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Introduction: In order to successfully move from place to place, our brain often

combines sensory inputs from various sources by dynamically weighting spatial

cues according to their reliability and relevance for a given task. Two of the

most important cues in navigation are the spatial arrangement of landmarks

in the environment, and the continuous path integration of travelled distances

and changes in direction. Several studies have shown that Bayesian integration

of cues provides a good explanation for navigation in environments dominated

by small numbers of easily identifiable landmarks. However, it remains largely

unclear how cues are combined in more complex environments.

Methods: To investigate how humans process and combine landmarks and

path integration in complex environments, we conducted a series of triangle

completion experiments in virtual reality, in which we varied the number of

landmarks from an open steppe to a dense forest, thus going beyond the spatially

simple environments that have been studied in the past. We analysed spatial

behaviour at both the population and individual level with linear regression

models and developed a computational model, based on maximum likelihood

estimation (MLE), to infer the underlying combination of cues.

Results: Overall homing performancewas optimal in an environment containing

three landmarks arranged around the goal location. With more than three

landmarks, individual di�erences between participants in the use of cues are

striking. For some, the addition of landmarks does not worsen their performance,

whereas for others it seems to impair their use of landmark information.

Discussion: It appears that navigation success in complex environments

depends on the ability to identify the correct clearing around the goal location,

suggesting that some participants may not be able to see the forest for the trees.

KEYWORDS

spatial navigation, cue integration, landmarks, path integration, homing, virtual reality,

human, clutter

1 Introduction

Spatial navigation is one of the most crucial behavioural competencies of many

animals, including humans. The cognitive processes underlying spatial navigation abilities

have been the focus of much research, with two major sources of spatial information being

identified as the basis of spatial learning: landmarks (Zhao and Warren, 2015b; Chen

et al., 2017; Jetzschke et al., 2017; Mallot and Lancier, 2018) and path integration (PI)
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(Jetzschke et al., 2016; Chrastil and Warren, 2021; Harootonian

et al., 2022). Both are used by non-human and human navigators

alike (Etienne and Jeffery, 2004). The use of landmarks most often

refers to the usage of external environmental features to identify

and locate places of interest in a navigator’s surroundings (Zhao

and Warren, 2015b; Jetzschke et al., 2017; Walter et al., 2022).

Landmarks can be used for guidance towards a goal (“turn left at the

gas station”) as well as for self-localisation (“I see the Eiffel Tower,

so I must be in Paris”). Path integration (PI), or “dead reckoning,”

refers to the continuous integration of self-motion information

(translation and rotation, gathered for example from visual and

proprioceptive cues) (Wiener andMallot, 2006; Chrastil et al., 2019)

for the purpose of navigation.

1.1 Cue integration in homing

One of themost frequent and important spatial tasks navigators

have to solve is returning to a previously visited location,

like an important food source or their home, hence called

“homing.” Combining different sources of information (cues) can

be a crucial strategy to improve success in homing, since the

information provided by each individual cue is limited and noisy.

PI accumulates errors, potentially decreasing its usefulness over

time, while landmarks might be visible only from some part of

the environment or be hard to identify in visually ambiguous

situations (Hoinville and Wehner, 2018). When combining cues,

the relative importance of each depends on a variety of factors,

including availability, task context, environmental structure, and

cue reliability, that all can be represented well in a Bayesian

framework of optimality (Ernst and Banks, 2002; Alais and Burr,

2019). In such a framework, each source of information is weighted

based on its perceived reliability and can be combined with

prior knowledge about certain features of the environment (Zhao

and Warren, 2015b; Chen et al., 2017; McNamara and Chen,

2022; Roy et al., 2023). In navigation research the application of

the Bayesian framework predicts that the combined estimate of

multiple noisy sources of information will be more precise (lower

standard deviation) (Chen et al., 2017), while its overall accuracy

(central tendency of magnitude of error) will depend most strongly

on the accuracy of the estimate derived from the most reliable

cue. Together, these two error measures form the basis of several

experimental studies, which validate the prediction of optimal cue

integration models and show that humans mostly combine cues

in a statistically optimal manner, but are also prone to systematic

misjudgements under some conditions (Kessler et al., 2022; Nardini

et al., 2008; Zhao and Warren, 2015b; Chen et al., 2017; Jetzschke

et al., 2017; Sjolund et al., 2018).

One effect of landmark ambiguity was demonstrated by

Jetzschke et al. (2017), who could show that homing performance,

i.e., the ability to return back to one’s starting position, improved

when human navigators were able to make use of multiple local

landmarks close to their goal location. However, cue integration

also made participants susceptible to being misled, with one

landmark being covertly displaced and participants not perceiving

the mismatch they headed towards an intermediate location.

Several other studies show that when a mismatch, between cues is

detected, navigators rely on only one of the spatial cues available to

them, either in form of cue competition or cue alternation (Sjolund

et al., 2018; Zhao andWarren, 2018; Harootonian et al., 2022). First,

in cue competition, available cues compete against each other in

decision making. The dynamics of such competition are a matter

of ongoing debate (Kessler et al., 2022; Zhao and Warren, 2018;

Harootonian et al., 2022), but it could be shown that when, for

example, PI and landmark cues are put in conflict by rotating them

against each other, the two cues compete and participants choose

landmark cues for homing when the rotational conflict is small, but

ignore them when the conflict is large (Zhao and Warren, 2015b;

Sjolund et al., 2018). Second, in cue alternation, navigators alternate

between cues from trial to trial, with the probability of choosing

either cue being based on perceived cue reliability, meaning that

more reliable cues are used more often. This resembles “probability

matching,” a known decision making strategy in perceptual and

cognitive tasks (Wozny et al., 2010). In order to disentangle the

combination of information from landmarks and PI in human

navigation, homing tasks have received much attention in the

spatial cognition literature (e.g., Zhao and Warren, 2015b; Chen

et al., 2017; Jetzschke et al., 2017; Widdowson andWang, 2022; Roy

et al., 2023).

One of the most prominent homing tasks is the triangle

completion task (e.g., Loomis et al., 1993; Zhao and Warren,

2015b; Chen et al., 2017; Harootonian et al., 2020). In a triangle

completion task, the participant is actively or passively guided

along two sides of a triangle, and at the end of this outbound

path asked to either actively return to, or point at the starting

location (Glasauer et al., 2002; Kearns et al., 2002; Wolbers

et al., 2007). Comparing systematic errors in different conditions

[e.g., with or without landmarks (Zhao and Warren, 2015b),

longer or shorter paths (Harootonian et al., 2020), or different

turning angles (Wiener and Mallot, 2006; Harootonian et al.,

2020), or for healthy individuals vs. those suffering from vestibular

disorders (Xie et al., 2017)] allows to draw conclusions about how

these factors might have influenced behaviour. Manipulating the

reliability of cues and observing their influence on performance

in different environments in a triangle completion task also allows

to investigate Bayesian cue integration models, as cue weighting

in these models depends on cue reliability. Thus, among other

factors, homing accuracy and precision seems to be dependent on

the specific experimental conditions and the environment used, as

they directly impact reliability of PI and landmark cues.

1.2 Influence of environmental complexity

Recent experimental and theoretical studies have started to

explore the relation between the systematic errors observed in cue

combination and the characteristics of the environment within

which a behaviour was observed. It was shown that navigators can

re-assess the reliability of spatial information extracted from an

environment based on changes in its spatial structure (Roy et al.,

2023). Zhao and Warren (2015a) reported that participants often

misjudge the reliability of visual cues in a homing task and even

continue to use landmark cues for visual guidance when objects

were displaced and put in conflict with the internal PI of the

participants. However, the studies by Zhao and Warren (2015a)

and Roy et al. (2023) also report that if participants successfully
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identify objects as spatially unstable (i.e., appearing at different

locations throughout the experiment), this knowledge is quickly

incorporated into the participant’s navigation strategy, resulting in

reduced trust in landmark-based guidance and increased reliance

on PI. These effects of environmental context also seem to be

expressed differently in different people, leading to individual

differences in short-term learning (Glasauer and Shi, 2022) and

the relative reliance on different spatial cues (Zanchi et al., 2022).

The findings by Jetzschke et al. (2017), Zanchi et al. (2022), and

Roy et al. (2023) lead us to an important conclusion: If the use

and combination of spatial cues for navigation depends on (a)

the makeup of the environment and (b) the nature of the task

at hand, it becomes necessary to more explicitly consider these

factors in designing our experiments, if we want to deepen our

understanding of the mechanisms that govern (human) spatial

cognition. In other words, for a given task, we can categorise

different environments based on how easy it will be to solve that

type of task in the respective environment. This in turn will depend

on different aspects of the makeup of that environment, such as the

number, distribution, and distinguishability of spatial features in it.

We will call the totality of these features the “complexity” of that

environment.

Building on this idea of complexity, we can ask how changing

specific features contributing to the complexity of an environment

will affect the ability of human navigators to solve a spatial task and

also which strategies they might employ to do it. As an example,

consider a meadow with a single tree on it. If we need to memorise

and return to a location close to that tree, we can assume that the

tree will serve as a useful landmark, providing us with information

about the relative distance between the goal location and itself. Now

consider we add a large number of similar-looking trees to this

meadow. Geometrically, the information provided by the original

tree did not change. However, when navigating in this new, more

complex environment we might on the one hand make use of

new, emergent cues, such as spatial configurations of groups of

trees. On the other hand, using any given tree or configuration

of trees at all might be limited to the degree we can identify the

tree(s) in question. This illustrates how cue use can be closely tied

to the complexity of a spatial environment. However, so far, most

experimental studies concerned with cue combination and cue

preference have been conducted in relatively simple environmental

settings and have not systematically addressed the question of visual

complexity and its influence on homing.

