
Frontiers in Behavioral Neuroscience 01 frontiersin.org

Effect of carbonated water on 
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Introduction: Carbonated water (CarbW) affects the swallowing function 
associated with the action of the brainstem. In addition, CarbW ingestion 
promotes mean blood flow in the middle cerebral artery, which is associated 
with blood flow to the frontal and temporal lobes. In this milieu, studies regarding 
the effect of drinking CarbW on brain activity are of significance. In the present 
study, we compared the changes in cerebral blood flow in the frontal region 
before and after the ingestion of CarbW or uncarbonated water (SW).

Methods: Near-infrared spectroscopy was used to continuously measure the 
cerebral blood flow at 22 channels in the frontal region of 13 healthy young 
adults for 10 min before and after the ingestion of CarbW or SW. We statistically 
compared the changes in oxyhemoglobin concentration before and after the 
ingestion of CarbW or SW.

Results: Compared with that before CarbW ingestion, the oxyhemoglobin 
concentration in the left frontal region increased after CarbW ingestion. In 
particular, a significant increase (p < 0.05) was observed in the ch21 region. 
On the contrary, no marked increase or decrease in cerebral blood flow was 
observed after SW ingestion compared with that before ingestion.

Discussion: The activated part of the frontal region (ch21) corresponds to the 
vicinity of the orbitofrontal cortex, which is reportedly activated by rewarding 
stimuli. In addition, as the orbitofrontal cortex is located at the terminal end of 
the reward pathway of the mesocortical system, CarbW ingestion might have 
acted on the dopaminergic reward pathway of the mesocortical system.
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1 Introduction

Ingestion of carbonated water (CarbW) reportedly affects the swallowing function (Barry and 
Regan, 2021; Larsson et al., 2017; Michou et al., 2012; Min et al., 2022; Miura et al., 2009; Morishita 
et al., 2014; Sdravou et al., 2012). In addition, CarbW induces the swallowing reflex by acting on 
the capsaicin-sensitive receptor (TRPV1) in the oral cavity and pharynx (Roper, 2014; Simons 
et al., 2019; Tsuji et al., 2020). CarbW stimulates the swallowing center of the medulla oblongata, 
located in the brainstem. Furthermore, ingestion of CarbW promotes the mean blood flow in the 
middle cerebral artery, which is associated with the blood flow in the frontal and temporal lobes 
(Fujii et al., 2022). Hence, it is important to investigate the effect of ingesting CarbW on brain 
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activity. Therefore, in the present study, we compared the changes in 
cerebral blood flow in the frontal region before and after the ingestion of 
CarbW or uncarbonated water (SW). This study provides novel insights 
into the effect of CarbW ingestion on brain activity in the frontal region.

2 Materials and methods

2.1 Participant demographics

This study was approved by the Keio University Bioethics 
Committee (approval no: 2021–20). The recruitment period was from 
1 September 2021 to 31 January 2022. Originally, 16 (12 male and 4 
female) healthy university students voluntarily participated in this 
study. Written informed consent, including consent to participate and 
publish the findings, was obtained from all study participants. All 
participants were of Asian descent (100%), with 23.1% being female. 
The average age of participants was 22.1 ± 1.0 years.

2.2 Experimental procedure

In this study, the cerebral blood flow dynamics of the participants 
were recorded before and after they drank 200 mL of CarbW or 
SW. The experiments were started at 10:00 a.m. and conducted 
indoors in a room maintained at 20°C. The participants were 
monitored for 10 min before and 10 min after drinking each sample 
(excluding the drinking time of 2 min) as they rested with their eyes 
closed (Figure 1). Thirteen (10 male and 3 female) healthy young 
adults in their 20s completed the experimental procedures.

This study used a randomized crossover design: The order in 
which each participant completed their two trials (i.e., CarbW vs. SW) 
was randomly assigned. To ensure experimental accuracy, only one 
person underwent testing per day.

