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Object categorization is a fundamental visual function, via which primates

group items based on perceptual similarity. Neurons that respond to a class

of complex objects, such as faces, can be found in inferior temporal cortex

of macaque monkeys, comprising areas TEO and TE. The ability of monkeys

to categorize cat/dog images is greatly impaired when both TE and TEO are

removed, but is onlymodestly impaired if either region is left intact. This suggests

that both TE and TEO can support object categorization. We investigated what

di�erences exist in category information processing between areas TEO and TE.

For cat and dog stimulus images, we found that category decoding performance

increased during the initial phase of a stimulus presentation, then remained

stable in area TEO for the duration of the presentation in a passive fixation task.

In area TE, category decoding performance continued to improve into later

in the time window than in TEO. Furthermore, we found that, after cat/dog

category training, area TE neuronal populations encode cat and dog category

information more strongly than do TEO neurons even in a fixation task (Mann-

Whitney U-test, p < 0.05). Together, our results suggest that area TEO processes

category information without changing its representation, whereas the category

information representation in area TE evolves over time (both within a trial

and across category training sessions), indicating that responses in TE may be

influenced by top-down feedback.

KEYWORDS

visual categorization, category informationprocessing, inferior temporal cortex, logistic

regression, linear discrimination analysis

1 Introduction

Primates, such as humans and monkeys, possess the ability to instantaneously

categorize objects based on their visual characteristics. The visual information relating

to object categorization is thought to be processed through the ventral stream (Mishkin

et al., 1983). The ventral stream is a hierarchical sequence of visual areas, comprising the

primary visual cortex V1, V2, V4, and the inferior temporal cortex (IT), comprising areas

TEO and TE. Broadly speaking, V1 processes object contours, V2 processes properties

of object surfaces, V4 processes information about color and shape, and IT integrates

the information from the earlier stages (Desimone and Gross, 1979; Mishkin et al., 1983;

Murray et al., 2007). Within IT, neurons in area TE have larger receptive fields than those

in area TEO, with the former responding to whole faces and the latter to facial parts, due to

the differences in receptive field size and feature selectivity (Kobatake and Tanaka, 1994).
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Electrophysiological experiments have extensively studied

the correlation between TE neuron activity and categorization,

revealing that TE contains neurons selectively responsive to various

visual perceptual categories (Gross et al., 1972; Rolls, 1984; Tanaka

et al., 1991; Fujita et al., 1992). Research on neuronal population

representation of categories has found that activity patterns in TE

neurons can encode object category information (Kiani et al., 2007;

Meyers et al., 2008; Kriegeskorte et al., 2008; Pearl et al., 2024).

The temporal dynamics of information representation encoded

by neurons in area TE remain under debate. Neurons in area

TE encode coarse-level categorization (e.g., human vs. monkey

faces) in the early phase of the visual response and fine-level

categorization (e.g., individual faces) in the later phase (Sugase

et al., 1999; Matsumoto et al., 2005). Studies using larger image sets

have indicated that neuron populations in area TE represent mid-

level categories (e.g., human faces) earlier than superordinate (e.g.,

animate vs. inanimate) or subordinate (e.g., individual faces) levels

(Dehaqani et al., 2016).

Behaviorally, the bilateral removal of areas TEO or TE

causes only mild impairments (Matsumoto et al., 2016; Eldridge

et al., 2018; Setogawa et al., 2021), but simultaneous removal

of both areas results in significant deficits (Setogawa et al.,

2021). On the other hand, removal of TEO produces no

impairments in visual memory-dependent behavioral tasks, while

removal of TE results in significant deficits (Eldridge et al.,

2023).