1.3 How does homing performance of
human navigators depend on the visual
complexity of the environment?

We aim to answer the above question by systematically varying

the degree of spatial complexity in a spatial homing task. Our study

is guided by two hypotheses when comparing homing behaviour

in environments with different numbers of ambiguous landmark

objects. First, if navigators are able to identify individual objects

(e.g., based on the spatial configuration of object groups or by

disambiguating landmark positions based on PI information),

homing errors should decrease as more objects are added, up to a

point where the goal location can be completely constrained based

on the spatial information derived from landmark cues. This is

the situation described by Jetzschke et al. (2017), who could show

that homing performance was best when participants could fully

triangulate the goal from the three present landmark cues. Second,

if objects become ambiguous to the navigator, as could be the case

if more objects are added beyond what is needed to geometrically

constrain the goal location, homing performance should decrease

as more and more ambiguous objects in the environment increase

the chances for the navigator to be lead astray. This situation has

not been investigated yet and is challenging the cue integration

model proposed by Jetzschke et al. (2017). Considering the

increasing cognitive load necessary to differentiate a rising number

of landmarks in complex environments, memorise the distance

to these cues, or use emerging landmark configurations, we do

not expect the proposed model to well depict cue integration in

complex environments. Thus, the usefulness of landmark cues

for homing might be smaller in more complex environments

and in extreme cases, the navigator might rely solely on PI to

find their goal. However, when taking into account results like

those of Zanchi et al. (2022), who report large inter-individual

differences in cue use even in relatively simple environments, we

expect that reliance on the different cues should vary between

participants in more complex environments, maybe even to a

greater degree than in simple environments. We therefore expect

that homing performance is subject to inter-individual variability

and will explicitly include this factor in our analysis.

To systematically assess the effects of environmental complexity

on homing behaviour, we have performed a virtual reality (VR)

experiment on desktop computers. The use of VR tools is

of special interest for this type of experiment since it allows

for the real-time presentation and manipulation of complex,

interactive environments. We made use of these capabilities to

design a triangle completion task with active return to the home

location. Crucially, the environment differed between experimental

conditions, containing different numbers of visually ambiguous

trees surrounding the goal location, creating different degrees of

clutter. We take these different degrees of clutter to be our proxy

for the abstract idea of “environmental complexity” in this study.

This experimental paradigm allows us to target the question of how

homing performance and spatial cue integration depend on the

visual complexity of an environment by systematically introducing

additional, ambiguous objects.

2 Materials and methods

2.1 Task description

This study is using a triangle completion task, in which the

participant is guided away from a goal location along two legs of a

triangle and then asked to return to their goal location, thus trying

to complete the triangle as accurately as possible. By quantifying

the errors made by participants, this task assesses the participant’s

homing performance.We tested participants in triangle completion

tasks in different conditions that differed in the number of available

tree objects in the surroundings. On the one hand, this study aims

to verify and build upon the findings by Jetzschke et al. (2017)
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for spatially simple environments. For verification in our visual

VR paradigm we test participants in corresponding environments

with zero, one, two, and three identical, rotationally symmetric

trees to present different degrees of visual clutter and thus different

degrees of visual ambiguity of the possible landmark cues. On

the other hand, we aim to challenge the proposed cue integration

model by asking our participants to also navigate in intermediate

and high degrees of visual clutter in environments with ten

and 99 visually ambiguous landmarks. The condition with zero

objects was included to provide a baseline of performance for a

situation in which only PI information was available for navigation.

Conditions with higher object counts always contained the objects

of conditions with lower object counts as well (Figure 1).

In our study, all trees look exactly the same, to focus on the

overarching effect of environmental complexity in the form of

clutter and not on the specifics of landmark salience or individual

object identification capabilities. Thus, trees are designed to be

rotationally symmetric to not provide additional direction cues.

This way, we have created a challenging navigation task, akin to

finding one’s way through a dense spruce forest where single trees

are hard to distinguish from one another and landmark-based

guidance needs to rely on cognitive heuristics such as emerging

geometric features. Therefore, while the individual trees might

serve as landmarks, we cannot directly determine how participants

derive spatial information from the trees and will be referring to

them only as “objects” throughout the text.

2.2 Experimental procedure

Twenty five healthy participants (aged 19–30 years, 9 self-

identified as female, 16 self-identified as male) took part in

the experiment. Participants were informed about the general

procedure of the experiment but not about its specific purpose or

the nature of the different conditions. All participants gave their

written informed consent for participating and received monetary

compensation (7 Euros per hour). The experiments were approved

by the Bielefeld University Ethics Committee and conducted in

accordance with the guidelines of the Deutsche Gesellschaft für

Psychologie e.V. (DGPs), which correspond to the guidelines of the

American Psychological Association (APA). The experiment was

carried out over six sessions (one training + five main sessions),

split evenly over two experimental days, which were not more than

1 calendar day apart. The experiment was provided in the form

of a stand-alone Windows application, created using the virtual

navigation toolbox for the Unity3D game engine and was executed

remotely on participants’ desktop home computers (Müller et al.,

2023). A supervisor was present to instruct and assist participants

according to a standardised protocol during the initial training

session via video call. After successful training, participants were

able to complete the remaining experimental sessions without

further supervision. However, participants were instructed to take

regular breaks in between experimental sessions of at least 5–10

min. Each main session consisted of six repetitions of each of the

six experimental conditions (number of objects) in a randomised

order, leading to a total of 36 trials per session and adding up to

n =24 repetitions per condition overall for each participant over

the whole experiment. Each session took roughly 30–45 min to

complete, leading to a total experiment duration of 3–4.5 h per

participant.

2.3 Trial structure

During a single trial of the experiment, the participant was

first guided to the goal location, marked by a stylised campfire

in the virtual environment. This initial approach always started

from coordinates [0,−10] (see red arrow in Figure 1). During the

training session, participants were then allowed to freely explore

the environment for 90 s. This step was skipped for trials in the

test sessions. The avatar was controlled from a first-person view

using the up/down and the left/right arrow keys, respectively, for

translation and rotation. After reaching the campfire goal location,

they were tasked with collecting pieces of firewood, with the wood

appearing in sequence at the two corners of the first two legs of

the triangle path, being 35.4 and 25 vm long with an inner angle of

45◦ (see Figure 1). This was termed the outbound phase of the trial.

During this initial phase, a floating arrow in front of participants

indicated the correct direction towards the next pile of wood, but

the participants were otherwise free to move as they liked. It was

ensured that no trees were placed directly onto the outbound, or

direct return path, so that participants did not have to manoeuvre

around them. However, we also placed trees at the end of these

alleys to ensure similar visual clutter in all directions. To ensure

an overall straight path along the legs of the outbound path, the

participant was confronted with a time limit (45 seconds) to collect

all the firewood. The remaining time was always visible in the form

of a countdown bar at the top of the screen. Once the participant

had completed the outbound phase, they were asked to return to the

campfire (i.e., the goal location), once again while being presented

with a countdown timer (45 seconds). Neither the piles of wood

nor the campfire were visible during the return, to prevent their

use as spatial cues. After the participant has indicated reaching

the goal, the next trial was started by teleporting the avatar to the

start location at [0,−10], while at the same time the environment

for the new trial was regenerated. Avatar heading was kept across

trial transition and participants were instructed to turn towards the

campfire, before being allowed to walk there.

Identical grass tufts on the ground were randomly arranged for

each trial to enable visual estimation of self-motion by optic flow. A

sun-like light source provided global, uni-directional illumination

from directly above so that no directional information could be

derived from shadows in the environment. The avatar moved at

2.5 virtual metres per second. During each trial, the position and

rotation of the player’s avatar in the virtual environment were

recorded for every rendered frame. All data collected from the

participants and during the experiment was handled according to

the General Data Protection Regulation (GDPR) of the European

Union.

2.4 Analysis

All analyses, except for the linear regression analysis which was

done in custom R (R Core Team, 2022) scripts in version 4.1.3,
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FIGURE 1

Triangle completion task and environmental complexities across conditions. (A) Participants are guided away from a goal location along two sides of

a triangle. The goal location is indicated in our VR environment by a campfire, and waypoints by piles of firewood, that participants are asked to

collect because their campfire went out. Waypoint locations are not changed and participants in all repetitions and conditions walk the same

outbound path and are asked to return to their goal location, the campfire, at the end (example trajectory). At trial start the goal location is

approached from coordinates [0,−10] (red arrow). Environmental complexity is varied by altering the number of available objects between zero, one,

two, three, ten, and 99. The conditions with higher numbers of objects contain also the objects from conditions with a lower number of objects.

Scale is given in virtual meters (vm), that correspond to actual meters in the VR. (B–D) Show screenshots of the first-person view from the VR for

conditions with zero, three, and 99 objects, respectively, at the second waypoint in the direction of the goal location. UI elements shown in the

screenshots from top to bottom are: (1) a red timeout bar, indicating the time left for the trial; (2) an “I’m Home!” button, to log in the final position;

(3) the written instruction “Press ‘space’ to show/hide mouse cursor” below; (4) and a purple bar indicating the current trial within the session.

were conducted in custom Python (Van Rossum and Drake, 2009)1

scripts in version 3.9.12.

2.4.1 Error measure
The primary errormeasure for our analysis is the position error,

which is the Euclidean distance between the intended goal location

and the endpoint of the actually walked trajectory. We calculated

median position errors for each participant and condition as our

accuracy measure, and standard deviation of position error as our

precision measure (the lower the standard deviation the higher the

precision).

2.4.2 Linear mixed e�ects models
Regression models are commonly used to analyse the

relationship between two or more variables to make predictions

and identify trends in data. Especially powerful are linear mixed

effects (LME) models, that include fixed and random effects. Fixed

effects refer to a study’s factors of interest, while random effects

describe randomly sampled factors, such as participant identity.