Cerebral hemodynamics were recorded using LIGHTNIRS from 
SHIMADZU Co. for near-infrared spectroscopy to identify regions 
innervated by cranial nerves. Probes (optodes) were arranged with 
respect to landmark Fpz in the International 10–20 system and placed 
at 22 sites above the frontal brain at a sampling frequency of 7.5 Hz 
(ch1–22; Figure 2).

The LIGHTNIRS system by Shimadzu is a portable functional 
near-infrared spectroscopy (fNIRS) device designed for research 
applications, such as monitoring brain activity by measuring 
variations in oxygenated (Oxy-Hb), deoxygenated (Deoxy-Hb), and 
total hemoglobin (Total-Hb). The device uses a 3-wavelength 
near-infrared semiconductor laser and an avalanche 
photodiode detector. Its compact dimensions are W253 × D222 × H68 

mm, with a weight of approximately 1,600 g. It can handle up to 22 
measurement channels and operates between 15 and 30°C in 
humidity levels of 45–85% (Light source: 3-wavelength near-infrared 
semiconductor laser, Class 1 [IEC-60825-1 (2007)]).

Before the experiment, we practiced attaching the probes to the 
designated positions 10 times to ensure consistency. During the 
experiment, measurements were taken three times with the same 
participants, and the average data were used.

Regarding cerebral blood flow measurement, three types of density 
data can be  acquired: oxyhemoglobin, deoxyhemoglobin, and total 
hemoglobin concentrations. Total hemoglobin concentration is the sum 
of oxyhemoglobin and deoxyhemoglobin concentrations. For our study, 
oxyhemoglobin data were selected for analysis because changes in the 
oxyhemoglobin concentration are the most prominent. In each trial, 
changes in the oxyhemoglobin concentration were measured for 10 min 
before the participants started drinking the water and again for 10 min 
after they finished drinking (i.e., 2 min later).

2.3 Analysis of cerebral blood flow dynamics

Cerebral hemodynamics were analyzed according to the following 
procedure. Signal data of the change in cerebral blood flow are indirectly 
estimated by measuring the change in absorption due to changing 
oxyhemoglobin and deoxyhemoglobin concentrations using the 
fNIRS. The obtained signal data were first preprocessed to remove noise 
artifacts owing to the power supply by applying a low-pass filter with a 
cutoff frequency of 1 Hz. Next, hemoglobin concentration data were 
decomposed into systemic and functional (brain) components using a 
method for separating hemodynamic signals. This method can 
be represented by the following equation (Yamada et al., 2012):
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where O is the observed concentration of oxyhemoglobin, R is the 
observed concentration of deoxyhemoglobin, and Fk  and Sk  are 
proportionality constants.

Sk  describes a brain property called neurovascular coupling, 
where oxyhemoglobin increases and deoxyhemoglobin decreases as 
regional cerebral blood flow adjusts during neural activation. As such, 

Fk  (−1 < Fk  < 0) is defined as a proportional constant, establishing a 
proportional relationship between functional oxyhemoglobin 
and deoxyhemoglobin.

Fk  represents changes in the systemic component that lead to the 
dilation of blood vessels. In this process, both oxyhemoglobin and 

FIGURE 1

Measurements for the experiment. The participants were monitored for 10 min before and 10 min after drinking each sample (excluding the drinking 
time of 2 min).
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deoxyhemoglobin levels increase. Therefore, Sk  (0 < Sk ) is defined as 
a proportional constant, establishing a proportional relationship 
between systemic oxyhemoglobin and deoxyhemoglobin.

Next, as the acquired data represented the degree of change 
with respect to the baseline, signals were baseline-corrected by 
setting the oxyhemoglobin concentration to 0 at the starting point 
of each recording. Fluctuations in the oxyhemoglobin concentration 
were signal-averaged separately at each of the 22 recording sites 
(ch1–22). Finally, this quantity was compared with that before 
ingestion at each channel to identify the brain regions that were 
functionally activated by the stimulus.