These behavioral experimental results suggest that both

areas TEO and TE play important roles in processing category

information and that there are functional differences between

the two areas. However, electrophysiological experiments often

do not distinguish between TEO and TE, or only record from

TE, leading to a limited understanding of the differences in

neuronal characteristics between TEO and TE. Kobatake and

Tanaka (1994) showed TEO neurons responded to parts of

faces, and TE neurons responded to whole faces, but they did

not investigate whether TE and TEO neurons changed their

responses before and after visual category training. Furthermore,

the results of Sugase et al. (1999) and Matsumoto et al. (2005)

that category information encoded by TE neuronal population

changed temporally indicate a possibility that category information

encoded by TE and TEO neuronal population have different

temporal changes. Pearl et al. (2024) recorded neuronal activity

in TE of two monkeys performing a passive fixation task before

and after category training. The study revealed that the ability

of TE neurons to discriminate between categories improved

during the presentation of images. In this study, we recorded

the neuronal activity in TE from three monkeys (including

the two reported in Pearl et al. (2024)), and in TEO from

two of the three, while they performed a passive fixation task

before and after category training by implanted Utah arrays. We

analyzed category information encoded by neuronal populations

of each area using linear classifiers (logistic regression model).

Neuronal population in area TEO demonstrated temporally stable

categorization capabilities after category training. In other words,

categorization accuracy did not improve after category training.

Neuronal populations in area TE showed improved categorization

accuracy after category training.

2 Materials and methods

2.1 Experimental procedure

2.1.1 Passive fixation task
Detailed experimental procedures have been reported

previously (Pearl et al., 2024). Three male monkeys [Monkey X

(weight: 11 kg, age: 13 years old), Monkey R (9kg, 12 years old),

and Monkey L (9 kg, 8 years old)] (Macaca fuscata) performed a

passive fixation task while seated in a primate chair positioned in

front of a monitor on which visual stimuli were displayed. In the

fixation task, a trial began when a blue target (size: 0.4 degrees x 0.4

degrees) appeared in the center of the monitor. After the monkey

fixated on the blue target for 200–300 ms, five visual stimuli were

randomly chosen and presented behind the blue target each for

350–400 ms, with a 350–400 ms inter-stimulus interval. If the

monkey maintained fixation until the end of the trial, the blue

target disappeared, and water drops were delivered as a reward.

After a one-second inter-trial-interval, the next trial began with

a new set of five stimuli. In this study, we focused whether the

category training changed the responses of TE or TEO neurons. In

the previous ablation studies of Matsumoto et al. (2016); Eldridge

et al. (2018); Setogawa et al. (2021) cat and dog images were used.

Therefore, we use the same cat and dog images to compare the

previous studies. The visual stimuli consisted of colored pictures

of 260 cats and 260 dogs (size: 12 degrees x 12 degrees). Using a

passive fixation task reduces the confounds from motor planning

and execution, and of reward biases, allowing us to examine the

influence of visual categories alone.

We recorded 2 days of baseline passive fixation task forMonkey

X, 6 days for Monkey R, and 4 days for Monkey L. The number of

total correct trials in all baseline sessions was nearly equal for each

monkey (approximately 4,000 correct trials). After these baseline

sessions, the monkeys performed the passive fixation task with

various cat/dog images for 2–3 months. We recorded one pre-

training passive fixation session before cat or dog category training

for all monkeys. After the 3–8 category training sessions, we

recorded post-training 2 days of passive fixation task for Monkey

R—because the first day had too low a trial count only data from

the second day was used for analysis—and 1 day for Monkeys X

and L.

2.1.2 Category training
In the category training task (Eldridge et al., 2018), a trial began

when the monkey touched a bar, and an image of a dog or cat was

presented. After 350–400 ms, a red target appeared in the center of

the monitor, and after 1–3 seconds, it turned green. If the monkey

released the bar on red, the trial ended, whereas if the monkey

released the bar on green, the trial outcome was delivered. The trial

outcome was either a reward or a timeout (4–6 seconds), depending

on the category of the image. Dog images were associated with a

reward, while cat images were associated with a timeout. Therefore,

monkeys learned to release the bar on green for dog images to

obtain the reward and release the bar on red for cat images to avoid

the timeout. The neuron data in the category training sessions were

not analyzed in this study.
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TABLE 1 Percentage of electrodes with neuronal activities analyzed

(Monkey X).

