based studies on functional neuroimaging of visual 
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creativity. Although such a comprehensive review exists in the field of 
design neurocognition, just a few early reviews focused on creativity 
neurocognition (Fink and Benedek, 2014, 2021; Benedek and 
Fink, 2019).

The present review not only reports the studies but also critically 
discusses the previous findings and results. The rest of this paper is 
organized as follows: Section 2 introduces our review methodology; 
Section 3 presents the results from our review process, and Section 4 
discusses the major implications of the existing design creativity 
neurocognition research in future studies. Section 5 concludes the paper.

2 Methods and materials

Figure  1 shows the main components of EEG-based design 
creativity studies: (1) experiment design, (2) participants, (3) 
psychometric tests, (4) experiments (creativity tasks), (5) EEG 
recording and analysis methods, and (6) final data analysis. The 
experiment design consists of experiment protocol which includes 
(design) creativity tasks, the criteria to choose participants, the 
conditions of the experiment, and recorded physiological responses 
(which is EEG here). Setting and adjusting these components play a 
crucial role in successful experiments and reliable results. In this 
paper, we review studies based on the components in Figure 1.

The components described in Figure 1 are consistent with the stress-
effort model proposed by Nguyan and Zeng (Nguyen and Zeng, 2012; 
Zhao et al., 2018; Yang et al., 2021) which characterizes the relationship 
between mental stress and mental effort by a bell-shaped curve. This 
model defines mental stress as a ratio of the perceived task workload over 
the mental capability constituted by affect, skills, and knowledge. 
Knowledge is shaped by individual experience and understanding related 
to the given task workload. Skills encompass thinking styles, strategies, 
and reasoning ability. The degree of affect in response to a task workload 
can influence the effective utilization of the skills and knowledge. 
We thus used this model to form our research questions, determine the 
keywords, and conduct our analysis and discussions.

2.1 Research questions

We focused on the studies assessing brain function in design 
creativity experiments through EEG analysis. For a comprehensive 
review, we followed a thorough search strategy, called thematic 
analysis (Braun and Clarke, 2012), which helped us to code and 
extract themes from the initial (seed) papers. We began without a 
fixed topic, immersing ourselves in the existing literature to shape 
our research questions, keywords, and search queries. Our research 
questions formed the search keywords and later the 
search inquiries.

Our main research questions (RQs) were:

RQ1: What are the effective experiment design and protocol to 
ensure high-quality EEG-based design creativity studies?

RQ2: How can we efficiently record, preprocess, and process EEG 
reflecting the cognitive workload associated with design 
creativity tasks?

RQ3: What are the existing methods to analyze the data extracted 
from EEG signals recorded during design creativity tasks?

RQ4: How can EEG signals provide significant insight into neural 
circuits and brain dynamics associated with design creativity tasks?

RQ5: What are the significant neuroscientific findings, 
shortcomings, and inconsistencies in the literature?

With the initial information extracted from the seed papers and 
the previous studies by the authors in this field (Nguyen and Zeng, 
2012, 2014a,b; Jia et al., 2021; Jia and Zeng, 2021; Yang et al., 2022; 
Zangeneh Soroush et  al., 2024), we  built a conceptual model 
represented by Figure 1 and then formed these research questions. 
With this understanding and the RQs, we set our search strategy.

FIGURE 1

The main components of EEG-based design creativity studies.
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2.2 Search strategy and inclusion-exclusion 
criteria

Our search started with broad terms like “design,” “creativity,” and 
“EEG.” These terms encapsulate the overarching cognitive activities 
and physiological measurement. As we  identified relevant papers, 
we refined our search keywords for a more targeted search. We utilized 
the Boolean operators such as “OR” and “AND” to finetune our search 
inquiries. The search inquiries were enhanced by the authors through 
the knowledge they obtained through selected papers. The first phase 
started with thematic analysis and continued with choosing papers, 
obtaining knowledge, discussing the keywords, and updating the 
search inquiries, recursively until reaching an appropriate search 
inquiry which resulted in the desired search results. We applied the 
thematic analysis only in the first iteration to make sure that we had 
the right and comprehensive understanding of EEG-based design 
creativity, the appropriate set of keywords, and search inquiries. 
Finally, we came up with a comprehensive search inquiry as follows:

(“EEG” OR “Electroenceph*” OR “brain” OR “neur*” OR “neural 
correlates” OR “cognit*”) AND (“design creativity” OR “ideation” OR 
“creative” OR “divergent thinking” OR “convergent thinking” OR 
“design neurocognition” OR “creativity” OR “creative design” OR 
“design thinking” OR “design cognition” OR “creation”)

The search inquiry is a combination of terminologies related to 
design and creativity, as well as terminologies about EEG, neural 
activity, and the brain. In a general and quick evaluation, we found out 
that our proposed search inquiry resulted in relevant studies in the 
field. This evaluation was a quick way to check how effectively our 
search keywords work. Then, we went through well-known databases 
such as PubMed, Scopus, and Web of Science to collect a 
comprehensive set of original papers, theses, and reviews. These 
electronic databases were searched to reduce the risk of bias, to get 
more accurate findings, and to provide coverage of the literature. 
We continued our search in the aforementioned databases until no 
more significant papers emerged from those specific databases. It is 
worth mentioning that we do not consider any specific time interval 
in our search procedure. We used the fields “title,” “abstract,” and 
“keywords” in our search process. Then, we selected the papers based 
on the following inclusion criteria:

 1. The paper should answer one or more research questions 
(RQ1-RQ5).

 2. The paper must be a peer-reviewed journal paper authored 
in English.

 3. The paper should focus on EEG analysis related to creativity or 
design creativity for adult participants.

 4. The paper should be related to creativity or design creativity in 
terms of the concepts, experiments, protocols, and probable 
models employed in the studies.

 5. The paper should use established creativity tasks, including the 
Alternative Uses Task (AUT), the Torrance Tests of Creative 
Thinking (TTCT), or a specific design task. (These tasks will 
be detailed further on.)

 6. The paper should include a quantitative analysis of EEG signals 
in the creativity or design creativity domain.

 7. In addition to the above-mentioned criteria, the authors 
checked the papers to make sure that the included publications 
have the characteristics of high-quality papers.

These criteria were used to select our initial papers from the large 
set of papers we collected from Scopus, Web of Science, and PubMed. 
It should be mentioned that conflicts were resolved through discussion 
and duplicate papers were removed.

After our initial selection, we used Google Scholar to perform a 
forward and backward snowball search approach. We  chose the 
snowball search method over the systematic review approach as the 
forward and backward snowball search methodologies offer efficient 
alternatives to a systematic review. Unlike systematic reviews, the 
snowball search method is particularly valuable when dealing with 
emerging fields or when the scope of inquiry is evolving, allowing 
researchers to quickly uncover pertinent insights and form connections 
between seminal and contemporary works. During each iteration of the 
snowball search, we applied the aforementioned criteria to include or 
exclude papers accordingly. We  continued our snowball search 
procedure until it converged to the final set of papers. After repeating 
this over six iterations, we  found no new and significant papers, 
suggesting we had reached a convergent set of papers.

By October 1st (2023), our search was complete. We  then 
organized and studied the final included publications.

3 Results

3.1 Search results

Figure 2 illustrates the general flow of our search procedure, adapted 
from PRISMA guidelines (Liberati et  al., 2009). With the search 
keywords, we identified 1878 studies during the thematic analysis phase. 
We considered these studies to select the seed papers for the further 
snowball search process. After performing the snowball search and 
considering inclusion and exclusion criteria, we finally selected 154 
studies including 82 studies related to creativity (comprising 60 original 
papers, 12 theses, and 10 review papers) and 72 studies related to design 
creativity (comprising 63 original papers, 5 theses, and 4 review papers). 
In our search, we also found 6 related textbooks and 157 studies using 
other modalities (such as fMRI, fNIRS, etc.) which were excluded. We 
used these textbooks, theses, and their resources to gain more knowledge 
in the initial steps of our review. Some studies using fMRI and fNIRS 
were used to evaluate the results in the discussion. In the snowball search 
process, a large number of studies have consistently appeared across all 
iterations implying their high relevance and influence in the field. These 
papers, which have been repeatedly selected throughout the search 
process, demonstrate their significant contributions to the understanding 
of design creativity and EEG studies. The snowball process effectively 
identifies such pivotal studies by highlighting their recurrent presence 
and citation in the literature, underscoring their importance in shaping 
the research landscape.

3.2 Design creativity neurocognition: 
history and trend

As discussed in Section 1, creativity and design creativity studies 
are different yet closely related in that design creativity involves a more 
complex design process. In this subsection, we will look at how the 
design neurocognition creativity study followed the creativity 
neurocognition study (though not necessarily in a causal manner).
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FIGURE 2

Search procedure and results (adopted from PRISMA) using the thematic analysis in the first iteration and snowball search in the following iterations.

3.2.1 History of creativity neurocognition
Three early studies in the field of creativity neurocognition are 

Martindale and Mines (1975), Martindale and Hasenfus (1978), 
and Martindale et al. (1984). In the first study (Martindale and 
Mines, 1975), it is stated that creative individuals may exhibit 
certain traits linked to lower cortical activation. This research has 
shown distinct neural activities when participants engage in two 
creativity tasks: the Alternate Uses Tasks (AUT) and the Remote 
Associate Task (RAT). The AUT, which gauges ideational fluency 
and involves unfocused attention, is related to higher alpha power 
in the brain. Conversely, the RAT, which centers on producing 
specific answers, shows varied alpha levels. Previous psychological 
research aligns with these findings, emphasizing the different 
nature of these tasks. Creativity, as determined by both tests, is 
associated with high alpha percentages during the AUT, hinting at 
an association between creativity and reduced cortical activation 
during creative tasks. However, highly creative individuals also 

show a mild deficit in cortical self-control, evident in their 
increased alpha levels, even when trying to suppress them. This 
behavior mirrors findings from earlier and later studies and implies 
that these individuals might have a predisposition to disinhibition. 
The varying alpha levels during cognitive tasks likely stem from 
their reaction to tasks rather than intentional focus shifts 
(Martindale and Mines, 1975).

In the second study (Martindale and Hasenfus, 1978), the 
authors explored the relationship between creativity and EEG 
alpha band presence during different stages of the creative process. 
There were two experiments in this study. Experiment 1 found that 
highly creative individuals had lower alpha wave presence during 
the elaboration stage of the creative process, while Experiment 2 
found that effort to be original during the inspiration stage was 
associated with higher alpha wave presence. Overall, the findings 
suggest that creativity is associated with changes in EEG alpha 
wave presence during different stages of the creative process. 
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However, the relationship is complex and may depend on factors 
such as effort to be  original and the specific stage of the 
creative process.

Finally, a series of three studies indicated a link between 
creativity and hemispheric asymmetry during creative tasks 
(Martindale et al., 1984). Creative individuals typically exhibited 
heightened right-hemisphere activity compared to the left during 
creative output. However, no distinct correlation was found 
between creativity and varying levels of hemispheric asymmetry 
during the inspiration versus elaboration phases. The findings 
suggest that this relationship is consistent across different stages of 
creative production. These findings were the foundation of design 
creativity studies which were more explored later and confirmed 
by other studies (Petsche et al., 1997). Later studies have used these 
findings to validate their results. In addition to these early studies, 
there exist several reviews such as Fink and Benedek (2014), 
Pidgeon et al. (2016), and Rominger et al. (2022a) which provide a 
comprehensive literature review of previous studies and their main 
findings including early studies as well as recent creativity research.