Taking both effect types into account, results in more accurate

1 https://docs.python.org/3.9/reference/index.html

and reliable estimates of complex relationships in the data. Based

on the distribution of position errors across the conditions, we fit

LMEmodels to identify the underlying mechanisms that lead to the

observed changes in performance. We aim for a model to quantify

the influence of number of objects and inter-individual variability

on position error accuracy and precision. LME models assume a

normal distribution of residuals of the response variable, which in

our case is the median position error (accuracy), or its standard

deviation (precision). Both the accuracy and precision measures

are zero-bounded, and thus their residuals in a regression analysis

cannot be expected to be normally distributed. Thus, all LME

models were calculated using the log-transformed position error

and its log-transformed standard deviation respectively. We fit an

initial LME model predicting the log-transformed position error

(and separately its standard deviation) from the number of objects

as an ordinal fixed effect (models 1 and 4 in Table 1) and compare

it to an LME that also incorporates the participant identity as a

categorical random effect (models 2 and 5 in Table 1) to investigate

possible inter-individual differences. Additionally, model versions

using forward difference contrast coding allow us to identify effect

reversals across ordinal conditions (models 3 and 6 in Table 1).

In all models, the condition is coded as an ordinal fixed effect

because we do not make assumptions about the form of any

possible influence of spatial complexity on performance. Rather,
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TABLE 1 Performance of linear regression models with and without the

random e�ect of participant.

est. s.e. t d.f. p

Model 1 : ln(position error) ∼ condition ordinal

AIC = 258.9,BIC = 279.3

Intercept 1.34 0.05 26.25 132 <0.001

Condition1 –0.79 0.13 –6.30 132 <0.001

Condition2 0.84 0.13 6.69 132 <0.001

Condition3 0.08 0.13 0.63 132 0.53

Condition4 –0.14 0.13 –1.09 132 0.28

Condition5 –0.12 0.13 –0.93 132 0.35

Model 2 : ln(position error) ∼ condition ordinal+ (1|participant)

AIC = 239,BIC = 262.4

Intercept 1.34 0.08 16.71 23 <0.001

Condition1 –0.79 0.10 –7.79 115 <0.001

Condition2 0.84 0.10 8.27 115 <0.001

Condition3 0.08 0.10 0.78 115 0.44

Condition4 –0.14 0.10 –1.34 115 0.18

Condition5 –0.12 0.10 –1.15 115 0.25

Model 3 : ln(position error) ∼ condition ordinal+ (1|participant)

forward difference coding; AIC = 239.0,BIC = 262.42

Intercept 1.34 0.08 16.35 24.05 <0.001

1 Object –0.61 0.15 –4.15 120.23 <0.001

2 Objects –0.50 0.15 –6.12 120.23 <0.001

3 Objects –0.38 0.15 –3.98 120.23 0.01

10 Objects 0.31 0.15 3.42 120.23 0.04

99 Objects 0.28 0.15 3.44 120.23 0.06

Model 4 : ln(σposition error) ∼ condition ordinal

AIC = 247.2,BIC = 267.7

Intercept 1.00 0.05 20.49 132 <0.001

Condition1 –0.22 0.12 –1.86 132 0.07

Condition2 1.00 0.12 8.33 132 <0.001

Condition3 0.06 0.12 0.49 132 0.63

Condition4 0.02 0.12 0.19 132 0.85

Condition5 0.01 0.12 0.05 132 0.96

Model 5 : ln(σposition error) ∼ condition ordinal+ (1|participant)

AIC = 228.7,BIC = 252.1

Intercept 1.00 0.08 12.90 24.05 <0.001

Condition1 –0.22 0.10 –2.23 120.23 0.03

Condition2 1.00 0.10 9.99 120.23 <0.001

Condition3 0.06 0.10 0.59 120.23 0.56

Condition4 0.02 0.10 0.22 120.23 0.82

Condition5 0.01 0.10 0.06 120.23 0.96

(Continued)

TABLE 1 (Continued)

est. s.e. t d.f. p

Model 6 : ln(σposition error) ∼ condition ordinal+ (1|participant)

forward difference coding; AIC = 228.68,BIC = 252.1

Intercept 1.00 0.08 12.90 24.05 <0.001

1 Object –0.67 0.14 –4.74 120.23 <0.001

2 Objects –0.38 0.14 –2.67 120.23 0.01

3 Objects –0.08 0.14 –0.57 120.23 0.57

10 Objects 0.23 0.14 1.66 120.23 0.1

99 Objects 0.67 0.14 4.75 534.05 <0.001

Model 1 predicts the position error from the condition (number of objects). Model 2

additionally includes a random participant factor. Model 3 restates model 2 but uses forward

difference coding. Models 4 to 6 follow the same structure as 1 to 3, but predict position

error variance instead. Note that for models 1, 2, 4, and 5 rows indicate 1st to 5th degree

polynomials of the ordinal condition. Conversely, for models 3 and 6, rows indicate individual

levels of the ordinal conditions as specified for forward difference coding. Please also refer to

Equations 3, 4 for the general form of models used. est., estimate; s.e., standard error; t, t value;

d.f., degrees of freedom; p, p-value.

we are interested in qualitative changes in performance induced

by differences in spatial complexity. We present two approaches

to justify splitting the dataset into two separate effects, an effect

of low clutter and an effect of high clutter, one based on a

quadratic regression and one based on forward difference contrast

coding mentioned above (UCLA Statistical Consulting Group,

2021).2 We quantify both effects by comparing differences in

median position error and in its standard deviation between the

respective conditions. Additionally, to understand how precision

and accuracy relate to each other, we correlated them separately

for each condition, and display results of example participants

performing at different degrees of accuracy and precision. In our

LME model analysis, we observe a small trend of reduced position

error over sessions (see Section 3.2 and Supplementary material)

that, however, only slightly improves the regression model fit. Since

order effects are not a main focus of this study, we decide to

average position errors for each participant within each condition

(number of objects) using its median. Nevertheless, we also provide

a secondary analysis using a LME model on single-trial data (see

Supplementary material). The alternative analysis reproduces the

qualitative results presented in the main text.

2.4.3 Maximum likelihood estimation modelling
Maximum likelihood estimation (MLE) is an important

statistical tool for the analysis of navigation strategies (Chen et al.,

2017). MLE assumes that navigators combine information from

different sources in a way that maximises the likelihood of the

observed experimental behaviour of a participant or population.

To employ MLE as a tool, one must first formulate a mathematical

model which describes the way the information sources in question

could be used. MLE then seeks to find the set of parameter values

2 https://stats.oarc.ucla.edu/r/library/r-library-contrast-coding-systems-

for-categorical-variables/
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that best explain the observed data given the predefined model.

Then, in a second step, one can compare the overall likelihood

of different model variants, which are formal ways of describing

qualitatively different uses of spatial information. This procedure

can provide quantitative evidence for the qualitative question of

how cues are used by a navigator. For our study, we want to

model the use of PI and landmark cues, to gain insights into how

the two sources of spatial information interact in the different

environmental conditions. We compose our model of a distance

and a direction estimate that can be thought of as the norm and

angle of a vector, which represents a complete position estimate.

For landmark information, inspired by Jetzschke et al. (2017),

we model distance information as Gaussian probability density

functions fitted on the distance estimates made by participants

relative to the landmark cues (see Section 2.4.3 for more details):

g(d) = c× e

−(d−µd)
2

2σ2 (1)

with d being the metric distance measure with regard to the

landmark, σ being the standard deviation of d, µd its median and

c = 1
σ
√
2π

being the scaling factor. Since the PI system not only

provides distance but also directional information, we expanded

the model to include such a directional component in the form of a

circular normal (von Mises) probability density function:

f (x) = c× e
κ cos(x−µx) (2)

with x being angular estimates in the interval [−π ,π], µx being

the median of the angular estimates, κ ≈
1

std(x)
being the

concentration parameter and c = 1
2πI0(κ)

being the scaling factor,

where I0(κ) is the modified Bessel function of order zero [see also

Murray and Morgenstern (2010) and Zhao and Warren (2015b)

for an introduction to modelling directional information using

circular functions]. Here, the “noisiness” of the cue (variance in the

Gaussian) could originate from either perception and the internal

spatial representation in encoding the outbound path, or from

motor control in executing the homing path. We make no claims

towards one source of noise above the others, but consider the PI

system as a whole as noisy (Kessler et al., 2022; Chrastil andWarren,

2017, 2021; Harootonian et al., 2020). Using these functions, we

could derivemaximum likelihood estimates for Gaussian (distance)

functions centred on every object location, as well as the start of the

return trip, which could be combined with a von Mises (direction)

function also fitted on the start of the return. This approach to

encoding directional estimates has been introduced by Murray and

Morgenstern (2010) and employed successfully to model human

navigation behaviour by Zhao and Warren (2015b).

Combinations of distance estimates can be calculated by either

multiplying or summing the probabilities derived by sampling

the functions for each of the landmarks. Here, a multiplication

produces an integrationmodel (
n∏

i=1
gi(d)), which assumes each cue

to be used in a given trial weighted according to its reliability (Zhao

andWarren, 2015b; Chen et al., 2017), while a summation produces

a cue alternation model (
n∑

i=1
gi(d)), which assumes individual

objects are picked at random from trial to trial with selection

probabilities based on their reliability (Nardini et al., 2008; Goeke

et al., 2016; Chen et al., 2017). For our study, the reliability of all

landmarks was assumed to be equal, with the weight derived from

the observed reliability in the one object condition (Jetzschke et al.,

2017).