Monkey X Pre (%) Post (%)

Anterior 15.6 9.4

Middle 75.0 69.8

Posterior 22.9 25.0

TEO 71.9 76.0

TABLE 2 Percentage of electrodes with neuronal activities analyzed

(Monkey R).

Monkey R Pre (%) Post (%)

Anterior 25.0 17.7

Middle 39.6 35.4

Posterior 62.5 65.6

TABLE 3 Percentage of electrodes with neuronal activities analyzed

(Monkey L).

Monkey L Pre (%) Post (%)

Anterior 39.6 53.1

Posterior 19.8 18.8

TEO 58.3 55.2

2.1.3 Experimental conditions
The visual stimuli were presented using the Matlab

(Mathworks) Psychtoolbox on a Windows operating system

(Microsoft). Task control was performed with the REX real-time

data-acquisition program adapted to QNX operating system. Four

Utah electrode arrays (iridium oxide, Blackrock Microsystems)

with 96 electrodes were implanted in Monkey X; one in area TEO,

and the others in anterior, middle, and posterior parts of area

TE. Three Utah electrode arrays were implanted in the anterior,

middle, and posterior parts of area TE in Monkey R. Three arrays

were implanted in Monkey L; one in area TEO, and the others in

anterior and posterior parts of area TE. Percentage of electrodes

with neuronal activities analyzed inMonkeys X, R, and L are shown

in Tables 1–3, respectively. The locations of each array are shown

in Supplementary Figure 1. TEO is ranged rostro-caudally from

an imaginary line perpendicular to the superior temporal sulcus

(STS) and tangent to the inferior occipital sulcus (IOS), to a line 1

cm rostral and parallel to the first, and on the dorsal-ventral axis

from the fundus of the STS to the fundus of the occipitotemporal

sulcus (OTS). TE is ranged rostrally from the rostral boundary of

area TEO to an imaginary line connecting the rostral tip of STS

with the rostral tip of AMTS and is bounded dorso-medially by the

fundus of the STS and ventro-medially by either the fundus of the

OTS (caudally), an imaginary line extending from the rostral tip

of OTS to the posterior tip of AMTS, or the medial bank of AMTS

(rostrally) (Eldridge et al., 2023).

Before each recording session, units were sorted online for

the extracellular signal from each electrode using threshold and

time amplitude windows. After each recording session, single units

were manually sorted offline using principal component analysis in

Offline Sorter software (Plexon Inc., Dallas, USA).

All surgical and experimental procedures were approved by

the Animal Care and Use Committee of the National Institute of

Advanced Industrial Science and Technology (Japan) and were

implemented in accordance with the “Guide for the Care and Use

of Laboratory Animals” (eighth ed., National Research Council of

the National Academies).

2.2 Data analysis

2.2.1 Response of neurons to images
To examine the image responsiveness of neurons, we

determined whether their activity increased or decreased

significantly during stimulus presentation (paired t-test, p < 0.05).

Multiple comparison correction was performed using the

Benjamini-Hochberg method to control for false discovery rate

(Benjamini and Hochberg, 1995). If a neuron’s firing rate changed

significantly in response to at least one image, the neuron was

considered to be visually responsive. The number of trials for each

image is 19 (X), 5 (R), and 10 (L) in the pre-category training

session, 19 (X), 7 (R), and 10 (L) in the post-category training

session.

2.2.2 Population vectors
We constructed population vectors to examine category

information encoded by a population of neurons vi (i =

1, · · · , 520). The elements of a population vector for an image i

represent the firing rate of neurons in a time window [t, t + 1t].

Therefore, the population vector vi is a N-dimensional vector,

where N is the number of neurons. The firing rate of neurons was

calculated by averaging the number of spikes for an image i within

time window [t, t + 1t] by the number of trials. This vector thus

represents the firing state of a population of neurons for an image i

in time window [t, t + 1t].