3.2.2 EEG-based creativity studies
In the preceding sections, we  aimed to lay a foundational 

understanding of neurocognition in creativity, equipping readers with 
essential knowledge for the subsequent content. In this subsection, 
we  will briefly introduce the main and most important points 
regarding creativity experiments. More detailed information can 
be found in Simonton (2000), Srinivasan (2007), Arden et al. (2010), 
Fink and Benedek (2014), Pidgeon et al. (2016), Lazar (2018), and Hu 
and Shepley (2022).

This section presents key details from the selected studies in a 
structured format to facilitate easy understanding and comparison for 
readers. As outlined earlier, crucial elements in creativity research 
include the participants, psychometric tests used, creativity tasks, EEG 
recording and analysis techniques, and the methods of final data 
analysis. We have organized these factors, along with the principal 
findings of each study, into Table 1. This approach allows readers to 
quickly grasp the essential information and compare various aspects 
of different studies. The table format not only aids in presenting data 
clearly and concisely but also helps in highlighting similarities and 
differences across studies, providing a comprehensive overview of the 
field. Following the table, we have included a discussion section. This 
discussion synthesizes the information from the table, offering 
insights and interpretations of the trends, implications, and 
significance of these studies in the broader context of creativity 
neurocognition. This structured presentation of studies, followed by a 
detailed discussion, is designed to enhance the reader’s understanding, 
and provide a solid foundation for future research in this dynamic and 
evolving field.

In our research, we initially conducted a thematic analysis and 
utilized a forward and backward snowball search method to select 
relevant studies. Out of these, five studies employed machine learning 
techniques, while the remaining ones concentrated on statistically 
analyzing EEG features. It is noteworthy that all the chosen studies 
followed a similar methodology, involving the recruitment of 
participants, administering probable psychometric tests, conducting 
creativity tasks, recording EEG data, and concluding with final 
data analysis.

While most studies follow similar structure for their experiments, 
some other studies focus on other aspects of creativity such as artistic 

creativity and poetry, targeting different evaluation methods, and 
through different approaches. In Shemyakina and Dan’ko (2004) and 
Danko et  al. (2009), the authors targeted creativity to produce 
proverbs or definitions of emotions of notions. In other studies 
(Leikin, 2013; Hetzroni et al., 2019), the experiments are focused on 
creativity and problem-solving in autism and bilingualism. Moreover, 
some studies such as Volf and Razumnikova (1999) and Razumnikova 
(2004) focus more on the gender differences in brain organization 
during creativity tasks. In another study (Petsche, 1996), approaches 
to verbal, visual, and musical creativity were explored through EEG 
coherence analysis. Similarly, the study (Bhattacharya and Petsche, 
2005) analyzed brain dynamics in mentally composing drawings 
through differences in cortical integration patterns between artists and 
non-artists. We  summarized the findings of EEG-based creativity 
studies in Table 1.

3.2.3 Neurocognitive studies of design and design 
creativity

Design is closely associated with creativity. On the one hand, by 
definition, creativity is a measure of the process of creating, for which 
design, either intentional or unconscious, is an indispensable 
constituent. On the other hand, it is important to note that not all 
designs are inherently creative; many designs follow established 
patterns and resemble existing ones, differing only in their specific 
context. Early research on design creativity aimed to differentiate 
between design and design creativity tasks by examining when and 
how designers exhibited creativity in their work. In recent years, much 
of the focus in design creativity research has shifted towards cognitive 
and neurocognitive investigations, as well as the development of 
computational models to simulate creative processes (Borgianni and 
Maccioni, 2020; Lloyd-Cox et  al., 2022). Neurocognitive studies 
employ neuroimaging methods (such as EEG) while computational 
models often leverage artificial intelligence or cognitive modeling 
techniques (Zeng and Yao, 2009; Gero, 2020; Gero and Milovanovic, 
2020). In this section, we review significant EEG-based studies in 
design creativity to focus more on design creation and highlight the 
differences. While most studies have processed EEG to provide more 
detailed insight into brain dynamics, some studies such as Goel (2014) 
outlined a preliminary framework encompassing cognitive and 
neuropsychological systems essential for explaining creativity in 
designing artifacts.

Several studies have recorded and analyzed EEG in design and 
design creativity tasks. Most neuro-cognitive studies have directly 
or indirectly employed frequency-based analysis which is based on 
the analysis of EEG in specific frequency bands including delta 
(0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and 
gamma (>30 Hz). One of the main analyses is called task-related 
potential (TRP) which has provided a foundation for other analyses. 
It computes the relative power of the EEG signal associated with a 
design task in a specific frequency band with respect to the power 
of EEG in the rest mode. This analysis is simple and effective and 
reveals the physiological processes underlying EEG dynamics 
(Rominger et  al., 2018; Jia and Zeng, 2021; Gubler et  al., 2022; 
Rominger et al., 2022b).

Frequency-based analyses have been widely employed. For 
example, the study (Borgianni and Maccioni, 2020) applied TRP 
analysis to compare the neurophysiological activations of mechanical 
engineers and industrial designers while conducting design tasks 
including problem-solving, basic design, and open design. These 
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TABLE 1 A summary of EEG-based creativity neurocognition studies.

Ref Participants Psychometric tests Creativity experiment EEG/Data analysis Main findings

Petsche et al. (1997) 38 Wiener test system (for mood) before 

and after the experiment, Schmidt-

Henrich intelligent test

Mental tasks concerning visual 

perception and imagery; listening to 

and composing music; verbal and visual 

creativity; and aspects of mood

FFT and coherence analysis for all 

possible electrode pairs in all EEG 

frequency bands

 • Fewer differences between channel pairs for 

amplitude than for coherence.

 • Significant differences in lower and upper alpha in 

all the visual perception tasks.

Jausovec and Jausovec (2000) Experiment 1 (27) and 

Experiment 2 (30)

Not Applicable (N/A) AUT and variant of TTCT EEG spectral power and coherence, 

upper and lower alpha band amplitude, 

and coherence analysis

 • Significant differences between figural and verbal 

tasks in EEG power.

 • Coherence was associated with the level 

of creativity.

 • Noticeable increase in intra- and interhemispheric 

cooperation between mainly the far distant brain 

regions while solving the dialectic problems.

Razumnikova et al. (2009) 53 N/A 26 participants performed the figural 

creativity tasks (TTCT), 27 performed a 

modified version

FFT, power, and spectral analysis in 

EEG subbands

 • Higher upper alpha activity for women in the 

verbal creativity task and higher beta activity for 

men in the figural creativity task.

Volf and Tarasova (2010) 28 N/A TTCT Baseline power and event-related 

desynchronization/synchronization 

(ED/ES) of theta and beta bands

 • The ED/ES of the upper theta and beta bands of the 

subjects were dependent on the level of creativity 

and the person’s sex only in response to the 

instruction “to create images.”

 • Upper theta in temporal–parietal–occipital brain 

regions was associated with the originality scores in 

male participants (unlike female ones).

 • Significant differences in participants with different 

levels of originality in lower and upper beta.

 • The high level of creativity in men and women is 

related to sex-dependent specific patterns of 

frontal–occipital and lateral activities of theta and 

beta bands.

Volf et al. (2010) 40 N/A TTCT FFT, coherence, and spectral analysis of 

EEG in lower and upper alpha band

 • Differences in coherence changes during task 

performance were observed in individuals with 

varying levels of originality, particularly at theta2, 

alpha1, and alpha2 frequencies.

 • Notably, lower originality levels correlated with 

decreased coherence, while higher originality levels 

showed a less significant decrease in the 

alpha2 range.

(Continued)
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TABLE 1 (Continued)

Ref Participants Psychometric tests Creativity experiment EEG/Data analysis Main findings

 • Gender, creativity, laterality, and electrode position 

factors interacted in the alpha2 range during task-

related intrahemisphere coherence analysis.

 • Spatial distribution patterns were similar between 

men and women with opposite creativity levels, but 

high-creativity men exhibited more substantial 

task-linked coherence changes in specific brain 

areas compared to those with low creativity.

Mastria et al. (2021) 20 N/A AUT EEG lower alpha synchronization  • Switching ideas, compared to staying in the same 

category of ideas, is associated with greater activity 

in the lower alpha band in the left hemisphere.

Fink and Neubauer (2006) 31 Verbal IQ, Intelligenz-Struktur-Test 

2000-R, participants’ personality 

traits, NEO-FFI, STAI

Two verbal creativity tasks: solving 

verbal problems and imagining utopian 

situations

TRP analysis of the EEG alpha band  • Creative problem-solving is correlated with an 

increase in alpha power.

 • More original responses were associated with 

stronger task-related alpha synchronization in 

posterior cortices.

 • Creative problem-solving is correlated with 

sex and IQ.

Wang et al. (2017) 24 N/A AUT, letter-memory task, the Stroop 

color-word-interference task

ERD/ERS; upper alpha (10–13 Hz) 

synchronization, particularly in the left 

frontal areas of the brain

 • Individuals with higher shifting abilities produced 

more original ideas in the later stages of divergent 

thinking (DT).

 • Individuals with lower inhibition exhibited stronger 

upper alpha synchronization in the left frontal areas 

during the early stage compared to the later stage.

Benedek et al. (2011) 30 N/A Both convergent and divergent thinking 

tasks in two experimental conditions 

involving either low or high internal 

processing demands (2 × 2within-

subject design)

EEG alpha synchronization, 

particularly in the frontal region.

 • Frontal alpha synchronization occurred during both 

convergent and divergent thinking, but only under 

conditions of high internal processing demands.

 • Frontal alpha synchronization is linked more to 

top-down control.

Benedek et al. (2014) 40 N/A The four-word sentences (FS) task and 

AUT

EEG alpha power, particularly in the 

right parietal cortex

 • Increases in alpha power in the right parietal cortex 

are indicative of focused internal attention.

Rominger et al. (2018) 50 N/A TTCT TRP for the alpha band, and statistical 

analysis

 • Strong desynchronization of upper alpha power 

during creative ideation.

 • A relative increase in upper alpha power at parietal 

and occipital sites during idea elaboration.

(Continued)
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TABLE 1 (Continued)

Ref Participants Psychometric tests Creativity experiment EEG/Data analysis Main findings

Camarda et al. (2018) 24 N/A AUT Alpha synchronization in both the 

frontal and temporo-parietal regions

 • In design fixation, high originality scorers 

maintained alpha synchronization in temporo-

parietal regions, while low scorers displayed alpha 

desynchronization in these areas.

 • In the control group, participants with high 

originality scores maintained frontal alpha 

synchronization, while those with low scores 

showed a decrease.

Prent and Smit (2020) 40 N/A AUT Temporal autocorrelations of the 

amplitude modulation of the dominant 

alpha oscillations (8–13 Hz)

 • Significant negative correlations between creativity 

and temporal autocorrelations over right central/

temporal brain areas.

Mazza et al. (2023) 32 N/A AUT Reaction time, EEG alpha, beta, 

gamma bands analysis, pupil dilation 

and eye gaze

 • Participants engaged in divergent thinking took a 

longer time to generate uncommon uses for everyday 

objects as compared to convergent thinking.

 • During divergent thinking, participants showed 

alpha synchronization along with beta and gamma 

desynchronization, more pronounced leftward gaze 

shift, and greater pupil dilation.

 • In contrast, convergent thinking displayed 

desynchronization in alpha and an increase in beta 

and gamma rhythm, along with a reduction of 

leftward gaze shift and greater pupil constriction.

Rominger et al. (2022a) 100 N/A AUT TRP  • During creative ideation and idea evaluation, the 

TRP was lower at temporal/central and parietal/

occipital areas compared to frontal areas.

 • Temporal/central sites showed higher TRP 

compared to parietal/occipital areas.

 • Participants with higher monitoring skills and 

creative potential showed stronger alpha power 

decreases at parietal/occipital sites during creative 

idea generation and evaluation. Those with lower 

metacognitive monitoring skills showed alpha 

power increases.