For the full model, these combined distance estimates were

then always combined with a single direction estimate (f (x))

centred on the start of the return. This combination was always

of the integration form (Lcombined = f (x) × gcombined(d)) because

a model assuming alternation between using only distance or

direction information during a given trial is not plausible given

the observed behaviour. To determine goodness of fit, we tested

different model variants against the observed data. Specifically,

we always determined the MLE for both distance and direction

models for the zero object condition, which gave us a model

predicting where participants should walk if they followed their

PI exclusively. This model was then also evaluated on the data

of the other conditions and compared with the variant of the

same model fitted on the respective condition. These models

were then combined with landmark-based distance models as

described above. Parameters for the landmark model were always

set to reflect the geometric ground truth of the distances of the

three central objects around the goal, and the spread of estimates

observed for the one object condition specifically (µd = 10,

σ = σ̃ (d1), with d1 being the distance estimates observed for

the first landmark). Model quality was evaluated by calculating

the log-likelihood of each model variant (ℓ =
∑

log(Lcombined)).

Since model variants were always of the same class, i.e. being

composed of the same number and type of functions, model

log-likelihoods can be compared directly. Furthermore, we used

a bootstrapping procedure to derive confidence intervals for all

MLEs, which allows for direct visual comparison of parameters

across conditions (see Figure 9). Finally, we also calculated Akaike

and Bayesian information criteria (AIC, BIC) for all models as

additional measures for comparison (see Supplementary material).

Model rankings remained unchanged regardless of the method of

comparison.

2.4.4 Power analysis
For the design of this study, we analysed data from a previous

pilot study with a virtual triangle completion task and different

numbers of trees (Müller et al., 2023) and did power analyses for

repetitions per condition and for number of participants using

the one-sample t-test function in G*Power 3.1 (Faul et al., 2007).

We planned to collect data from N = 20 participants with n =
24 repetitions per condition each. Thus, assuming that planned

sample size, a power of β = 95%, and significance level α = 5%,

the 2.78 vm median standard deviation of position errors within

participants and within conditions observed in the pilot study

allows to detect differences in position of ≥2.15 vm in a two-

sided one-sample t-test. Likewise, the 4.02 vm standard deviation

of participants’ median position error observed in the pilot within

conditions, we can identify differences in position of ≥3.5 vm.

This resolution was deemed adequate to resolve the performance

differences for our main study.

Using the study’s actual results (N = 23, n = 24) and

following the same calculations, we can actually resolve with the
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same power, significance level, and t-test, differences of ≥3.2 vm

within participants and within conditions, and ≥2.25 vm between

participants and within conditions, thus matching and even

exceeding the spatial resolution desired for our analysis.

2.4.5 Exclusion criteria
The experiment consisted of training and fivemain test sessions

with initially 25 participants. Six of the participants did not

complete the last main session, and thus we decided to include

only four main sessions to acquire a balanced dataset and include

those six participants that otherwise would have been rejected.

Two additional participants were excluded from all analyses, one

of which did not finish the experiment in the given time, and one

who indicated in the follow-up questionnaire that they were using

the computer display’s rim as an external cue to better estimate

the goal location. We remained with 23 participants completing 24

trials per condition within four main sessions. From the raw data,

we excluded trials with missing values (e.g., due to expired timeout

or mistaken indications of the home position due to unintentional

double clicks in the in-game UI), which was the case in less than

seven trials for any participant. For validation purposes, we also

ran our analysis including all available sessions for each participant

which yields the same qualitative results with only minor deviations

in descriptive statistics. Data processing can be retraced in detail

with the Supplementary material.

3 Results

Healthy participants (N = 23) completed a triangle completion

homing task in virtual reality. Previous research has shown

that the participants’ direction and distance estimates in triangle

completion tasks are dependent on triangle size and shape

(Loomis et al., 1993; Wiener and Mallot, 2006; Harootonian

et al., 2020). Additionally, people showed persistent individual

biases in walked angles (Jetzschke et al., 2016). Both of these

effects constitute confounding factors in an experiment whose

main outcome measure are the distance and angle estimates

in question. Therefore, since the focus of this study is the

influence of environmental complexity, rather than the nature

of these individually different responses to left and right turns

and different path geometries, we chose to keep the start point

and outbound path constant across all trials and environmental

conditions (Figure 1), forgoing the usual approach of providing

mirrored versions of the task with left and right turns. To avoid

long-term learning effects, no feedback as to their performance

was provided to participants in test conditions at any time.

Nevertheless, performance changes along experimental sessions

is discussed where applicable (see Section 3.2). While the path

shape was kept constant, the number of identical tree objects

in the surround was systematically varied between zero and

99 (zero, one, two, three, ten, and 99) from trial to trial.

Conditions with higher object number always contained the

objects of conditions with lower object number as well (Figure 1).

Spatial constellations were kept constant within each condition.

This means that the participants always experienced the same

constellation of—for example 99 trees. This was done to avoid

inducing a feeling of low environmental stability in participants,

which would have lowered trust in landmark-based guidance

cues (Zhao and Warren, 2015a; Roy et al., 2023). To create

optic flow for visual estimation of self-motion we provided

identical grass tufts on the ground that were randomly arranged

for each trial. We quantify homing performance as position

error, which is the Euclidean distance between the actual goal

location and the endpoint of the trajectory performed by the

participant.

3.1 General e�ect of di�erent degrees of
clutter

The main measure of interest for our study was the endpoint

of each trial’s homing trajectory. This is the location at which the

participant estimated the goal location to be. We call the distance

from this location to the actual goal location the position error of

the trial in question and measure the distance in virtual metres

(VM). Virtual metres resemble actual metres in the VR, based on

the scaling of visible 3D assets (grass tufts, trees, wood planks,

campfire).

We find that the number of objects (trees) present in a

given trial substantially impacts the position error (Figure 2). Both

median position error (homing accuracy), as well as the spread in

errors (homing precision) differ greatly for different environments.

Specifically, when no objects are available, we observe a large

median error of almost 10 virtual metres (vm), ± 6 vm (standard

deviation) (see Figures 3, 4). When individual objects are added

to the scene, homing accuracy increases, as the median position

error decreases to a minimum of little more than 2 vm for trials

in which the goal location was constrained by three surrounding

objects. Precision also increases with a median standard deviation

of position error as small as 2 vm. However, if further objects are

added beyond the initial three, a noticeable trend emerges: for

numerous participants, the position error once again rises as the

object number reaches ten or 99 (e.g., Figure 2A). This trend is

accompanied by a considerable increase in the standard deviation

of position errors among different participants (as indicated by

the marker colour in Figures 2, 4). Consequently, this leads to an

overall decrease in precision, bringing it to a level similar to what

is observed for environments devoid of any objects. Nevertheless,

for several participants, the accuracy and precision stay roughly at

the level observed for the three object condition (e.g., Figure 2B),

with one participant even showing the highest precision in the 99

object condition (Figure 4 bottom). Hence, the number of objects

influences performance of individual participants differently. We

observe this strong effect of object number on accuracy and

precision, although participants walked the same outbound path

in all trials. This highlights the strength of the effect of object

number, as the consistency of the outbound path should only be

able to attenuate differences between different object numbers,

rather then increase them. While we describe the patterns of

errors in ascending order from few to many objects present in the

visual scene, conditions were presented in random order to the

participants during the experiment.
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FIGURE 2

Homing performance of two example participants depends on number of objects. For both participants performance increases with up to three

objects. For one participant (A), performance decreases with ten or 99 objects, and for another it stays high (B). Trajectory endpoints of single trials

are depicted by dots. Colours marking individual participants are matched across all figures, based on a given participant’s median position error in

the 99-object condition (refer to Figure 4 top right). Outbound and homing trajectories are indicated by light grey dotted lines. Marker size does not

match actual tree dimensions. Cutout does not show all objects, please see Figure 1 for a more zoomed-out view of the environment.

3.2 Disentangling the e�ect of di�erent
degrees of clutter

We fit an initial linear mixed effects (LME) model

using only the experimental condition (number of objects)

as an ordinal predictor, which already showed significant

predictive power for both accuracy (Table 1 model 1) and

precision (Table 1 model 4) of goal estimates (see Section

2.4.2 for methodological details). To investigate possible

individual differences in performance across conditions, we

added participant identity as a random predictor (Table 1

models 2 and 5), which significantly improved the model for

accuracy, and for precision (likelihood ratio test: accuracy:

χ2
≈21.85, logLik1 = –112.5, logLik2 = –122.4, p < 0.0001;

precision: χ2
≈20.49, logLik1 = –202, logLik2 = –212.2, p <

0.0001).

The residuals in error scores for both models are characterised

by a degree of heteroscedasticity, which is caused mainly by

the large variance in the 99 object condition (see Figure 4).

Accordingly, residuals for errors are homoscedastic across

conditions when the 99 object condition is excluded. However,

as moderate heteroscedasticity is not considered to be a major

influence on LME models (Schielzeth et al., 2020), we consider the

model family described above as adequate to describe the observed

data. Thus, we base our analysis of accuracy on a regression model

of the following form:

ln(position error) ∼ ordinal condition+ (1 | participant) (3)
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FIGURE 3

Homing performance at population level increases in environments with up to three objects, and then decreases up to 99 objects. Trajectory

endpoints of single trials are depicted by dots. Colours marking individual participants are matched across all figures, based on a given participant’s

median position error in the 99-object condition (refer to Figure 4 top right). Marker size does not match actual tree dimensions. Cutout does not

show all objects, please see Figure 1 for a more zoomed-out view of the environment.

and for the analysis of precision in this form:

ln(σ position error) ∼ ordinal condition+ (1 | participant) (4)

with σ being the observed standard deviation of the position error.