2.4 Statistical analysis

Data were analyzed using MATLAB R2021a software (The 
MathWorks, Inc.). Distributions of all variables were inspected using 
histograms, q–q plots, and the Shapiro–Wilk tests before conducting 
statistical analyses. As non-parametric data, the Wilcoxon signed-rank 
test was used for statistical comparisons. The significance level was set 
at a p-value of <0.05, and the false discovery rate (FDR) was used to 
control for multiple comparisons.

3 Results

Figure 3 shows the changes in oxyhemoglobin concentration 
observed at each recording channel (ch1–22) during the 10 min 
before and 10 min after the participants drank CarbW and SW. A 
comparison of the oxyhemoglobin concentration at each channel 
(ch1–22) before and after ingestion is presented in Figure 4.

Compared with that before ingestion, the mean oxyhemoglobin 
concentration during the 10 min after the ingestion of CarbW 
increased at the measurement regions of ch13, ch14, ch20, and 
ch21. In addition, a significant increase in oxyhemoglobin 
concentration was observed at the measurement region of ch21 
after the ingestion of CarbW compared with that before ingestion. 
On the contrary, no significant difference in oxyhemoglobin 

concentration was observed before and after the ingestion of SW 
at any measurement region.

4 Discussion

The present study showed that, upon ingestion of equal amounts 
of CarbW and SW, marked changes in cerebral hemodynamics in the 
frontal region were observed after the ingestion of CarbW. Previous 
studies have reported that peripheral stimulation by CarbW induces 
swallowing movement, which suggests that CarbW acts on the region 
of the brainstem that controls the swallowing center. The 
hemodynamic changes caused by CarbW ingestion in this study 
suggest the effect of CarbW on the frontal region, which has a higher 
brain activity level than the brainstem. Furthermore, CarbW 
ingestion promotes mean blood flow in the middle cerebral artery. As 
the middle cerebral artery is also involved in the blood flow to the 
frontal region, CarbW ingestion may affect blood flow to the frontal 
region, which might have been the reason for the hemodynamic 
changes in the frontal region upon CarbW ingestion.

On the other hand, previous studies using human fMRI have 
shown a positive correlation between the value of reward and the 
fMRI signal of the orbitofrontal cortex (Breiter et  al., 2001; 
O'Doherty et al., 2002; Daw et al., 2006; Kim et al., 2006; Tom et al., 
2007; Plassmann et al., 2008; Kahnt et al., 2010). The activated part 
of the frontal region (ch21) corresponds to the vicinity of the 
orbitofrontal cortex, which is reportedly activated by rewarding 
stimuli (Walter et al., 2005). In addition, as the orbitofrontal cortex 
is located at the terminal end of the reward pathway of the 
mesocortical system, CarbW ingestion might have acted on the 
dopaminergic reward pathway of the mesocortical system 
(Stalnaker et al., 2015). However, further studies are needed to 
examine the effects of CarbW ingestion.

5 Limitation

We recognize that the observed baseline variability is a 
limitation of this study. These differences could complicate the 
interpretation of post-water ingestion results. Future studies 
should consider increasing sample sizes or utilizing within-subject 
controls to reduce the impact of baseline variability and improve 
the reliability of the findings.
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FIGURE 2

Probe arrangement. Light emitters and photodetectors are marked 
with red and blue circles, and the measurement points are indicated 
with numbers. For the frontal region, ch19 was set to Fpz, according 
to the International 10–20 system for assuring minimum between-
subject position variability.
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FIGURE 3

Oxyhemoglobin concentration at each recording channel (ch1–22). (A) During the 10 min before the participants drank carbonated water. (B) During 
the 10 min after the participants drank carbonated water. (C) During the 10 min before the participants drank uncarbonated water. (D) During the 
10 min after the participants drank uncarbonated water.
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FIGURE 4

Statistical comparisons of oxyhemoglobin concentrations at each channel (ch1–22). The oxyhemoglobin concentrations before and after ingestion are 
compared.
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