(Continued)
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TABLE 1 (Continued)

Ref Participants Psychometric tests Creativity experiment EEG/Data analysis Main findings

Rominger et al. (2020) 50 N/A Figural TTCT TRP, EEG task-related phase-locking in 

the upper-alpha range, functional 

connectivity between brain regions, 

focusing on frontal-central and frontal-

temporal, frontal–parietal/occipital 

networks

 • An increase in functional coupling from idea 

generation to elaboration, most pronounced in 

frontal-central and frontal-temporal networks.

 • In idea generation, an increase in the connectivity 

in the frontal–parietal/occipital network and 

constant connectivity in idea elaboration.

Grabner et al. (2007) 26 N/A Verbal TTCT ERS/ERD of lower and upper alpha 

band, phase locking

 • More original ideas correlated with increased alpha 

synchronization and phase coupling in the right 

hemisphere.

Fink et al. (2011) 45 N/A AUT EEG alpha synchronization  • Creative cognition generally resulted in alpha 

synchronization, mainly in the prefrontal cortex 

and right hemisphere.

 • Both cognitive and affective interventions led to 

stronger prefrontal alpha activity in the upper alpha 

band than in the control condition.

Jauk et al. (2012) 55 Intelligenzstrukturanalyse for 

intelligence, German version of the 

Eysenck Personality, Stait-Trait-

Anxiety-Inventory

AUT, word processing task TRP, EEG alpha synchronization in the 

left and right hemisphere

 • Divergent processing is associated with higher 

task-related EEG alpha power as compared to 

convergent processing in both the word association 

task and AUT.

Gubler et al. (2023) 76 N/A AUT TRP, Statistical analysis  • No significant difference in AUT performance 

between the pain and pain-free groups.

 • The pain group showed more pronounced TRP 

increases in the upper alpha band at the right 

temporal, parietal, and occipital sites.

Rominger et al. (2022b) 74 N/A AUT Task-related alpha power  • More creative ideas are associated with increased 

power in the right posterior region of the brain and 

enhanced coupling between the frontal, parietal, 

and occipital regions in the upper alpha band.

Stevens and Zabelina (2020) 29 N/A AUT Temporal and spectral analysis  • More creative individuals and more creative task 

conditions are associated with greater EEG 

alpha power.

Perchtold-Stefan et al. (2020) 93 Humor Comprehension Task (HUT) AUT Task-related changes in EEG alpha 

power, brain topography, statistical 

analysis

 • An increase in task-related alpha power in HUT 

and AUT, more right-lateralized at ventral fronto-

temporal sites in the HUT than AUT.

(Continued)
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TABLE 1 (Continued)

Ref Participants Psychometric tests Creativity experiment EEG/Data analysis Main findings

Hao et al. (2016) 20 The Chinese version of the 

Spielberger’s state–trait anxiety 

inventory (STAI)

AUT ERD/ERS  • Idea evaluation is associated with upper alpha 

synchronization at the frontal cortical regions.

 • Upper alpha activity in frontal cortices during idea 

generation was enhanced after idea evaluation.

Agnoli et al. (2020) 20 N/A AUT Alpha TRP  • A shift from alpha desynchronization to 

synchronization during idea creation.

 • Alpha power changes linked to response originality, 

varying by brain region.

 • Early DT phases showed alpha synchronization in 

frontal, central, and temporal areas indicating 

original ideas.

 • Centro-parietal alpha synchronization consistently 

predicted originality throughout DT.

 • Bilateral frontal and left-sided central, temporal, 

and parietal effects were key to increasing response 

originality.

Rominger et al. (2019) 86 Structured Clinical Interview for 

DSM-IV Axis I Disorders (SCID 

screening)

AUT EEG phase locking, TRP, statistical 

analysis

 • The U-shaped alpha power trend is associated with 

an increase in functional communication between 

frontal and parietal-occipital brain regions.

Schwab et al. (2014) 45 N/A AUT Upper alpha band: task-related power 

(TRP)

 • A general increase in alpha power at the beginning 

of idea generation followed by a decrease, and then 

a re-increase just before responding, particularly 

noticeable at the right hemisphere’s parietal and 

temporal sites.

 • The production of more original ideas correlated 

with increasing hemispheric asymmetry, showing 

more alpha activity in the right hemisphere 

compared to the left, especially as the idea 

generation period progressed.

Jia and Zeng (2021) 29 N/A Modified figural TTCT Microstate analysis, TRP  • A general decrease in alpha power across all 

thinking modes compared to rest.

 • The lower alpha band (8–10 Hz) showed 

significantly less decrease in power during 

idea evolution.

 • The upper alpha band (10–12 Hz) showed more 

decrease in power over central sites during 

evaluation, indicating higher task-specific demands.

(Continued)
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TABLE 1 (Continued)

Ref Participants Psychometric tests Creativity experiment EEG/Data analysis Main findings

Yin et al. (2023) 30 N/A AUT ERP analysis, statistical analysis, brain 

topography maps

 • The study introduces the correlations between 

cognitive tasks (retrieval, recall, combination, 

and association, combination) and creative 

design events.

 • The decoding method reliably reports recall and 

association occurrences.

 • Association emerges as the primary cognitive factor 

for superior creative output quality.

 • Recall predominates for lower levels of creative 

output quality.

Ahad et al. (2023) 10 N/A Modified AUT Event-related potentials (ERPs), TRP,

EEG alpha power, statistical analysis 

(ANOVA), machine learning 

(k-nearest neighbor)

 • ~99.9% of classification performance in the 

classification of participants’ neural responses

 • Larger N400 amplitudes for nonsensical and 

creative stimuli compared to common uses within 

the 300–500 ms window.

 • ANOVA analysis indicated a significant main effect: 

decreased alpha power during creative ideation, 

particularly over the parietooccipital temporal area 

(O1/2, P7/8).
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studies have agreed that higher alpha band activity is sensitive to 
specific task-related requirements, while the lower alpha corresponds 
to attention processes such as vigilance and alertness (Klimesch et al., 
1998; Klimesch, 1999; Chrysikou and Gero, 2020). Higher alpha 
activity in the prefrontal region reflects complex cognitive processes, 
higher internal attention (such as in imagination), and task-irrelevant 
inhibition (Fink et al., 2009a,b; Fink and Benedek, 2014). On the other 
hand, higher alpha activity in the occipital and temporal lobes 
corresponds to visualization processes (Vieira et al., 2022a). In design 
research, to compare EEG characteristics in design activities (such as 
idea generation or evaluation) (Liu et  al., 2016), frequency-based 
analysis has been widely employed (Liu et al., 2018). Higher alpha is 
associated with open-ended tasks, visual association in expert 
designers, and divergent thinking (Nguyen and Zeng, 2014b; Nguyen 
et al., 2019). Higher beta and theta play a pivotal role in convergent 
thinking, and constraint tasks (Nguyen and Zeng, 2010; Liu et al., 
2016; Liang and Liu, 2019).

The research in design and design creativity is not limited to 
frequency-based analyses. Nguyen et al. (2019) introduced Microstate 
analysis to EEG-based design studies. Using the microstate analysis, 
Jia and Zeng investigated EEG characteristics in design creativity 
experiment (Jia and Zeng, 2021), where EEG signals were recorded 
while participants conducted design creativity experiments which 
were modified TTCT tasks (Nguyen and Zeng, 2014b).

Following the same approach, Jia et  al. (2021) analyzed EEG 
microstates to decode brain dynamics in design cognitive states 
including problem understanding, idea generation, rating idea 
generation, idea evaluation, and rating idea evaluation, where six 
design problems including designing a birthday cake, a toothbrush, a 
recycle bin, a drinking fountain, a workplace, and a wheelchair were 
used for the EEG based design experimental studies (Nguyen and 
Zeng, 2017). The data of these two loosely controlled EEG-based 
design experiments are summarized and available for the research 
community (Zangeneh Soroush et al., 2024).

We summarized the findings of EEG-based design and design 
creativity studies in Table 2.

3.2.4 Trend analysis
The selected studies span a broad range of years, stretching from 

1975 (Martindale and Mines, 1975) to the present day, reflecting 
advancements in neuro-imaging techniques and machine learning 
methods that have significantly aided researchers in their 
investigations. From the earliest studies to more recent ones, the 
primary focus has centered on EEG sub-bands, brain asymmetry, 
coherence analysis, and brain topography. Recently, machine learning 
methods have been employed to classify EEG samples into designers’ 
cognitive states. These studies can be  roughly classified into the 
following distinct categories based on their proposed experiments and 
EEG analysis methods (Pidgeon et  al., 2016; Jia, 2021): (1) visual 
creativity versus baseline rest/fixation, (2) visual creativity versus 
non-rest control task(s), (3) individuals of high versus low creativity, 
(4) generation of original versus standard visual images, (5) creativity 
in virtual reality vs. real environment, (6) loosely controlled vs. strictly 
controlled creativity experiments.

The included studies exhibited considerable variation in the tasks 
utilized and the primary contrasts examined. Some studies employed 
frequency-based or EEG power analysis to compare brain activity 
during visual creativity tasks with tasks involving verbal creativity or 

both verbal and visual tasks. These tasks often entail memory tasks or 
tasks focused on convergent thinking. Several studies, however, 
adopted a simpler approach by comparing electrophysiological 
activity during visual creativity tasks against a baseline fixation or rest 
condition. Some studies compared neural activities between 
individuals characterized by high and low levels of creativity, while 
others compared the generation of original creative images with that 
of standard creative images. Several studies analyze brain behavior 
concerning creativity factors such as fluency, originality, and others. 
These studies typically employ statistical analysis techniques to 
illustrate and elucidate differences between various creativity factors 
and their corresponding brain behaviors. This variability underscores 
the diverse approaches taken by researchers to examine the neural 
correlates of design creativity (Pidgeon et al., 2016). However, few 
studies significantly and deeply delved into areas such as gender 
differences in creativity, creativity among individuals with mental or 
physical disorders, or creativity in diverse job positions or skill sets. 
This suggests that there is significant untapped potential within the 
EEG-based design creativity research area.

In recent years, advancements in fMRI imaging and its 
applications have led several studies to replace EEG with fMRI to 
investigate brain behavior. fMRI extracts metabolism, resulting in 
relatively high spatial resolution compared to EEG. However, it is 
important to note that fMRI has lower temporal resolution compared 
to EEG. Despite this difference, the shift towards fMRI highlights the 
ongoing evolution and exploration of neuroimaging techniques in 
understanding the neural correlates of design creativity. fMRI studies 
provide a deep understanding of neural circuits associated with 
creativity and can be used to evaluate EEG-based studies (Abraham 
et al., 2018; Japardi et al., 2018; Zhuang et al., 2021).

The emergence of virtual reality (VR) has had a significant impact 
on design creativity studies, offering a wide range of experimentation 
possibilities. VR enables researchers to create diverse scenarios and 
creativity tasks, providing a dynamic and immersive environment for 
participants (Agnoli et al., 2021; Chang et al., 2022). Through VR 
technology, various design creativity experiments can be conducted, 
allowing for novel approaches and innovative methodologies to 
explore the creative process. This advancement opens up new avenues 
for researchers to investigate the complexities of design creativity 
more interactively and engagingly.

Regardless of the significant progress over the past few decades, 
design and design creativity neurocognitive research is still in its early 
stages, due to the challenges identified (Zhao et al., 2020; Jia et al., 
2021), which is summarized below:

 1. Design tasks are open-ended, meaning there is no single 
correct outcome and countless acceptable solutions are 
possible. There are no predetermined or optimal design 
solutions; multiple feasible solutions may exist for an open-
ended design task.

 2. Design tasks are ill-defined as finding a solution might change 
or redefine the original task, leading to new tasks emerging.