While the model explains approximately R2 ≈ 59% of variance

in our median position errors, 40% are attributed to our fixed

condition effect. For position error variance approximately R2 ≈

55% of variance is explained, 36% are attributed to the condition

effect. Note that there is no way to calculate R2-values for mixed

effects models, and the values reported above are approximations

based on an implementation of Nakagawa and Schielzeth (2013)

with refinements by Johnson (2014).

The model suggests a linear as well as a quadratic component

in the relationship between condition and position error for

accuracy (Table 1 model 2) and precision (Table 1 model 5) that we

investigate in more detail below.

We observe a trend of reduced position error over sessions

(see Supplementary material), however, including session number

as an additional fixed effect in the regression model results in

only a slight improvement of fit (without session: AIC≈1163.4,

BIC≈1193.6; with session: AIC≈1150.9, BIC≈1194; likelihood

ratio test: χ2
≈18.58, logLik1 = –574.7, logLik2 = 565.4,

p≈0.00033). Since the learning effect is small compared to the effect

of object number (see Supplementary material), and learning is not

the primary focus of this study, we do not consider the effect in

further analyses.

3.3 Separating e�ects of low and high
clutter

We set out to investigate the effects of environmental

complexity on navigation performance. In our experiments,

complexity was manipulated by changing the number of objects

present in the virtual environment. Based on the patterns of

performance described above, we will group our experimental

conditions into low clutter effects for trials with zero to three objects

(green bar in Figures 4, 5, and green distributions in Figure 6), and

high clutter effects for trials with three to 99 objects (purple bar

in Figures 4, 5, and purple distributions in Figure 6) respectively.

We motivate this separation firstly based on a local minimum in

a quadratic regression at the three object condition (see Figure 5),

and secondly based on the change of sign at the three object

condition in a forward difference contrast coding (UCLA Statistical

Consulting Group, 2021) version of our regression model (see

Table 1 model 3 and 6, and Supplementary material for details).

3.4 Quantifying e�ects of low and high
clutter

With the three object condition separating low and high

clutter effects, we ask which of the factors (number of objects

and individual differences) can better explain the changes in
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FIGURE 4

Performance accuracy (top) and precision (bottom) on population

level are highest with three objects. Boxplots are based on median

position error in virtual metres (vm) (top) or standard deviation (SD)

(bottom) of N = 23 single participants with n = 24 repetitions within

respective conditions (see dots). Colours marking individual

participants are matched across all figures, based on a given

participant’s median position error in the 99-object condition (refer

to Figure 4 top right). Boxplot notches indicate 95% confidence

intervals around the median. Green and purple horizontal bars at the

bottom indicate low and high clutter e�ects (see Section 3.3 for

details).

homing performance for more and less cluttered environments. To

quantify these effects, we analyse the median performance change

in accuracy and precision from the zero object to the three object

condition and compare it to the change from the three object to the

99 object condition for each individual participant. Note that this

analysis was conducted without log-transforming position error

because it is not subject to assumptions of linear regression models,

and offers easier interpretability of the results.

FIGURE 5

Quadratic fits on the log-transformed position error (top) or

log-transformed position error standard deviation (SD) (bottom)

with ordinal condition show a local minimum (red vertical line) close

to the three object condition. Fits include data from N = 23

participants with n = 24 repetitions per condition. Ordinal

conditions from zero to five correspond to conditions with zero,

one, two, three, ten, and 99 objects respectively. Quadratic

regressions fit the data significantly better than a linear regression

and the local minimum at three objects is validated in a linear

regression model with forward di�erence coding (see Table 1).

Colours marking individual participants are matched across all

figures, based on a given participant’s median position error in the

99-object condition (refer to Figure 4 top right). Green and purple

horizontal bars at the bottom indicate low and high clutter e�ects

(see Section 3.3 for details).

When comparing the two distributions of performance changes

in the low clutter and high clutter environments (see Figure 6)

we see that, as expected, the position error and its standard

deviation decrease as objects are added in the “low clutter”

(zero to three objects) environments. Conversely, in “high clutter”
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(three to 99 objects) environments, we find in the kernel density

distribution for accuracy one local maximum at 0 vm and a second

lower one around 15 vm (Figure 6 left), and for precision a local

maximum at 2 vm and a heavy tail going beyond 10 vm, respectively

(Figure 6 right). The first peak indicates no considerable change in

position error for most participants, while the second one depicts

participants, for whom 99 objects lead to an impairment of homing

performance. To capture this group we chose the bootstrapped

95% confidence interval of the median of the distribution of

differences. Seven out of 23 participants, show a performance

decline in accuracy between three and 99 objects outside the

bootstrapped 95% confidence interval and thus fall into this group

of people negatively impacted by the high degree of spatial clutter.

Conversely, three other participants even perform slightly better

with 99 objects than with three. This attribution was also confirmed

using a Wilcoxon ranksum test on single trial basis for significant

changes in performance between three and 99 objects [11 become

sign. worse (all p < 0.04, –2.88 < d < –0.65), 3 become sign.

better (all p < 0.016, 0.05 < d < 0.23), 10 being insignificant].

Correspondingly, the distribution of median accuracy differences

in position error between three and 99 objects differs significantly

from normality (Shapiro-Wilk test: W≈0.735, p < 0.0001), while

the distribution of differences between zero and three objects does

not (Shapiro-Wilk test: W≈0.974, p ≈ 0.793).

We therefore conclude that the number of objects is the main

driver of participant homing performance in low clutter conditions

(zero to three objects), while for the high clutter conditions (three

to 99 objects) the individual behaviour of the participants plays a

larger role in determining their success.

3.5 Relation between accuracy and
precision

We have analysed median homing errors (accuracy) and the

standard deviation of errors (precision) and found matching

patterns for environments with different degrees of clutter for

both measures. This is supplemented by direct correlations of the

two measures in all conditions (see Figure 7), which shows that

higher accuracy is usually associated with higher precision, at least

on the population level. However, looking at the performance of

single participants reveals inter-individual differences. Participants

exhibit different degrees of accuracy and precision, with some

being accurate but imprecise (Figures 7A, E), and others being

inaccurate but precise (Figures 7B, C). These participants weaken

the precision-accuracy correlation at the population level. The

strongest correlation was found in the zero object condition, where

44% of variance in accuracy is explained by precision.

3.6 Modelling cue interactions using MLE

To capture the interplay between landmark guidance and PI

in our study, we have developed an MLE model that builds on

the models of Jetzschke et al. (2017) for distance estimates and

Zhao and Warren (2015b) for directional estimates, who each

found a good fit for their models with behavioural data for up

to three landmarks. Our model combines the distance estimation

from landmark cues, proposed by Jetzschke et al. (2017), with

model components representing additional distance estimation

(see Figure 8A) and direction estimation (see Figure 8B) from PI

cues (see Section 2.4.3 for details). The encoding of directional

estimates is based on Zhao and Warren (2015b). In addition

to combining these previous partial models to fully encode the

spatial information available to our participants, we challenge the

resulting combination model in conditions with ten and 99 objects.

By either setting or fitting different values to the parameters of

the three model components (landmark-based distance estimate,

PI-based distance and direction estimate) and varying between

two types of combination (integration or alternation of objects),

we can quantitatively express different hypotheses about how the

landmarks and PI are used by the participants.

We summarise the model components in Table 2 and visualise

the spatial combination of functions in Figure 8, which shows the

result of performing MLE along both the distance and the angular

domains. It can be clearly seen, how the PI-driven angular estimate

provides the spatial constraint needed to limit position estimates

from the full ring given by the landmark-driven distance function

alone to the area actually targeted by participants.

In the zero object condition, there is only one source of distance

and direction information, namely the PI system (see Figure 8

top row). However, each added object provides another source

of distance information relative to itself, which we incorporate

into our model. Specifically, each of the three objects present in

the one to three object conditions had a goal distance of 10 vm.

These objects surround the goal location and allow for very precise

homing in all conditions in which they are present, if identified

correctly among the other objects, as we describe above (see

Section 1).

Model comparisons show that model variants including the

information from PI always outperform those disregarding the

PI information when trying to predict participant behaviour (best

models for each condition shown in Figures 8 middle and bottom

row, full comparison of model fits in Supplementary material). This

clearly indicates that participants combine information provided

by their PI system with information provided by the objects to

improve their homing performance. It is especially intriguing,

that the prediction areas produced by these models very closely

match the observed participant behaviour without needing to

fit the parameters of the landmark models (see Figure 8 middle

row), which are instead based on the function mean set at

the geometrically correct distance of 10 vm. This kind of match

indicates that (1) the assumptions made by the models represent

the actual navigation strategies employed by the participants to

a reasonable degree and (2) that in the one to three landmark

conditions the participants’ goal estimate is, on average, identical

to the geometrically correct goal location.

For the high-clutter conditions (ten, 99 objects, Figure 8 bottom

row), a full integration approach, as described above, is not

sensible, neither from a conceptual nor from a mathematical

perspective. From a conceptual standpoint, it is unlikely that

participants explicitly memorise distances to such large numbers

of objects and combine the information across the whole

environment. Mathematically, the integration of such a large

number of cues, which involves the multiplication of probabilities,

results in likelihoods approaching negative infinity, precluding

any meaningful comparison operations among variants of models
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FIGURE 6

Performance improvement in accuracy and precision of position error from zero to three objects and performance impairment from three to 99

objects. Green and purple curves indicate kernel-density estimations fitted to the di�erence in median position error (left) or position error standard

deviation (SD) (right) between zero and three objects (green), or three and 99 objects (purple), respectively, of N = 23 single participants with n = 24

repetitions within each condition (see dots). Boxplot notches indicate 95% confidence intervals around the median. All but one participant

performed better with three than with zero objects. 11 participants performed significantly worse, and 3 significantly better with 99 objects, while 10

others remained equally good (see Section 3.4 for details). Colours marking individual participants are matched across all figures, based on a given

participant’s median position error in the 99-object condition (refer to Figure 4 top right).

within this class. As an alternative first approach to capturing

navigation behaviour in these more cluttered environments, we

used a cue alternation approach (see Section 2.4.3 for details).