 3. Various emergent design tasks trigger design knowledge and 
solutions, which in turn can change or redefine tasks further.

 4. The process of completing a design task depends on emerging 
tasks and the perceived priorities for completion.

 5. The criteria to evaluate a design solution are set by the 
solution itself.
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TABLE 2 A summary of EEG-based design creativity neurocognition studies.

Ref Participants Psychometric tests Experiment EEG/data analysis Main findings

Kruk et al. (2014) 14 N/A Two different tasks: clay sculpting and 

drawing

qEEG frequency-based 

analysis of the bilateral 

medial frontal cortex and 

bilateral me-dial parietal 

cortex

 • Both activities increased gamma power in the right medial 

parietal lobe.

 • Unlike drawing, clay sculpting decreased right medial frontal 

gamma power and elevated theta power.

Nguyen and Zeng (2014a) 11 N/A Three design problems including 

designing (1) a house that can fly, (2) a 

vehicle that can transport an object 

between any two locations (3) a desk for 

a messy university student

14 EEG channels were 

processed through 

segmentation and power 

spectral density

 • Mental effort is the lowest at a high stress level and there is no 

significant difference in mental effort between medium stress 

level and low stress level.

Vieira et al. (2019) 36 N/A Three tasks including problem-solving, 

basic design, open design of a set of 

furniture

TRP  • Significant design cognition differences between the mechanical 

engineering students and architects in task-related power 

between the problem-solving task and the design tasks.

Liu et al. (2014) 15 and 24 participants in the first 

and second pilot studies 

respectively

N/A A set of computer-aided design (CAD) 

tasks including a modeling task in Solid 

Edge™, and configuration and 

optimization in Siemens NX™

A fuzzy logical model was 

used to map EEG into four 

emotions

 • The fuzzy model was successful in emotion recognition during 

design tasks

Nguyen et al. (2019) A subset of eight datasets recorded 

on eight different subjects

N/A Six design problems including design: (1) 

a birthday cake, (2) a wheelchair, (3) a 

water fountain, (4) a workplace, (5) a 

recycle bin, and (6) a toothbrush

EEG segmentation using 

frequency measures and 

micro state analysis (power 

spectral density)

 • An effective and fully automated method for EEG segmentation 

in design creativity experiments which can complement 

complex domain expert segmentation.

 • Subjective relationships identified between fuzzy inference 

system objective and questionnaire/interview subjective 

emotional measures.

Vieira et al. (2020b) 32 participants including 15 

mechanical engineers and 17 

industrial designers

N/A Professional mechanical engineers and 

industrial designers in two prototypical 

design tasks, a problem-solving 

constrained layout task and an open 

design sketching task

Statistical analysis 

(ANOVA) of the power 

values of EEG frequency 

bands

 • Significant differences in EEG bands’ activity in stages of the 

design spaces across and between two groups of participants

Vieira et al. (2022a) 84 N/A Constrained and open design tasks to 

design a set of furniture and an open 

design task including free-hand sketching

Frequency-based analysis in 

all EEG bands and statistical 

analysis (ANOVA)

 • A main effect of sex for theta, alpha 2, and beta 1 frequency bands.

 • Higher theta, alpha 2, and beta 1, for women in both design 

tasks in the right dorsolateral prefrontal cortex, right 

occipitotemporal cortex, secondary visual cortex, and 

prefrontal cortex.

 • Higher beta, in the left prefrontal cortex, for women in the 

constrained design.

(Continued)

https://doi.org/10.3389/fnbeh.2024.1331396
https://www.frontiersin.org/behavioral-neuroscience
https://www.frontiersin.org


Z
an

g
en

eh
 So

ro
u

sh
 an

d
 Z

en
g

 
10

.3
3

8
9

/fn
b

eh
.2

0
24

.13
3

13
9

6

Fro
n

tie
rs in

 B
e

h
avio

ral N
e

u
ro

scie
n

ce
16

fro
n

tie
rsin

.o
rg

TABLE 2 (Continued)

Ref Participants Psychometric tests Experiment EEG/data analysis Main findings

 • Women had higher theta, alpha, and beta 2 in the left prefrontal 

cortex and secondary visual cortex for all frequency bands in the 

open design.

 • Results within gender between tasks indicate higher theta and 

alpha in the prefrontal cortex in the constrained design for 

both genders.

 • Higher theta and alpha 1 in the right hemisphere and higher 

alpha 2 and beta bands across hemispheres in the open design 

for both sexes.

 • Common brain areas and frequency bands in distinguishing 

constrained from open design.

Jia et al. (2021) 27 N/A Six open-ended loosely controlled design 

problems including design: (1) a birthday 

cake, (2) a wheelchair, (3) a water 

fountain, (4) a workplace, (5) a recycle 

bin, and (6) a toothbrush

TRP and microstate analysis 

followed by statistical 

analysis (ANOVA)

 • Significant differences in the design tasks in EEG characteristics 

in cognitive states including problem understanding, idea 

generation, idea evaluation, rating idea generation, and rating 

idea evaluation (in both TRP and microstate analysis).

Vieira et al. (2021) 24 N/A Two tasks including a well-defined 

problem-solving task with a unique set of 

solutions and an ill-defined design task

EEG frequency power and 

statistical analysis

 • No main effect of sex and a consistent main effect of hemisphere 

for the six frequency bands.

 • Male designers showed higher alpha and beta in the prefrontal 

cortices for men and in the right occipitotemporal cortex and 

secondary visual cortices for women designers.

 • Men show higher alpha and beta in the right prefrontal area in 

the design sketching stage and women in the right temporal 

cortex and left prefrontal cortex and higher theta, in the design 

sketching stage.

Jia and Zeng (2021) 28 N/A Three open-ended loosely controlled 

design creation tasks including three 

steps of idea generation, idea evolution, 

and idea evaluation

EEG frequency-based 

analysis, microstate analysis, 

and statistical analysis 

(ANOVA)

 • Cognitive states showed different EEG dynamics in microstate 

analysis through statistical analysis more effectively compared to 

frequency-based methods.

Vieira et al. (2020a) 26 mechanical engineers and 29 

industrial designers

N/A Four tasks including problem-solving, 

basic layout design, open layout design 

for a set of furniture, open free-hand

sketching design

Temporal analysis, TRP, and 

ANOVA

 • Significant differences in activations between the problem-

solving and open design tasks.

 • Significant differences between open design sketching and the 

problem-solving.

 • Significant differences between the open sketching design and 

the problem-solving for industrial designers.

(Continued)
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TABLE 2 (Continued)

Ref Participants Psychometric tests Experiment EEG/data analysis Main findings

Vieira et al. (2020d) 18 mechanical engineers and 18 

industrial designers

N/A Four tasks including problem-solving, 

basic layout design, open layout design 

for a set of furniture, open free-hand

sketching design

Frequency-based analysis, 

EEG power, and statistical 

analysis (ANOVA)

 • Significant differences in EEG characteristics between problem-

solving and open design sketching in both novice and 

experienced designers and for both mechanical engineers and 

industrial designers.

 • Neurophysiological activations of experienced and novice 

professional designers when problem-solving and designing are 

significantly different.

 • Experienced professionals show higher transformed power 

compared to novice designers.

Göker (1997) 8 N/A Five tasks including some calculation 

tasks, a range of The Incredible Machine 

(TIM) design assignments of varying 

difficulty, decoding a solution to a similar 

assignment, recognizing some objects, 

classification of objects

Coherence analysis, brain 

topography maps, and the 

measure of relative duration 

of high interregional 

coherences (RDHlrCs)

 • Novices show a longer activity in the frontal regions whereas the 

experts seem to have longer activity in the parietal regions of 

the brain.

 • RDHlrCs between the frontal and parietal regions are longer for 

the expert compared to the novice.

Hu et al. (2022) 12 N/A A sequence of seven design activities 

including scenario establishment, 

scenario shift, problem defining, analogy 

and inference, synthesis, mutation, and 

reflection

Frequency-based analysis, 

TRP, and ANOVA for 

different brain areas and 

different EEG bands

 • During the task of analogy and inference, the parieto-occipital 

area (with the smallest TRP value) had the most 

notable changes.

 • Power decrease in the alpha band (ERD) compared to the 

resting state in problem defining, analogy and inference, 

synthesis, and reflection and search for solutions.

 • During the synthesis task, the hemisphere had a significant 

effect on beta band activity (a considerable decrease in beta 

band power in the right central-temporal area during the 

synthesis task).

 • Alpha band power had event-related synchronization (ERS) in 

the scenario task and divergent thinking occupies a 

dominant position.

 • During the reflection task, the brain area had a significant 

impact on delta and gamma bands, and the fluctuation in both 

bands displayed event-related desynchronization (ERD).

 • Power decline in delta and gamma bands during reflection task.

 • During the analogy and inference task, the brain area had 

significant impacts on theta band.

 • The parietooccipital area had the most obvious and significant 

changes/differences compared with other areas.

(Continued)
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TABLE 2 (Continued)

Ref Participants Psychometric tests Experiment EEG/data analysis Main findings

Hu et al. (2017) 42 N/A One design task: “Generate as many 

concepts as possible for a device that will 

aid a student athlete with a leg injury. The 

athlete needs to be able to do normal 

campus activities such as go to class, get 

food, or use the restroom.”

EEG frequency measures, 

and Support Vector 

Machines (SVM), Statistical 

analysis

 • Predict design outcomes (an accuracy of 70%) and the 

relationship between EEG data and concept-level measures of 

novelty, quality, and elaboration.

 • Passive attention, active attention, and mental manipulation are 

significant predictors of ideation metrics.

 • Distraction is positively correlated with design novelty and may 

have indirect negative effects on design quality.

 • Highly active attention is correlated with good design quality.

Lukačević et al. (2023) 20 N/A Visuospatially-intensive design tasks of 

CAD modelling; when technical systems 

are presented with orthographic and 

isometric projections in technical 

drawings

TRP analysis in alpha, beta, 

and theta bands, and 

statistical analysis

 • Sensitivity of engineers’ brain activity to the visual 

representation of a technical system interpretation.

 • Significant differences in beta, alpha, and theta (TRP) in 

interpreting the technical drawings and CAD modeling 

from them.

 • Theta TRP in the frontal lobe in the right hemisphere is essential 

in the neurocognitive responses to the orthographic and 

isometric projections.

Giannopulu et al. (2022) 30 N/A Mental visualization of constructing a 

setting using either familiar or abstract 

physical or virtual objects in real and 

augmented reality environments and 

effectively creating a scene in augmented 

reality

Frequency-based analysis, 

brain connectivity 

investigation, statistical 

analysis

 • Comparable cortico-cortical neural patterns across real and 

augmented environments.

 • Synchronous beta and gamma oscillatory activities were 

observed between frontal and posterior brain regions bilaterally.

 • The results indicated a transient synchronized 

neural architecture.

 • Design creativity tasks involve interconnected networks rather 

than being localized in a single brain area.

Eymann et al. (2022) 17 N/A Assessing shared underlying mechanisms 

for creativity and fluid intelligence by the 

creative reasoning task (CRT) and 

Raven’s Advanced Progressive Matrices 

(APM)

Time-frequency analysis for 

the EEG subbands, 

Statistical analysis for both 

neurophysiological 

recordings (EEG) and 

behavioral recordings in 

Creative reasoning task 

(CRT), The working 

memory version of CRT 

(CRT-WM), and Raven’s 

Advanced Progressive 

Matrices (APM)

 • Higher fronto-parietal alpha synchronization during divergent 

compared to convergent thinking, particularly towards the 

conclusion of the thinking phase.

 • Creativity and fluid intelligence share common underlying 

mechanisms, independent of working memory processes 

required by specific task demands.

(Continued)
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TABLE 2 (Continued)

Ref Participants Psychometric tests Experiment EEG/data analysis Main findings

Kuznetsov et al. (2023) 49 N/A Performing a mental design creativity 

divergent thinking task

EEG power spectrum 

analysis, and source 

localization through 

sLORETA

 • The higher alpha has a significant correlation with the level 

of creativity.

 • The level of originality is correlated with the activity of lateral-

frontoparietal network (L-FPN) structures.

 • In contrast, the default-mode networks (DMN) activity does not 

differ significantly between the two groups with lower and 

higher levels of creativity.

Wang et al. (2023) 72 N/A Designing a ship in virtual reality (VR) Frequency-based analysis in 

EEG sub-bands, ANOVA

 • VR significantly affects immersion, especially with regard 

to attention.

 • VR was significantly correlated with theta, beta, and gamma 

brain wave activity.

 • In the VR scenario, increased attention-related and meditation-

related brain wave activity and desynchronized alpha waves 

were recognized.

 • VR had a slight positive effect on attention levels with regard 

to immersion.

 • VR did not affect operation ability.

 • VR had a small positive effect on the feasibility of the 

creative process.

 • VR had no significant effect on creative outcomes.

Nguyen et al. (2018) A subset of eight datasets recorded 

on eight different subjects

N/A Six design problems including design: (1) 

a birthday cake, (2) a wheelchair, (3) a 

water fountain, (4) a workplace, (5) a 

recycle bin, and (6) a toothbrush

Microstate analysis, 

Frequency-based analysis

 • The study introduced a novel method to quantify effort, fatigue, 

and concentration during the conceptual design process.

 • The study introduces and discusses four hypotheses; H1: Effort 

and fatigue are subject to ice-breaking and end of task 

phenomena, H2: Fatigue and effort follow a capacity model, H3: 

Fatigue is multidimensional, H4: Concentration follows a modal 

shift model

Şekerci et al. (2024) 32 N/A Three stages of designing a house 

(Residential bathroom design, 

Residential-bedroom design, and 

Residential-living room design) 

including manual, digital, and 2 

dimensional designs using CAD

Brain frontal asymmetry 

and hemisphere activities in 

the alpha and beta bands for 

arousal and valence, 

statistical analysis

 • The paper introduces a method to recognize interior 

architecture students’ emotions while using design tools
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While a lot of lessons learned from creativity neurocognitive 
research can be  borrowed to study design and design creativity 
neurocognition, new paradigms should be  proposed, tested, and 
validated to advance this new discipline. This advancement will in 
turn move forward creativity neurocognition research.

3.3 Experiment protocol

Concerning the model described in Figure 1, we arranged the 
following sections to cover all the main components of EEG-based 
design creativity studies. To bring a general picture of the EEG-based 
design creativity studies, we briefly explain the procedure of such 
experiments. Since most design creativity neurocognition research 
inherited more or less procedures in general creativity research, 
we will focus on AUT and TTCT tasks. The introduction of a loosely 
controlled paradigm, tEEG, can be found in Zhao et al. (2020), Jia 
et al. (2021), and Jia and Zeng (2021). Taking a look at Tables 1, 2, it 
can be inferred that almost all included studies record EEG signals 
while selected participants are performing creativity tasks. The first 
step is determining the sample size, recruiting participants, and 
psychometrics according to which participants get selected. In some 
of these studies, participants take psychometric tests before 
performing the creativity tasks for screening or categorization. In this 
review, the tasks used to gauge creativity are the Alternative Uses Test 
(AUT) and the Torrance Test of Creative Thinking (TTCT). During 
these tasks, EEG is recorded and then preprocessed to remove any 
probable artifacts. These artifact-free EEGs are then processed to 
extract specific features, which are subsequently subjected to either 
statistical analysis or machine learning methods. Statistical analysis 
typically compares brain dynamics across different creativity tasks like 
idea generation, idea evolution, and idea evaluation. Machine 
learning, on the other hand, categorizes EEG signals based on 
associated creativity tasks. The final stage involves data analysis, which 
aims to deduce how brain dynamics correlate with the creativity tasks 
given to participants. This data analysis also compares EEG results 
with psychometric test findings to discern any significant differences 
in EEG dynamics and neural activity between groups.

3.3.1 Participants
The first factor of the studies is their participants. In most studies, 

participants are right-handed, non-medicated, and have normal or 
corrected to normal vision. In some cases, the Edinburgh Handedness 
Inventory (Oldfield, 1971) (with 11 elements) or hand dominance test 
(HDT) (Steingrüber et  al., 1971) were employed to determine 
participants’ handedness (Rominger et al., 2020; Gubler et al., 2023; 
Mazza et  al., 2023). While in several creativity studies, right-
handedness has been considered; relatively, in design creativity studies 
it has been less mentioned.

In most studies, participants are undergraduate or graduate 
students with different educational backgrounds and an age range of 
18 to 30 years. In the included papers, participants did not report any 
history of psychiatric or neurological disorders, or treatment. It should 
be noted that some studies such as Ayoobi et al. (2022) and Gubler et al. 
(2022) analyzed creativity in health conditions like multiple sclerosis 
or participants with chronic pain, respectively. These studies usually 
conduct statistical analysis to investigate the results of creativity tasks 
such as AUT or Remote Association Task (RAT) and then associate the 

results with the health condition. In some studies, it is reported that 
participants were asked not to smoke cigarettes for 1 h, not to have 
coffee for 2 h, alcohol for 12 h, or other stimulating beverages for 
several hours before experiments. As mentioned in some design 
creativity studies, similar rules apply to design creativity experiments 
(participants are not allowed to have stimulating beverages).

In most studies, the sample size of participants was as large as 15 
up to 45 participants except for a few studies (Jauk et  al., 2012; 
Perchtold-Stefan et al., 2020; Rominger et al., 2022a,b) which had 
larger numbers such as 100, 55, 93, and 74 participants, respectively. 
Some studies such as Agnoli et al. (2020) and Rominger et al. (2020) 
calculated their required sample size through G*power software (Faul 
et al., 2007) concerning their desirable chance (or power) of detecting 
a specific interaction effect involving the response, hemisphere, and 
position (Agnoli et al., 2020). Considering design creativity studies, 
the same trend can be seen as the minimum and maximum numbers 
of participants are 8 and 84, respectively. Similarly, in a few studies, 
sample sizes were estimated through statistical methods such as 
G*power (Giannopulu et al., 2022).

In most studies, a considerable number of participants were 
excluded due to several reasons such as not being fluent in the 
language used in the experiment, left-handedness, poor quality of 
recorded signals, extensive EEG artifacts, misunderstanding the 
procedure of the experiment correctly, technical errors, losing the data 
during the experiment, no variance in the ratings, and insufficient 
behavioral data. This shows that recording a high-quality dataset is 
quite challenging as several factors determine whether the quality is 
acceptable. Two datasets (in design and creativity) with public access 
have recently been published in Mendeley Data (Zangeneh Soroush 
et  al., 2023a,b). Except for these two datasets, to the best of our 
knowledge, there is no publicly available dataset of EEG signals 
recorded in design and design creativity experiments.

Regarding the gender analysis, among the included papers, there 
were a few studies which directly focused on the association between 
gender, design creativity, and brain dynamics (Vieira et  al., 2021, 
2022a). In addition, most of the included papers did not choose the 
participants’ gender to include or exclude them. In some cases, 
participants’ genders were not reported.

3.3.2 Psychometric tests
Before the EEG recording sessions, participants are often screened 

using psychometric tests, which are usually employed to categorize 
participants based on different aspects of intellectual abilities, 
ideational fluency, and cognitive development. These tests provide 
scores on various cognitive abilities. Additionally, personality tests are 
used to create personas for participants. Self-report questionnaires 
measure traits such as anxiety, mood, and depression. Some of the 
psychometric tests include the Intelligenz-Struktur-Test 2000-R (I-S-T 
2000 R), which assesses general mental ability and specific intellectual 
abilities like visuospatial, numerical, and verbal abilities. The big five 
test is used for measuring personality traits like conscientiousness, 
extraversion, neuroticism, openness to experience, and agreeableness. 
Other tests such as Spielberger’s state–trait anxiety inventory (STAI) 
are used for mood and anxiety, while the Eysenck Personality 
Questionnaire (EPQ-R) investigates possible personality correlates of 
task performance (Fink and Neubauer, 2006, 2008; Fink et al., 2009a; 
Jauk et al., 2012; Wang et al., 2019). To the best of our knowledge, the 
included design creativity studies have not directly utilized 
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psychometrics (Table  2) to explore the association between 
participants’ cognitive characteristics and brain behavior. There exist 
a few studies which have indirectly used cognitive characteristics. For 
instance, Eymann et al. (2022) assessed the shared mechanisms of 
creativity and intelligence in creative reasoning and their correlations 
with EEG characteristics.

3.3.3 Creativity and design creativity tasks
In this section, we introduce some experimental creativity tasks 

such as the Alternate Uses Task (AUT), and the Torrance Test of 
Creative Thinking (TTCT). Here, we would like to shed light on these 
tasks and their correlation with design creativity. One of the main 
characteristics of design creativity is divergent thinking as its first 
phase which is addressed by these two creativity tasks. In addition, 
AUT and TTCT are adopted and modified by several studies such as 
Hartog et al. (2020), Hartog (2021), Jia et al. (2021), Jia and Zeng 
(2021), and Li et  al. (2021) for design creativity neurocognition 
studies. The figural version of TTCT is aligned with the goals of design 
creativity tasks where designers (specifically in engineering domains) 
create or draw their ideas, generate solutions, and evaluate and evolve 
generated solutions (Srinivasan, 2007; Mayseless et  al., 2014; Jia 
et al., 2021).

Furthermore, design creativity studies have introduced different 
types of design tasks from sequence of simple design problems to 
constrained and open design tasks (Nguyen et al., 2018; Vieira et al., 
2022a). This variety of tasks opens new perspectives to the design 
creativity neurocognition studies. For example, the six design 
problems have been employed in some studies (Nguyen and Zeng, 
2014b); ill-defined design tasks are used to explore brain dynamics 
differences between novice and expert designers (Vieira et al., 2020d).

The Alternate Uses Task (AUT), established by Guilford (1967), is 
a prominent tool in psychological evaluations for assessing divergent 
thinking, an essential element of creativity. In AUT (Guilford, 1967), 
participants are prompted to think of new and unconventional uses for 
everyday objects. Each object is usually shown twice – initially in the 
normal (common) condition and subsequently in the uncommon 
condition. In the common condition, participants are asked to consider 
regular, everyday uses for the objects. Conversely, in uncommon 
conditions, they are encouraged to come up with unique, inventive uses 
for the objects (Stevens and Zabelina, 2020). The test includes several 
items for consideration, e.g., brick, foil, hanger, helmet, key, magnet, 
pencil, and pipe. In the uncommon condition, participants are asked 
to come up with as many uses as they can for everyday objects, such as 
shoes. It requires them to think beyond the typical uses (e.g., foot 
protection) and envision novel uses (e.g., a plant pot or ashtray). The 
responses in this classic task do not distinguish between the two key 
elements of creativity: originality (being novel and unique) and 
appropriateness (being relevant and meaningful) (Runco and Mraz, 
1992; Wang et al., 2017). For instance, when using a newspaper in the 
AUT, responses can vary from common uses like reading or wrapping 
to more inventive ones like creating a temporary umbrella. The AUT 
requires participants to generate multiple uses for everyday objects 
thereby measuring creativity through four main criteria: fluency 
(quantity of ideas), originality (uniqueness of ideas), flexibility 
(diversity of idea categories), and elaboration (detail in ideas) (Cropley, 
2000; Runco and Acar, 2012). In addition to the original indices of 
AUT, there are some creativity tests which include other indices such 
as fluency-valid and usefulness. Usefulness refers to how functional the 

ideas are (Cropley, 2000; Runco and Acar, 2012) whereas fluency-valid, 
which only counts unique and non-repeated ideas, is defined as a valid 
number of ideas (Prent and Smit, 2020). The AUT’s straightforward 
design and versatility make it a favored method for gauging creative 
capacity in diverse groups and settings, reflecting its universal 
applicability in creativity assessment (Runco and Acar, 2012).