This model class is conceptually more appropriate for the ten

and 99 object conditions, since we observe a broad spread of

responses across the environment in this condition. Such a pattern

matches the prediction of cue alternation models, which lack

the variance reduction over single cue conditions predicted by

integration models (Chen et al., 2017). As implemented, our

alternation model variants assumed participants mistook different

trees as the “correct” three trees around the goal in different

trials. We do not assume tree mis-identification to be completely

random, but in the absence of direct evidence for the use of any

specific trees, a random selection is sensible as a first approach

to capturing an alternation between different trees as spatial cues

(for a discussion of the implications of this encoding scheme,

see Section 4.4).

For our analysis, we have evaluated integration and alternation

models for each condition and compared the goodness of fit of

variants using different model parameters. Specifically, we compare

models fitted on the results of the zero object condition, which

represents homing performance driven purely by PI, with those

fitted on the data of each of the other conditions (see Table 2 for an

overview and Supplementary material for detailed comparisons).

If the use of PI was unchanged across conditions, these model

variants should not differ in goodness of fit. However, we find that

the zero object models are always outperformed by the models

fitted on the data for the given condition, when evaluated on the

data of the given condition. This indicates that the presence of

objects does not only add further information in the form of a

second type of cue but also improves the quality of the information

provided by the PI system, possibly due to stronger optic flow

with more visual structure in the scene. This assessment is further

supported by the fact that when considering the PI components

of our models, parameter estimates qualitatively differ between the

landmark and no-landmark conditions, which should not be the

case if PI-use remains unchanged across conditions. For the average

PI-based distance estimate, we observe a degree of overshooting

on the population level for the zero object condition, while a

degree of undershooting is observed for the conditions in which

landmarks were present (Figure 9 top left panel). Intriguingly,

the overshoot in distance estimates returns for the 99 object

condition, matching the results of the analysis of position errors

presented above, which indicate that several participants behave

very similarly in the zero object and 99 object conditions. We find

similar results for the PI-based direction estimates, where on the

population level, participants overshoot the homing direction of

90◦. This result is in qualitative agreement with previous studies

showing that small angles are often overshot and large angles are

undershot (Loomis et al., 1993; Chrastil and Warren, 2017) (but

note that Harootonian et al., 2020 did not find a regression-to-the-

mean effect). Our results indicate that at least two objects seem

to be required to overcome the directional bias observed in the

no-landmark condition (Figure 9 bottom left panel) for various

participants. When investigating the spread of estimates in both

distance and direction (Figure 9 right panels), we find that results

closely match those observed in the analysis of position errors, with

precision increasing (spread in estimates decreasing) as up to three

landmarks are added and then decreasing again as further objects

are added.
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FIGURE 7

Position error precision and accuracy are significantly correlated in all conditions. There are large inter-individual di�erences with example

participants (A–F) respectively performing accurately and imprecisely (A, E), inaccurately and precisely (B, C), inaccurately and imprecisely (D), or

accurately and precisely (F). Data points indicate median position error and its standard deviation (SD) for each of N = 23 participants with n = 24

repetitions per condition. Colours marking individual participants are matched across all figures, based on a given participant’s median position error

in the 99-object condition (refer to Figure 4 top right). Grey areas indicate 95% confidence intervals. Marker size does not match actual tree

dimensions.

4 Discussion

In our VR experiment, participants show clear changes in

homing performance across environments with varying visual

complexity, based on different numbers of objects available. We

analysed the average magnitude of homing errors (accuracy), as

well as the spread in errors (precision) for each environment.

When no objects are present and participants can thus rely on

path integration (PI) alone, both accuracy and precision are poor,

and individual performance differs considerably. Both measures,

accuracy and precision, greatly improve above the level observed

for the pure PI condition when one to three objects are added

around the goal (Figure 4).

Going beyond the established configuration of three objects

around the goal, this study is the first to our knowledge to also

investigate homing in more cluttered environments systematically.

For those high clutter environments (namely ten or 99 objects

in our experiment), we observe less uniform responses with one

share of participants for which both accuracy and precision stay

mostly unchanged and another share for which either one or both

of these error measures increase considerably, indicating large

difficulties to successfully navigate in such cluttered environments

(Figures 4, 6). An analysis using linear mixed effects (LME) models,

as well as maximum likelihood estimation (MLE) leads us to

conclude that homing performance is driven by the number of

objects in low clutter environments (zero to three objects), and

mainly determined by the individual preferences in cue use of the

participants in high clutter environments (three to 99 objects).

These individual differences in the influence of environmental

complexity on accuracy and precision (Figures 4, 6) are also

highlighted by the patterns observed in correlations between

accuracy and precision, where higher accuracy is usually associated

with higher precision but with variance across participants

(Figure 7).

4.1 Comparison to previous studies

Our study was carried out using a desktop-VR setup, so

it was of interest to compare the obtained results to those
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FIGURE 8

Overview of MLE modelling results. Panels show participant goal estimates (black dots) and landmark positions (green triangles) for di�erent

experimental conditions, overlayed on top of maximum likelihood model predictions for the respective condition. Heatmap colour signifies the

predicted likelihood of targeting a given area, with darker colours indicating greater likelihood. Marker size does not match actual tree dimensions.

(A) Introduces the ring-shaped distance estimate model, based on fitting a normal distribution to the distance component of the goal estimates.

Heatmap shows the overall best model fit (maximum likelihood estimate) for this model type for the pooled data of all N = 23 participants for the

zero object condition. (B) Introduces the fan-shaped direction estimate model, based on fitting a von Mises (circular normal) distribution to the

directional component of the goal estimates. Heatmap shows the overall best model fit (maximum likelihood estimate) for this model type for the

pooled data of all participants for the zero object condition. (C) shows the prediction resulting from an integration of both model components

(ring× fan) for the same data. (D–F) Show the resulting prediction from an integration model combining a full PI model with an additional ring model

for each object fitted at 10 vm distance (ring× fan×
∏

ring). (G, H) Show the resulting prediction from a model combining a full PI model with an

alternation of ring models for each object fitted at 10 vm distance (ring× fan×
∑

ring).

reported previously in similar experiments but with different forms

of interaction and presentation (real-world dark-room: Nardini

et al., 2008, HMD: Zhao and Warren, 2015b; Chen et al., 2017;

Sjolund et al., 2018). In general, we find that variance of position

error in the PI condition of our data, when scaling by triangle

circumference (∼7%) is within the same range as of reported

data (Nardini et al., 2008: ∼10%; Sjolund et al., 2018: ∼10%;

and Chen et al., 2017: ∼7%). Directional standard deviation

in our data is slightly lower but within the same range as

in the PI condition and proximal landmark condition reported

by Zhao et al. (our data: PI 26◦, 3 objects 5◦; Zhao et al.:

PI 29◦, combined 10◦). Nevertheless, we cannot exclude that

missing proprioceptive and vestibular sensory input in our desktop

experiment influenced the importance of landmark guidance.

However, the similarity between our results and those obtained for

similar tasks in previous studies indicates that our study broadly

captures similar behavioural responses as those obtained using

other presentation media and modes of interaction. Thus, our

inclusion of high clutter conditions can provide valuable new

insights into the individual use of PI and object-based cues. This

kind of comparability is especially relevant for studies like those

conducted by Kessler et al. (2022), who aim to develop more

comprehensive models of navigation behaviour by using data from

different studies.

4.2 Low clutter: path integration and
geometric reasoning dominate homing
performance

All participants improved in homing performance with up to

three objects added around the goal. This can be explained on the

basis of object constellation geometry. Following the methodology

of Jetzschke et al. (2017), the first three objects were placed in a

triangular arrangement around the goal location to ensure the
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TABLE 2 Overview of maximum likelihood estimation model

components.

Model Description

gPI PI-based distance model component

fPI PI-based direction model component

gLM LM-based distance model component

gPI × fPI ×
∏

gLM Integration model example

gPI × fPI ×
∑

gLM Alternation model example

g∗PI × f ∗PI Best fit 0 objects

g∗PI × f ∗PI ×
∏

gtrue−dist
LM Best fit 1–3 objects

g∗PI × f ∗PI ×
∑

gtrue−dist
LM Best fit 10–99 objects

“g” denotes distance models, “f ” denotes direction models. “LM” and “PI” denote whether

models were based on the landmark information or PI estimate respectively. “∗” denotes that
models parameters were maximum likelihood estimates, either for the current condition or

for the 0-object-condition (0 objs) if specified. “true − dist” denotes that landmark models

were fitted using the true distance to the goal for the 3 central objects surrounding the goal,

rather than the MLE for the given data. “
∏
” denotes integration of individual landmark

models, while “
∑

” denotes alternation. Top subdivision lists basic model components,

middle subdivision gives the form of the full models used, bottom subdivision gives the best

performing model variant for the different conditions.

possibility of triangulation. Thus, each additional object further

geometrically constrained the region in which the goal could

lie. This is because, with only a single object present, the only

information available from the object itself is its distance to the

goal, which can be memorised by the participant. As predicted by

a simple landmark-based homing model by Jetzschke et al. (2017),

this leads to a ring-shaped area in which the target could be located

based on the object-derived information.We observe goal estimates

to be located in this area. As further objects are added, the area

becomes more constrained, leading to a fully constrained goal as

soon as three objects are present. In other words, to triangulate a

specific point on a plane, three distinct references are necessary.