Developed by E. Paul Torrance in the late 1960s, the Torrance Test 
of Creative Thinking (TTCT) (Torrance, 1966) is a foundational 
instrument for evaluating creative thinking. TTCT is recognized as a 
highly popular and extensively utilized tool for assessing creativity. 
Unlike the AUT, the TTCT is more structured and exists in two versions: 
verbal and figural. The verbal part of the TTCT, known as TTCT-Verbal, 
includes several subtests (Almeida et al., 2008): (a) Asking Questions and 
Making Guesses (subtests 1, 2, and 3), where participants are required to 
pose questions and hypothesize about potential causes and effects; (b) 
Improvement of a Product (subtest 4), which involves suggesting 
modifications to the product; (c) Unusual Uses (subtest 5), where 
participants think of creative and atypical uses; and (d) Supposing 
(subtest 6), where participants imagine the outcomes of an unlikely 
event, as per Torrance. The figural component, TTCT-Figural, contains 
three tasks (Almeida et al., 2008): (a) creating a drawing; (b) completing 
an unfinished drawing; and (c) developing a new drawing starting from 
parallel lines. An example of a figural TTCT task might involve uniquely 
finishing a partially drawn image, with evaluations based on the 
aforementioned criteria (Rominger et al., 2018).

The TTCT includes a range of real-world reflective activities that 
encourage diverse thinking styles, essential for daily life and 
professional tasks. The TTCT assesses abilities in Questioning, 
Hypothesizing Causes and Effects, and Product Enhancement, each 
offering insights into an individual’s universal creative potential and 
originality (Boden, 2004; Runco and Jaeger, 2012; Sternberg, 2020). It 
acts like a comprehensive test battery, evaluating multiple facets of 
creativity’s complex nature (Guzik et al., 2023).

There are also other creativity tests such as Remote Associates Test 
(RAT), Runco Creativity Assessment Battery (rCAB), and Consensual 
Assessment Technique (CAT). TTCT is valued for its extensive 
historical database of human responses, which serves as a benchmark 
for comparison, owing to the consistent demographic profile of 
participants over many years and the systematic gathering of responses 
for evaluation (Kaufman et al., 2008). The Alternate Uses Task (AUT) 
and the Remote Associates Test (RAT) are appreciated for their 
straightforward administration, scoring, and analysis. The Creative 
Achievement Test (CAT) is notable for its adaptability to specific 
fields, made possible by employing a panel of experts in relevant 
domains to assess creative works. Consequently, the CAT is 
particularly suited for evaluating creative outputs in historical contexts 
or significant “Big-C” creativity (Kaufman et al., 2010). In contrast, the 
AUT and TTCT are more relevant for examining creativity in 
everyday, psychological, and professional contexts. As such, AUT and 
TTCT tests will establish a solid baseline for more complex design 
creativity studies employing more realistic design problems.

3.4 EEG recording and analysis: methods 
and algorithms

Electroencephalogram (EEG) signal analysis is a crucial 
component in the study of creativity whereby brain behavior 
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associated with creativity tasks can be explored. Due to its advantages, 
EEG has emerged as one of the most suitable neuroimaging techniques 
for investigating brain activity during creativity tasks. Its affordability 
and suitability for studies involving physical movement, ease of 
recording and usage, and notably high temporal resolution make EEG 
a preferred choice in creativity research.

The dynamics during creative tasks are complex, nonlinear, and 
self-organized (Nguyen and Zeng, 2012). It can thus be assumed that 
the brain could exhibits the similar characteristics, which shall 
be reflected in EEG signals. Capturing these complex and nonlinear 
patterns of brain behavior can be challenging for other neuroimaging 
methods (Soroush et al., 2018).

3.4.1 Preprocessing: artifact removal
In design creativity studies utilizing EEG, the susceptibility of 

EEG signals to noise and artifacts is a significant concern due to the 
accompanying physical movements inherent in these tasks. 
Consequently, EEG preprocessing becomes indispensable in ensuring 
data quality and reliability. Unfortunately, not all the included studies 
in this review have clearly explained their pre-processing and artifact 
removal approaches. There also exist some well-known preprocessing 
pipelines such as HAPPE (Gabard-Durnam et al., 2018) which (in 
contrast to their high efficiency) have been rarely used in design 
creativity neurocognition (Jia et al., 2021; Jia and Zeng, 2021). The 
included papers in our analysis have introduced various preprocessing 
methods, including wavelet analysis, frequency-based filtering, and 
independent component analysis (ICA) (Beaty et al., 2017; Fink et al., 
2018; Lou et  al., 2020). The primary objective of preprocessing 
remains consistent: to obtain high-quality EEG data devoid of noise 
or artifacts while minimizing information loss. Achieving this goal is 
crucial for the accurate interpretation and analysis of EEG signals in 
design creativity research.

3.4.2 Preprocessing: segmentation
Design creativity studies often encompass a multitude of cognitive 

tasks occurring simultaneously or sequentially, rendering them 
ill-defined and unstructured. This complexity leads to the generation 
of unstructured EEG data, posing a challenge for subsequent analysis 
(Zhao et al., 2020). Therefore, segmentation methods play a crucial 
role in classifying recorded EEG signals into distinct cognitive tasks, 
such as idea generation, idea evolution, and idea evaluation.

Several segmentation methods have been adopted, including the 
ones relying on Task-Related Potential (TRP) analysis and microstate 
analysis, followed by clustering techniques like K-means clustering 
(Nguyen and Zeng, 2014a; Nguyen et al., 2019; Zhao et al., 2020; Jia 
et  al., 2021; Jia and Zeng, 2021; Rominger et  al., 2022b). These 
methods aid in organizing EEG data into meaningful segments 
corresponding to different phases of the design creativity process, 
facilitating more targeted and insightful analysis. In addition, they 
provide possibilities to look into a more comprehensive list of design-
related cognitions implied in but not intended by conventional AUT 
and TTCT experiments.

While there are some uniform segmentation methods (such as the 
ones based on TRP) employing frequency-based methods. Nguyen 
et al. (2019) introduced a fully automatic dynamic method based on 
microstate analysis. Since then, microstate analysis has been used in 
several studies to categorize the EEG dynamics in design creativity 
tasks (Jia et al., 2021; Jia and Zeng, 2021). Microstate analysis provides 

a novel method for EEG-based design creativity studies with the 
capabilities of high temporal resolution and topography results (Yuan 
et al., 2012; Custo et al., 2017; Jia et al., 2021; Jia and Zeng, 2021).

3.4.3 Feature extraction
The EEG data, after undergoing preprocessing, is directed to 

feature extraction, where relevant attributes are extracted to delve 
deeper into EEG dynamics and brain activity. These extracted features 
serve as the basis for conducting statistical analyses or employing 
machine learning algorithms.

In our review of the literature, we found that EEG frequency, time, 
and time-frequency analyses are the most commonly employed 
methods among the papers we considered. Specifically, the EEG alpha, 
beta, and gamma bands are often highlighted as critical indicators for 
studying brain dynamics in creativity and design creativity. Significant 
variations in the EEG bands have been observed during different stages 
of design creation tasks, including idea generation, idea evaluation, and 
idea elaboration (Nguyen and Zeng, 2010; Liu et al., 2016; Rominger 
et al., 2019; Giannopulu et al., 2022; Lukačević et al., 2023; Mazza et al., 
2023). For instance, the very first creativity studies used EEG alpha 
asymmetry to explore the relationship between creativity and left-
hemisphere and right-hemisphere brain activity (Martindale and 
Mines, 1975; Martindale and Hasenfus, 1978; Martindale et al., 1984). 
Other studies divided the EEG alpha band into lower (8–10 Hz) and 
upper alpha (10–13 Hz) and concluded that low alpha is more 
significant compared to the high EEG alpha band. Although the alpha 
band has been extensively explored by previous studies, several studies 
have also analyzed other EEG sub-bands such as beta, gamma, and 
delta and later concluded that these sub-bands are also significantly 
associated with creativity mechanisms, and can explain the differences 
between genders in different creativity experiments (Razumnikova, 
2004; Volf et al., 2010; Nair et al., 2020; Vieira et al., 2022a).

Several studies have utilized Task-related power changes (TRP) to 
compare the EEG dynamics in different creativity tasks. TRP analysis 
is a high-temporal resolution method used to examine changes in 
brain activity associated with specific tasks or cognitive processes. In 
TRP analysis, the power of EEG signals, typically measured in terms 
of frequency bands (like alpha, beta, theta, etc.), is analyzed to identify 
how brain activity varies during the performance of a task compared 
to baseline or resting states. This method is particularly useful for 
understanding the dynamics of brain function as it allows researchers 
to pinpoint which areas of the brain are more active or less active 
during specific cognitive or motor tasks (Rominger et  al., 2022b; 
Gubler et al., 2023). Reportedly, TRP has wide usage in EEG-based 
design creativity studies (Jia et al., 2021; Jia and Zeng, 2021; Gubler 
et al., 2022).

Event-related synchronization (ERS) and de-synchronization 
(ERD) have also been reported to be effective in creativity studies 
(Wang et al., 2017). ERD refers to a decrease in EEG power (in a 
specific frequency band) compared to a baseline state. The reduction 
in alpha power, for instance, is often interpreted as an increase in 
cortical activity. Conversely, ERS denotes an increase in EEG power. 
The increase in alpha power, for example, is associated with a relative 
decrease in cortical activity (Doppelmayr et al., 2002; Babiloni et al., 
2014). Researchers have concluded that these two indicators play a 
pivotal role in creativity studies as they are significantly correlated 
with brain dynamics during creativity tasks (Srinivasan, 2007; Babiloni 
et al., 2014; Fink and Benedek, 2014).
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Brain functional connectivity analysis, EEG source localization, 
brain topography maps, and event-related potentials analysis are other 
EEG processing methods which have been employed in a few studies 
(Srinivasan, 2007; Dietrich and Kanso, 2010; Giannopulu et al., 2022; 
Kuznetsov et al., 2023). Considering that these methods have not been 
employed in several studies and with respect to their potential to 
provide insight into brain activity in transient modes or the 
correlations between the brain lobes, future studies are suggested to 
utilize such methods.

3.4.4 Data analysis and knowledge extraction
What was mentioned indicates that EEG frequency analysis is an 

effective approach for examining brain behavior in creativity and 
design creativity processes (Fink and Neubauer, 2006; Nguyen and 
Zeng, 2010; Benedek et al., 2011, 2014; Wang et al., 2017; Rominger 
et al., 2018; Vieira et al., 2022b). Analyzing EEG channels in the time 
or frequency domains across various creativity tasks helps identify key 
channels contributing to these experiments. TRP and ERD/ERS are 
well-known EEG analysis methods widely applied in the included 
studies. Some studies have used other EEG sub-bands such as delta or 
gamma (Boot et al., 2017; Stevens and Zabelina, 2020; Mazza et al., 
2023). Besides these methods, other studies have utilized EEG 
connectivity and produced brain topography maps to explore different 
stages of design creativity. The final stage of EEG-based research 
involves statistical analysis and classification.