We consider three objects surrounding the home location likely

to be the optimal scenario and would expect performance to

decrease with objects positioned elsewhere in the environment.

Therefore, we based the placement of the three central objects

on the pattern provided by Jetzschke et al. (2017). Based on this

geometric argument, we hypothesised homing performance to

increase with each object up to the third one (see Section 1).

While our findings broadly support this hypothesis, we observe one

clear difference to Jetzschke et al. (2017) in the shape of response

distributions obtained in our study, which where more spatially

constrained. This is unsurprising, since in our version of the task,

participants walked around freely in the virtual environment and

were not displaced or relocated passively. Therefore, in addition to

the object cues, participants could make use of their PI, charged

on the outbound path of each trial. Furthermore, the walked

triangle itself provides a geometric constraint by directionally

limiting the target area based on the approach direction. Thus, the

additional information gained via the PI system and the geometry

of the outbound path enabled our participants to home more

precisely and accurately than if they had access to just the object-

derived information in isolation. Overall, for all the low clutter

conditions (zero to three objects), the fact that responses were

limited to a smaller area than the one observed for the zero object

condition indicates that participants combined the different sources

of information and that this combination matches the prediction

of optimal cue integration in the Bayesian sense, rather than an

alternation approach, which would have resulted in a larger spread

of responses, instead of a reduced one (Ernst and Banks, 2002;

Rohde et al., 2016) (see Figures 8C–F).

To quantitatively express this combination of spatial cues,

we combined a model meant to predict distance estimates based

on landmarks (Jetzschke et al., 2017) with a model meant to

predict directional estimates (Murray and Morgenstern, 2010;

Zhao and Warren, 2015b). Together, these two models allowed

us to create predictions from both the PI system, as well as any

landmark present. We could show that these predictions match

the observed spatial pattern of responses, and thus expand on the

findings by Jetzschke et al. (2017) for one, two and three landmark

objects (see also Figure 8 middle row). In the condition with one

object, this is illustrated by goal estimates being located in only a

part of the predicted ring-shaped distribution. In the two object

condition, we see a more uniform spread between the predicted

two locations, rather than a bimodal distribution of responses,

with a clear bias towards the “true” goal location (see Figure 3, 8

middle row). Our MLE models indicate, that this improvement

over the “pure” landmark situation described by Jetzschke et al.

(2017) can be attributed to the presence of distance information

from PI. Finally, with three objects, the goal location is fully

spatially constrained and within a Bayesian framework of optimal

cue integration, we expect any remaining errors to be attributed

to the limitations in cue quality and imprecisions in the encoding

of spatial information or execution of movements. Accordingly,

we expect a tight distribution of goal estimates around the true

goal. For this condition, we actually observe that some of the

provided goal estimates are slightly worse than expected for a fully

triangulated goal (see Figure 3 and Supplementary material). Here

again, our MLE models provide additional insight, as we could

show that these goal estimates lie within the prediction area of

the directional component of our PI model (see Figure 8). The

observed patterns thus indicate that participants integrated object

and PI information even when the PI estimate was biased towards

underestimating the distance to be travelled.

4.3 High clutter: individual preferences in
cue use dominate homing performance

For our high clutter conditions (ten and 99 objects) it is

hard to disentangle the use of PI and object-based guidance. We

cannot simply use the geometric considerations described above,

as large inter-individual differences indicate that it is not clear how

individuals use the available objects for navigation (Figure 4).

As outlined by Wolbers and Hegarty (2010), individual

navigation abilities might be determined by a variety of factors

ranging from how environmental and self-motion cues are

perceived and combined, to what cue qualities are personally

favoured. Potentially relevant factors may include sex, age, and

differences in motion, hippocampal processing, and executive

functions (Wolbers and Hegarty, 2010). Weisberg and Newcombe

(2018) also found evidence that individuals store environmental
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FIGURE 9

Maximum likelihood parameter estimates for the path integration model. Top row shows maximum likelihood estimates with bootstrapped 95%

confidence intervals for the parameters of the distance models fitted on the pooled data of all N = 23 participants (µ gives the average expected

distance, σ the standard deviation of expected distances), bottom row shows parameters for the direction models (µ gives average expected

direction, κ is the concentration parameter of the underlying von Mises distribution and has been transformed to circular standard deviation for

easier readability). See Equations 1, 2 for a full description of the model functions. Fitted parameters are shown for each experimental condition

separately, with overlapping 95% confidence intervals indicating that parameter estimates are similar between conditions. Dashed red lines indicate

geometric ground truth where applicable.

information in spatial tasks with different degrees of detail and

argue for individually different complexities in spatial memory

and navigation ability. These individual navigation preferences are

supported by the findings of Zanchi et al. (2022) who distinguish

two groups of navigators, one group that weights available cues

of visual and auditory modality similarly (and combines them

optimally in the Bayesian sense), and another group that weights

visual cues more strongly. They consider their observation of a

preference for visual landmarks in one group to indicate a reset of

the directional component of the PI, if visual landmarks are judged

to be reliable by the navigator. On a neural level, this reset of PI is

facilitated by head direction cells that have been shown to be able

to resolve conflicts between different sensory inputs (Zugaro et al.,

2003; Valerio and Taube, 2012). Depending on which objects in a

condition are considered as reliable cues, different objects might

dominate the visual perception of the surroundings for different

participants, and if accompanied by high cue weighting, reset PI.

Considering that certain trees in our VR are close to the outbound

and homing path, possibly a tree’s distance to the first-person avatar

and the magnitude of optic flow generated by it, might decide about

its dominance in cue integration.

From their experimental results in a cue conflict task between

PI and unique landmarks, Zhao and Warren (2015b) suggest that

participants use a hybrid model of cue integration. This assessment

was later supported by Harootonian et al. (2022) in a cue conflict

task with proprioceptive and visual sensory inputs and by Sjolund

et al. (2018) who put PI and environmental cues into conflict. In

such a hybrid model, body-based and visual cues were combined

only when the estimates of PI and landmark guidance were similar.

If cues are dissimilar, they will compete for dominance. The switch

between combination or competition happens according to the

subjectively perceived probability that the respective sensory inputs

are correct and refer to the same environmental feature. In our

experiment, this is related to the position of goal estimates derived

from different cues and the magnitude of difference between them.

Interestingly, when PI and landmarks were put into conflicts of

intermediate magnitude, Zhao and Warren (2015b) and Sjolund

et al. (2018) found that homing is dictated by landmark guidance,

but with large conflicts people ignore landmarks and use only PI.

In the past it has been suggested, that PI might function as a

backup system, which is used exclusively when landmark cues are

unavailable, unreliable, or in conflict with PI (Cheng et al., 2007).

However, in contrast to this idea, Zhao and Warren (2015b) found

that participants failed to use PI in trials where landmark cues

were unexpectedly removed. When cue competition dominates a

in a navigation task, Zhao and Warren (2015b) found indications

for cue integration in response variability but at the same time

for cue competition in determining response direction, based on

the observed variance of responses. They thus concluded that

landmarks can reset the orientation of PI without affecting response

variance. Using an agent-based dynamic Bayesian actor model,

Kessler et al. (2022) show that an equivalent behaviour can be

attributed to multiple noise sources on the levels of perception,

motor control, and internal representation, when landmarks reset
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the internal direction estimate. Also, unlike Zhao and Warren

(2015b) suspected, uncertainty in the internal representation is

reduced, by preventing it from accumulating additional positional

or heading uncertainty in the homing phase.

Our own modelling results, obtained by comparing different

variants of an MLE model combining distance and direction

information from landmarks and PI, match the conclusions of

Kessler et al. (2022). We find that the standard deviation of

both distance and direction estimates is reduced when objects

are present (Figure 9), thus increasing homing precision in multi-

cue conditions. Solely for the 99 object condition we find no

evidence of increased precision due to the presence of objects. If

the cues (PI and objects) were combined optimally in a Bayesian

sense, we would not expect the variance to increase in high clutter

because more available cues should sharpen the distribution of

goal estimates. One possibility to explain this deviation from the

initial expectation is a reduction in cue reliability. If landmark

or PI-based cues were perceived as less reliable in the high

clutter conditions, this would explain the observed absence of

a benefit of cue combination. We cannot ultimately determine

if the quality of PI or landmark guidance is reduced in clutter,

but we argue that with more objects in the scene, the optic

flow and therefore the information for PI increases with no

identifiable downside. This assumption is further justified by

the observation that three participants actually performed most

accurately and most precisely in the 99 object condition. For

landmarks to aid in reducing uncertainty in the PI system,

Kessler et al. (2022) assume in their model that correspondence

between real and perceived landmarks is unambiguously known.

Hence, variance reduction requires participants in our experiment

to correctly identify objects, a requirement that is not met in

the 99 object condition on population level (Figure 9). Thus,

we conclude that when PI and object cues are perceived as

conflicting, this does not seem to cause a complete reset of either

cue, as we see at least some improvement of precision to the

location estimates made by participants. This suggests that, at

least for some participants, the reliability of objects in high clutter

is reduced.

In addition, it is noteworthy that Kessler et al. (2022)

tested endpoint distributions in different conditions of other

studies (Nardini et al., 2008; Zhao and Warren, 2015b; Chen

et al., 2017) and found multivariate response normality to be

violated, meaning that endpoint distributions deviated from 2D

normal distributions, which would be expected if estimates were

derived from cues in a Cartesian coordinate system. Our model

instead is based on egocentric distance and direction estimates

and clearly captures observed curvatures in response clusters

(Figure 8). Thus, we consider an egocentric approach as more

reasonable and encourage an explicit investigation of egocentric

vs. allocentric encoding of spatial estimates for future studies in

the field.