In statistical analysis, researchers examine EEG characteristics like 
power or alpha band amplitude to determine if there are notable 
differences during creativity tasks. Comparisons are made across 
different brain lobes and participants to identify which brain regions 
are more active during various stages of creativity. Techniques such as 
TRP, ERD, and ERS are scrutinized using statistical hypothesis testing 
to see if brain dynamics vary among participants or across different 
creativity tasks. Additionally, the relationship between EEG features 
and creativity scores is explored. For instance, researchers might 
investigate whether there is a link between EEG alpha power and 
creativity scores like originality and fluency. These statistical analyses 
can be conducted through either temporal or frequency EEG data.

In the classification phase, EEG data are classified according to 
different cognitive states of the brain. For example, EEG recordings 
might be classified based on the stages of creativity tasks, such as 
idea generation and idea evolution (Hu et al., 2017; Stevens and 
Zabelina, 2020; Lloyd-Cox et al., 2022; Ahad et al., 2023; Şekerci 
et  al., 2024). Except for a few studies which employed machine 
learning, other studies targeted EEG analysis and statistical methods. 
In these studies, the main objective is reported to be the classification 
of designers’ cognitive states, their emotional states, or the level of 
their creativity. In the included papers, traditional classifiers such as 
support vector machines and k-nearest neighbor have been 
employed. Modern deep learning approaches can be used in future 
studies to extract the hidden valuable information of EEG in design 
creativity states (Jia, 2021). In open-ended loosely controlled 
creativity studies, where the phases of creativity are not clearly 
defined, clustering techniques are employed to categorize or segment 
EEG time intervals according to the corresponding creativity tasks 
(Jia et al., 2021; Jia and Zeng, 2021). While loosely controlled design 
creativity studies results in more reliable and natural outcomes 
compared to strictly controlled ones, analyzing EEG signals in 
loosely controlled experiments is challenging as the recorded signals 

are not structured. Clustering methods are applied to microstate 
analysis to segment EEG signals into pre-defined states and have 
structured blocks that may align with certain cognitive functions 
(Nguyen et al., 2019; Jia et al., 2021; Jia and Zeng, 2021). Therefore, 
statistical analysis, classification, and clustering form the core 
methods of data analysis in studies of creativity.

Table 2 represents EEG-based design studies with details about 
the number of participants, probable psychometric tests, experiment 
protocol, EEG analysis methods, and main findings. These studies are 
reported in this paper to highlight some of the differences between 
creativity and design creativity.

In addition to the studies reported in Table 2, previous reviews 
and studies (Srinivasan, 2007; Nguyen and Zeng, 2010; Lazar, 2018; 
Chrysikou and Gero, 2020; Hu and Shepley, 2022; Kim et al., 2022; 
Balters et al., 2023) can be found, which comprehensively reported 
approaches in design creativity neurocognition. Moreover, 
neurophysiological studies in design creativity are not limited to 
EEG or the components in Table 2. For instance, in Liu et al. (2014), 
EEG, heart rate (HR), and galvanic skin response (GSR) was used 
to detect the designer’s emotions in computer-aided design tasks. 
They determined the emotional states of CAD design tasks by 
processing CAD operators’ physiological signals and a fuzzy logic 
model. Aiello (2022) investigated the effects of external factors 
(such as light) and human ones on design processes, which also 
explored the association between the behavioral and 
neurophysiological responses in design creativity experiments. 
They employed ANOVA tests and found a significant correlation 
between neurophysiological recordings and daytime, participants’ 
stress, and their performance in terms of novelty and quality. They 
also recognized different patterns of brain dynamics corresponding 
to different kinds of performance measures. Montagna et  al. 
(Montagna and Candusso, n.d.; Montagna and Laspia, 2018) 
analyzed brain behavior during the creative ideation process in the 
earliest phases of product development. In addition to EEG, they 
employed eye tracking to analyze the correlations between brain 
responses and eye movements. They utilized statistical analysis to 
recognize significant differences in brain hemispheres and lobes 
with respect to participants’ background, academic degree, and 
gender during the two modes of divergent and convergent thinking. 
Although some of their results are not consistent with those from 
the literature, these experiments shed light on the experiment 
design and provide insights and a framework for future experiments.

4 Discussion

In the present paper, we reviewed EEG-based design creativity 
studies in terms of their main components such as participants, 
psychometrics, and creativity tasks. Numerous studies have delved 
into brain activities associated with design creativity tasks, examined 
from various angles. While Table 1 showcases studies centered on the 
Alternate Uses Test (AUT), and the Torrance Tests of Creative 
Thinking (TTCT), Table 2 summarizes the EEG-based studies on 
design and design creativity-related tasks. In this section, we are going 
to discuss the impact of some most important factors including 
participants, experiment design, and EEG recording and processing 
on EEG-based design creativity studies. Research gaps and open 
questions are thus presented based on the discussion.
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4.1 Participants

4.1.1 Psychometrics: do we have a population 
that we wished for?

Psychometric testing is crucial for participant selection, with 
participant screening often based merely on self-reported information 
or based on their educational background. Examining Tables 1, 2 
reveals that psychometrics are not frequently utilized in design 
creativity studies, indicating a notable gap in these investigations. 
Future research should consider establishing a standard set of 
psychometric tests to create comprehensive participant profiles, 
particularly focusing on intellectual capabilities (Jauk et  al., 2015; 
Ueno et al., 2015; Razumnikova, 2022). Taking a look at the studies 
which employed psychometrics, it could be inferred that there is a 
correlation between cognitive abilities such as intelligence and 
creativity (Arden et  al., 2010; Jung and Haier, 2013). The few 
psychometric tests employed primarily focus on determining and 
providing a cognitive profile, encompassing factors such as mood, 
stress, IQ, anxiety, memory, and intelligence. Notably, intelligence-
related assessments are more commonly used compared to other tests. 
These psychometrics are subject to social masking according to which 
there is the possibility of unreliable self-report psychometrics being 
recorded in the experiments. These results might yield less 
accurate findings.

4.1.2 Sample size and participants’ characteristics
Participant numbers in these studies vary widely, indicating a 

broad spectrum of sample sizes in this research area. The 
populations in the studies varied in size, with most having around 
40 participants, predominantly students. In the design of 
experiments, it is important to highlight that the sample size in the 
selected studies had a mean of 43.76 and a standard deviation of 
20.50. It is worth noting that while some studies employed specific 
experimental designs to determine sample size, many did not have 
clear and specific criteria for sample size determination, leaving the 
ideal sample size in such studies an open question. Any studies 
determine their sample sizes using G* power (Erdfelder et al., 1996; 
Faul et al., 2007), a prevalent tool for power analysis in social and 
behavioral research.

Initial investigations typically involved healthy adults to more 
thoroughly understand creativity’s underlying mechanisms. These 
foundational studies, conducted under optimal conditions, aimed to 
capture the essence of brain behavior during creative tasks. A handful 
of studies (Ayoobi et al., 2022; Gubler et al., 2022, 2023) have begun 
exploring creativity in the context of chronic pain or multiple sclerosis, 
but broader participant diversity remains an area for further research. 
Additionally, not all studies provided information on the ages of their 
participants. There is a noticeable gap in research involving older 
adults or those with health conditions, suggesting an area ripe for 
future exploration. Diversity in participant backgrounds, such as 
varying academic disciplines, could offer richer insights, given 
creativity’s multifaceted nature and its link to individual skills, affect, 
and perceived workload (Yang et al., 2022). For instance, the creative 
approaches of students with engineering thinking might differ 
significantly from those with art thinking.

Gender was not examined in most included studies. There are just 
a few studies analyzing the effects of gender on creativity and design 
creativity (Razumnikova, 2004; Volf et al., 2010; Vieira et al., 2020b, 
2022a; Gubler et  al., 2022). There is a notable need for further 

investigation to fully understand the impact of gender on the brain 
dynamics of design creativity.

4.2 Experiment design

While the Alternate Uses Test (AUT) and the Torrance Tests of 
Creative Thinking (TTCT) are commonly used in creativity research, 
other tasks like the Remote Associate Task are also prevalent (Schuler 
et al., 2019; Zhang et al., 2020). AUT and figural TTCT are particularly 
favored in design creativity experiments for their compatibility with 
design tasks, surpassing verbal or other creativity tasks in applicability 
(Boot et  al., 2017). When considering the creativity tasks in the 
studies, it is notable that the AUT is more frequently utilized than 
TTCT, owing to its simplicity and ease of quantifying creativity scores. 
In contrast, TTCT often requires subjective assessments and expert 
ratings for scoring (Rogers et al., 2023). However, both TTCT and 
AUT have undergone modifications in several studies to investigate 
their potential characteristics further (Nguyen and Zeng, 2014a).

While the majority of studies have adhered to strictly controlled 
frameworks for their experiments, two studies (Nguyen and Zeng, 
2017; Nguyen et al., 2019; Jia, 2021; Jia et al., 2021) have adopted 
novel, loosely controlled approaches, which reportedly yield more 
natural and reliable results compared to the strictly controlled ones. 
The rigidity from strictly controlled creativity experiments can exert 
additional cognitive stress on participants, potentially impacting 
experimental outcomes. In contrast, the loosely controlled 
experiments are characterized as self-paced and open-ended, 
allowing participants ample time to comprehend the design problem, 
generate ideas, evaluate them, and iterate upon them as needed. 
Recent behavioral and theoretical research suggests that creativity is 
better explored within a loosely controlled framework, where 
sufficient flexibility and freedom are essential. This approach, which 
contrasts with the highly regulated nature of traditional creativity 
studies, aims to capture the unpredictable elements of design 
activities (Zhao et al., 2020). Loosely controlled design studies offer 
a more realistic portrayal of the actual design process. In these 
settings, participants enjoy the liberty to develop ideas at their own 
pace, reflecting true design practices (Jia, 2021). The flexibility in 
such experiments allows for a broader range of scenarios and 
outcomes, depending on the complexity and the designers’ 
understanding of the tests and processes. Prior research has 
confirmed the effectiveness of this approach, examining its validity 
from both neuropsychological and design perspectives. Despite their 
less rigid structure, these loosely controlled experiments are valid 
and consistent with previous studies. Loosely controlled creativity 
experiments allow researchers to engage with the nonlinear, 
ill-defined, open-ended, and intricate nature of creativity tasks. 
However, it is important to note that data collection and processing 
can pose challenges in loosely controlled experiments due to the 
resulting unstructured data. These challenges can be  handled 
through machine learning and signal processing methods (Zhao 
et  al., 2020). For further details regarding the loosely controlled 
experiments, readers can refer to the provided references (Zhao et al., 
2020; Jia et  al., 2021; Jia and Zeng, 2021; Zangeneh Soroush 
et al., 2024).

Participants are affected by external or internal sources during the 
experiments. Participants are asked not to have caffeine, alcohol, or 
other stimulating beverages. The influence of stimulants like caffeine, 
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alcohol, and other substances on creative brain dynamics is another 
under-researched area. While some studies have investigated the 
impact of cognitive and affective stimulation on creativity [such as 
pain (Gubler et al., 2022, 2023)], more extensive research is needed. 
The study concerning environmental factors like temperature, 
humidity, and lighting, has been noted to significantly influence 
creativity (Kimura et al., 2023; Lee and Lee, 2023). Investigating these 
environmental aspects could lead to more conclusive findings. 
Understanding these variables related to participants and their 
surroundings will enable more holistic and comprehensive 
creativity studies.

4.3 EEG

4.3.1 Advantages and disadvantages of EEG being 
used in design creativity experiments

As previously discussed and generally known in the neuroscience 
research community, EEG stands out as a simple and cost-effective 
biosignal with high temporal resolution, facilitating the exploration 
of microseconds of brain dynamics and providing detailed insights 
into neural activity, which was summarized in Balters and Steinert 
(2017) and Soroush et al. (2018). However, despite its advantages in 
creativity experiments, EEG recording is prone to high levels of 
noise and artifacts due to its low amplitude and bandwidth 
(Zangeneh Soroush et  al., 2022). The inclusion of physical 
movements in design creativity experiments further increases the 
likelihood of artifacts such as movement and electrode replacement 
artifacts. Additionally, it is essential to acknowledge that EEG does 
have limitations, including relatively low spatial resolution. It also 
provides less information regarding brain behavior compared to 
other methods such as fMRI which provides detailed spatial 
brain activity.

4.3.2 EEG processing and data analysis
In design creativity experiments, EEG preprocessing is an 

inseparable phase ensuring the quality of EEG data in design 
creativity experiments. Widely employed artifact removal methods 
include frequency-based filters and independent component 
analysis. Unfortunately, not all studies provide a detailed description 
of their artifact removal procedures (Zangeneh Soroush et al., 2022), 
compromising the reproducibility of the findings. Moreover, while 
there are standard evaluation metrics for assessing the quality of 
preprocessed EEG data, these metrics are often overlooked or not 
discussed in the included papers. It is essential to note that EEG 
preprocessing extends beyond artifact removal to include the 
segmentation of unstructured EEG data into well-defined structured 
EEG windows each of which corresponds to a specific cognitive 
task. This presents a challenge, particularly in loosely controlled 
experiments where the cognitive activities of designers during 
drawing tasks may not be clearly delineated since design tasks are 
recursive, nonlinear, self-paced, and complex, further complicating 
the segmentation process (Nguyen and Zeng, 2012; Yang 
et al., 2022).

EEG analysis methods in creativity research predominantly utilize 
frequency-based analysis, with the alpha band (particularly the upper 
alpha band, 10–13 Hz) being a key focus due to its effectiveness in 
capturing various phases of creativity, including divergent and 

convergent thinking. Across studies, a consistent pattern of decreases 
in EEG power during design creativity compared to rest has been 
observed in the low-frequency delta and theta bands, as well as in the 
lower and upper alpha bands in bilateral frontal, central, and occipital 
brain regions (Fink and Benedek, 2014, 2021). This phenomenon, 
known as task-related desynchronization (TRD), is a common finding 
in EEG analysis during creativity tasks (Jausovec and Jausovec, 2000; 
Pidgeon et al., 2016). A recurrent observation in numerous studies is 
the link between alpha band activity and creative cognition, 
particularly original idea generation and divergent thinking. Alpha 
synchronization, especially in the right hemisphere and frontal 
regions, is commonly associated with creative tasks and the generation 
of original ideas (Rominger et al., 2022a). Task-Related Power (TRP) 
analysis in the alpha band is widely used to decipher creativity-related 
brain activities. Creativity tasks typically result in increased alpha 
power, with more innovative responses correlating with stronger alpha 
synchronization in the posterior cortices. The TRP dynamics, marked 
by an initial rise, subsequent fall, and a final increase in alpha power, 
reflect the cognitive processes underlying creative ideation (Rominger 
et al., 2018). Creativity is influenced by both cognitive processes and 
affective states, with studies showing that cognitive and affective 
interventions can enhance creative cognition through stronger 
prefrontal alpha activity. Different creative phases (e.g., idea 
generation, evolution, evaluation) exhibit unique EEG activity 
patterns. For instance, idea evolution is linked to a smaller decrease in 
lower alpha power, indicating varying attentional demands (Fink and 
Benedek, 2014, 2021; Rominger et al., 2019, 2022a; Jia and Zeng, 2021).

Hemispheric asymmetry plays a crucial role in creativity, with 
increased alpha power in the right hemisphere linked to the 
generation of more novel ideas. This asymmetry intensifies as the 
creative process unfolds. The frontal cortex, particularly through 
alpha synchronization, is frequently involved in creative cognition 
and idea evaluation, indicating a role in top-down control and 
internal attention (Benedek et  al., 2014). The parietal cortex, 
especially the right parietal cortex, is significant for focused internal 
attention during creative tasks (Razumnikova, 2004; Benedek et al., 
2011, 2014).

EEG phase locking is another frequently employed analysis 
method. Most studies have focused on EEG coherence, EEG power 
and frequency analysis, brain asymmetry methods (hemispheric 
lateralization), and EEG temporal methods (Rominger et al., 2020). 
However, creativity, being a higher-order, complex, nonlinear, and 
non-stationary cognitive task, suggests that linear and deterministic 
methods like frequency-based analysis might not fully capture its 
intricacies. This raises the possibility of incorporating alternative, 
specifically nonlinear EEG processing methods, which, to our 
knowledge, have been sparingly used in creativity research (Stevens 
and Zabelina, 2020; Jia and Zeng, 2021). Additional analyses such as 
wavelet analysis, brain source separation, and source localization hold 
promise for future research endeavors in this domain.

As mentioned in the previous section, most studies have 
considered participants without their cognitive profile and 
characteristics. In addition, the included studies have chosen two 
main approaches including traditional statistical analysis and machine 
learning methods (Goel, 2014; Stevens and Zabelina, 2020; Fink and 
Benedek, 2021). It should be noted that almost all of the included 
studies have employed the traditional statistical methods to examine 
their hypotheses or explore the differences between participants 
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performing creativity tasks (Fink and Benedek, 2014, 2021; Rominger 
et al., 2019, 2022a; Stevens and Zabelina, 2020; Jia and Zeng, 2021).

Individual differences, such as intelligence, personality traits, and 
humor comprehension, also affect EEG patterns during creative tasks. 
For example, individuals with higher monitoring skills and creative 
potential exhibit distinct alpha power changes during creative ideation 
and evaluation (Perchtold-Stefan et  al., 2020). The diversity in 
creativity tasks (e.g., AUT, TTCT, verbal tasks) and EEG analysis 
methods (e.g., ERD/ERS, TRP, phase locking) used in studies 
highlights the methodological variety in this field, emphasizing the 
complexity of creativity research and the necessity for multiple 
approaches to fully grasp its neurocognitive mechanisms (Goel, 2014; 
Gero and Milovanovic, 2020; Rominger et al., 2020; Fink and Benedek, 
2021; Jia and Zeng, 2021).

In statistical analysis, studies often assess the differences in 
extracted features across different categories. For instance, in a study 
(Gopan et  al., 2022), various features, including nonlinear and 
temporal features, are extracted from single-channel EEG data to 
evaluate levels of Visual Creativity during sketching tasks. This 
involves comparing different groups within the experimental 
population based on specific features. Notably, the traditional 
statistical analyses not only provide insights into differences between 
experimental groups but also offer valuable information for machine 
learning methods (Stevens and Zabelina, 2020). In another study 
(Gubler et al., 2023), researchers conducted statistical analysis on 
frequency-based features to explore the impact of experimentally 
induced pain on creative ideation among female participants using 
an adaptation of the Alternate Uses Task (AUT). The analysis involved 
examining EEG features across channels and brain hemispheres 
under pain and pain-free conditions. Similarly, in another study 
(Benedek et al., 2014), researchers conducted statistical analysis on 
EEG alpha power to investigate the functional significance of alpha 
power increases in the right parietal cortex, which reflects focused 
internal attention. They found that the Alternate Uses Task (AUT) 
inherently relies on internal attention (sensory-independence). 
Specifically, enforcing internal attention led to increased alpha power 
only in tasks requiring sensory intake but not in tasks requiring 
sensory independence. Moreover, sensory-independent tasks 
generally exhibited higher task-related alpha power levels than 
sensory intake tasks across both experimental conditions (Benedek 
et al., 2011, 2014).

Although most studies have employed statistical measures and 
analyses to investigate brain dynamics in a limited number of 
participants, there is a considerable lack of within-subjects and 
between-subjects analyses (Rominger et al., 2022b). There exist several 
studies which differentiate the brain dynamics of expert and novice 
designers or engineering students in different fields (Vieira et  al., 
2020c,d); however, more investigations with a larger number of 
participants are required.

While statistical approaches are commonly employed in 
EEG-based design creativity studies, there is a notable absence of 
machine learning methods within this domain. Among the included 
studies, only one (Gopan et  al., 2022) utilized machine learning 
techniques. In this study, statistical and nonlinear features were 
extracted from preprocessed EEG signals to classify EEG data into 
predefined cognitive tasks based on EEG characteristics. The study 
employed machine learning algorithms such as Long Short-Term 

Memory (LSTM), Support Vector Machines (SVM), and k-Nearest 
Neighbor (KNN) to classify EEG samples. These methods were 
utilized to enhance the understanding of the relationship between 
EEG signals and cognitive tasks, offering a promising avenue for 
further exploration in EEG-based design creativity research (Stevens 
and Zabelina, 2020).

4.4 Research gaps and open questions

In this review, we  aimed to empower readers to decide on 
experiments, EEG markers, feature extraction algorithms, and 
processing methods based on their study objectives, requirements, 
and limitations. However, it is essential to acknowledge that this 
review, while valuable in exploring EEG-based creativity and 
design creativity, has certain limitations which are summarized  
below:

 1. Our review focuses on just the neuroscientific aspects of prior 
creativity and design creativity studies. Design methodologies 
and creativity models should be reviewed in other studies.

 2. Included studies have employed only a limited number of adult 
participants with no mental or physical disorder.

 3. Most studies have utilized fNIRS or EEG as they are more 
suitable for design creativity experiments, but we only focused 
on EEG based studies.

According to what was discussed above, it is obvious that 
EEG-based design creativity studies have been quite recently 
introduced to the field of design. This indicates that research gaps and 
open questions should be addressed for future studies. The following 
provides ten open questions we extracted from this review.

 1. What constitutes an optimal protocol for participant selection, 
creativity task design, and procedural guidelines in EEG-based 
design creativity research?

 2. How can we reconcile inconsistencies arising from variations 
in creativity tests and procedures across different studies? 
Furthermore, how can we address disparities between findings 
in EEG and fMRI studies?

 3. What notable disparities exist in brain dynamics when 
comparing different creativity tests within the realm of 
design creativity?

 4. In what ways can additional physiological markers, such as 
ECG and eye tracking, contribute to understanding 
neurocognition in design creativity?

 5. How can alternative EEG processing methods beyond 
frequency-based analysis enhance the study of brain behavior 
during design creativity tasks?

 6. What strategies can be employed to integrate combinational 
methods like EEG-fMRI to investigate design creativity?

 7. How can the utilization of advanced wearable recording 
systems facilitate the implementation of more naturalistic and 
ecologically valid design creativity experiments?

 8. What are the most effective approaches for transforming 
unstructured data into organized formats in loosely controlled 
creativity experiments?
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 9. What neural mechanisms are associated with design creativity 
in various mental and physical disorders?

 10. In what ways can the application of advanced EEG processing 
methods offer deeper insights into the neurocognitive aspects 
of design creativity?

5 Conclusion

Design creativity stands as one of the most intricate high-
order cognitive tasks, encompassing both mental and physical 
activities. It is a domain where design and creativity are 
intertwined, each representing a complex cognitive process. The 
human brain, an immensely sophisticated biological system, 
undergoes numerous intricate dynamics to facilitate creative 
abilities. The evolution of neuroimaging techniques, 
computational technologies, and machine learning has now 
enabled us to delve deeper into the brain behavior in design 
creativity tasks.

This literature review aims to scrutinize and highlight pivotal, and 
foundational research in this area. Our goal is to provide essential, 
comprehensive, and practical insights for future investigators in this 
field. We employed the snowball search method to reach the final set 
of papers which met our inclusion criteria. In this review, more than 
1,500 studies were monitored and assessed as EEG-based creativity 
and design creativity studies. We  reviewed over 120 studies with 
respect to their experimental details including participants, (design) 
creativity tasks, EEG analyses methods, and their main findings. Our 
review reports the most important experimental details of EEG-based 
studies and it also highlights research gaps, potential future trends, 
and promising avenues for future investigations.
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