4.4 The forest or the trees?

In a visually complex, cluttered environment, people might

memorise single objects, constellations of different objects,

clearings, or even the edge of the clutter. Therefore, we consider

the trees in our experimental design as only “objects” and not

“landmarks,” taking into account Montello (2017) who highlights

that the term “landmark” is often used in an ambiguous manner.

The quality and reliability of a cue influence its importance and

weighting in the process of cue integration. Hence, if objects are

considered to be more useful for navigators as a source of spatial

information, they should place greater trust in them. If they are

correct in their assessment of the usefulness of the object-based

cues, this will improve homing performance. We can therefore

use the obtained results in our study to draw some inference

about the usefulness of the object cues in the different presented

environments. Considering the changes in performance across

conditions in low and high clutter (see also Figure 6) in our

experiment, we can infer that object guidance is less useful, when

no or too many ambiguous objects are available, with one, two, and

ten object conditions representing in-between cases. This change

in usefulness of the objects is likely caused by processing effort to

disambiguate single trees, calculate geometric relations, and encode

the goal location from it. Here, the 99 object condition is especially

interesting, as participants separate into those who keep good

performance and those who get worse, likely based on whether

participants are able to disambiguate object cues. We therefore

suggest that the 99 object or high clutter condition is especially

useful for highlighting the differences in the usage of object

guidance between individuals. This is supported quantitatively by

the fact that comparing the median position error in the three

object condition and the 99 object condition on the individual

level reveals considerable skew due to a considerable amount of

participants in our sample that show distinctly higher median

position errors than others (Figure 6). We thus find a clear group of

participants who get lost in the forest, while others seem to manage

to stick to their trees.

To further investigate how object cuesmight have been used, we

have employed a series of MLE models of cue combination. While

a model variant integrating all available objects is well fitting our

empirical data from zero to three objects, we find cue alternation

to represent the ten and 99 object conditions better. Note that

in this case, the alternation relates to selecting different objects,

not to an alternation between PI and object guidance. Nardini

et al. (2008) found that adults in their short-range navigation

study integrated landmarks and PI in a Bayesian optimal fashion,

while children’s behaviour followed a cue alternation model. They

conclude that children fail to integrate the two cues. Following

the same argumentation, our data suggests that at least some

participants in our experiment fail to integrate different objects into

one consistent world representation.

We have been able to partially capture the effects of differing

abilities of participants to employ objects for guidance by using

a cue alternation instead of an integration approach. A model

treating every object like one of the three objects immediately

surrounding the goal and randomly picking one of them every trial

yields at least a rough estimate of population behaviour. While

such a model cannot capture when and how individual objects

are used as cues, it can be a good first approximation, which

further underlines that different participants perceive the objects

differently, possibly as individual trees, or as the entirety of a forest.
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4.5 Path integration and object guidance
interplay

Zhao and Warren (2015b), Harootonian et al. (2022), and

Kessler et al. (2022) conclude, that highly reliable cues can reset

less reliable ones. For the interpretation of our experiment, this

might suggest that when the object cues are judged to be highly

reliable, they can reset the orientation of PI, while they cannot

do so when they are judged to be unreliable. Thus, continued

high performance in highly cluttered environments could be the

result of successful attempts by the participants to identify specific

constellations of objects to arrive at the correct forest clearing.

When specific constellations of trees are identified, they result

in a reliable object cue that can reset inaccurate PI. Good PI,

however, helps to find the correct direction and distance and makes

it easier to look for the right object constellations. In contrast,

participants who cannot disambiguate between different object

constellations might steer towards another, incorrect clearing and

suspected goal location, or even disregard all objects and fall back

on PI alone. This last strategy should result in a large spread in goal

estimates, as can be seen from the zero object condition (Figure 2).

Interestingly, from the perspective of cue integration, the interplay

of guidance mechanisms (landmarks and PI) might actually lead to

worse performance for some participants. If they walk in a wrong

direction due to imprecise PI, they might mistake incorrect, but

spatially similar, object constellations for their goal location. Such

a scenario of mis-identification is inherent to complex cluttered

environments and needs to be considered whenever landmarks are

not unambiguously identifiable. Studies focusing on the influence

of landmark ambiguity in route learning found performance

impairment that is correlated with increased activity in the right

middle frontal gyrus, indicating additional cognitive demands with

each added ambiguity (Janzen and Weststeijn, 2007; Janzen and

Jansen, 2010; Strickrodt et al., 2015). This matches the patterns

observed in our study and calls into question the assumption

made by Kessler et al. (2022) in their model, where landmarks are

always correctly identified. Therefore, application of their generally

very attractive model might be limited to use cases with unique

landmarks, with low visual complexity, like the analysed datasets

from Nardini et al. (2008), Zhao and Warren (2015b), and Chen

et al. (2017).

As apparent from the comparison between performance

accuracy and precision between the zero and 99 object condition

for single participants (different coloured dots in Figure 4), we

cannot disentangle if it is PI or landmark guidance that makes

participants perform well or badly in high clutter. In other

words, people who show good PI in the zero object condition

are not necessarily performing well in the 99 object condition,

or vice versa. We argue that PI performance in the zero object

condition as it stands is not a good predictor for performance

in conditions with objects. The MLE models show that PI

estimates are updated as objects are added to the environment,

as indicated by the change from overshoot to undershoot in the

population distance estimates. This kind of qualitative change in

the output of the PI system might indicate that the additional

spatial information provided by the objects is not only used

to gradually improve the estimate provided by the PI system

but to actively reset it, as proposed by Zhao and Warren

(2015b).

We can also draw conclusions about PI and object guidance

and how they might influence each other from the comparison

of accuracy and precision in the different conditions. We observe

both participants who combine high accuracy in homing with low

precision (bottom right quadrants and subfigures in Figures 7A,

E) and end up roughly in the correct location, as well as

participants who show low accuracy with high precision (upper left

quadrants and subfigures in Figures 7B, C), who target an incorrect

location consistently. Interestingly, low accuracy combined with

high precision occurs mainly in conditions with zero, one, and

two objects. In the zero object condition, this would imply that

the participant’s PI consistently led them to a wrong place. These

differences in performance might be related to differential ability to

track rotational self-motion, which was demonstrated and linked

to differences in cerebellar structure by Chrastil et al. (2017). It

also matches observations by Sherrill et al. (2018), who could show

individual differences in first-person navigational accuracy, which

corresponds to differences in the hippocampus, entorhinal cortex,

and thalamus.

When a participant’s PI is repeatedly guiding them into a

direction that is not the goal direction, we consider their PI biased

(see also population trends inMLEmodels, Figure 9). Such a biased

PI can also be seen to influence a participant’s goal estimation in

other conditions in which objects are present (see Figure 2A and

Supplementary material). In the one object condition, a biased PI

can guide participants to the wrong part of the ring-shaped target

area around the only present object (Figure 7B). Thus, combining

PI information with object-based cues can cause larger position

errors than PI alone, depending on the directional bias of the PI.

In the two object condition, the intersection of “rings” around the

two objects indicating the correct goal distance leads to two possible

goal locations. Here, cue integration with a sufficiently biased PI can

lead participants to select the incorrect one repeatedly (Figure 7C).

One might also expect inaccurate, but precise participants in the

high clutter conditions, as we have just described for the other

conditions. However, we do not observe such a pattern for those

conditions.

Since one consequence of cue integration is reduced response

variance, an alternation from trial to trial between taking different

trees into account seems more appropriate in describing behaviour

in the high clutter conditions. This implies that participants who

struggle in the high clutter conditions, do not confuse single

objects, object constellations, or clearings, but rather cannot

successfully integrate the information provided by the objects

with their PI system and form a consistent image of the forest.

Eventually, they end up in a number of wrong places. High

accuracy along with low precision can mostly be found in the 99

object condition (bottom right quadrant in Figure 7). One might

expect that participants who show this pattern of performance have

problems using the information provided by the objects and fall

back on their PI system to solve the task, resulting in error patterns

similar to those observed for the zero object condition. However,

on closer inspection the participants in question seem to be able to

home towards the correct goal with high precision in most trials

but target incorrect locations in individual trials, leading to the
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overall pattern of low precision when analysing the totality of all

trials. We see that PI, which is the only cue present in the zero

object condition, can also influence target estimation in the other

conditions, both positively and negatively. On the one hand, it

can help participants select the correct of multiple possible goal

locations indicated by objects. On the other hand, a biased PI can

also have an opposing effect. Overall, we find that while the PI-

driven performance in the zero object condition cannot be used

to directly predict performance of participants who get lost in the

forest, the spatial patterns of errors we observe and the results

of our MLE modelling do indicate a clear interplay between path

integration and objects-based cues across all tested conditions.

4.6 Conclusion and outlook

In this study, we demonstrate that navigation performance

varies in low and high clutter: in low clutter environments, the

number of objects and geometric reasoning drive performance,

while in high clutter environments, individual differences in cue

use are decisive. An MLE model incorporating spatial information

from PI and objects reveals that behaviour in low clutter is

well described by cue integration. In high clutter, our data

reveals that individual participants find different solutions to

the task. Some are still able to home accurately and precisely

in highly visually complex environments, while others this

seems to be impaired in their use of object-based spatial cues.

While we are able to outline a variety of reciprocal influences

between spatial information from PI and objects, we cannot

ultimately elucidate what exact features of objects in clutter of

different degrees are used by individual participants, or what

exactly determines cue weighting when information is perceived

as conflicting.

To further investigate cue weighting of PI guidance and object

guidance, our future study designs will incorporate targeted cue

conflict trials. Furthermore, to better understand visual processing

and the use of object features, we will analyse individual-level

eye tracking data. These experimental approaches may be well-

suited to reveal why some participants do not see the forest for

the trees.
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