2.2.3 Logistic regression
Using logistic regression (LoR), we investigated the category

information encoded by neural populations in area TEO and

TE. We performed a binary classification to determine whether

the images presented to monkeys were categorized as cat or dog

based on population vectors. The LoR model is represented by the

following equation using a feature vector 8 (Bishop, 2006);

y(8) = σ (w⊤8) (1)

σ (a) =
1

1+ exp(−a)
(2)

where w is a weight parameter. For data set {φn, tn}
N
n=1,

tn ∈ {0, 1}, this weight parameter is determined to minimize the

following cross entropy errors.
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E(w) = −

N
∑

n=1

{tn ln(σ (w
⊤φ))+ (1− tn) ln(1− σ (w⊤φ))} (3)

The LoR model analysis was performed using the scikit-learn

library (Pedregosa et al., 2011).

Accuracy of the LoR model was evaluated by 10-fold cross-

validation. To investigate the temporal property of category

information encoded by neural populations, we fixed the time

window width of the population vector at 100 ms and slid

the time window by 1 ms. We chose 100-ms duration because

a 50-ms window is too brief to capture the neural activity

patterns during image fixation in sufficient detail, while a 200-ms

window would be too broad, potentially smoothing over important

dynamics. In each time window, the accuracy of the LoR model

was evaluated.

2.2.4 Fisher’s linear discriminant analysis
To investigate how the neural populations in TEO and

TE represent cat/dog category information qualitatively, the

population vectors in each area were visualized on a one-

dimensional space by Fisher’s linear discriminant analysis

(LDA) (Fisher, 1936; Fukunaga, 1990; Bishop, 2006). We

visualized population vectors such that those for the same

category appear close together, whereas vectors for different

categories are distant from each other. In LDA, a linear

transformation w is computed that maximizes the separation

between class means and minimizes the variance within each

class. Using the within-class variance matrix SW and the between-

class variance matrix SB, the LDA criterion J(w) is defined

as follows:

J(w) =
w
⊤
SBw

w⊤SWw
(4)

SW =

2
∑

k=1

∑

n∈Ck

(xn −mk)(xn −mk)
⊤ (5)

SB = (m2 −m1)(m2 −m1)
⊤ (6)

mk represents a mean vector of class Ck (C1 : Cats, C2 : Dogs).

Since the norm of the vector w does not need to be considered,

when constraint w
⊤
SWw = 1 is imposed. The vector w that

maximizes the LDA criterion J(w) is the eigenvector corresponding

to the largest eigenvalue in the following eigenvalue equation.

S
−1
W SBw = λw (7)

λ =
w
⊤
SBw

w⊤SWw

= J(w) (8)

Ultimately, a vector ŵ that maximizes the LDA criterion is

as follows, and the LDA criterion J(ŵ) is proportional to the

Mahalanobis distance D;

TABLE 4 Number of neurons that responded to dog or cat images

(Monkey X).

Monkey X TEO pre TEO post TE pre TE post

Only dog 3 1 8 8

Only cat 1 1 7 5

Both cat and dog 84 94 61 45

Not responsive 5 1 74 77

Total 93 97 150 135

Mean firing rate

(spikes/sec)

2.33 3.84 2.04 2.82

Std firing rate

(spikes/sec)

7.43 5.03 4.34 5.32

Mean latency (ms) 90.3 75.6 37.7 41.9

Std latency (ms) 81.4 74.0 43.8 48.7

ŵ ∝ S
−1
W (m2 −m1) (9)

J(ŵ) ∝ D2 (10)

D =

√

(m2 −m1)S
−1
W (m2 −m1) (11)

3 Results

3.1 Single unit visual responses

In a passive fixation task before category training, 87% of

neurons in TEO responded to at least one cat or dog image (95%

in Monkey X, and 78% in Monkey L). 61% of neurons in TE

responded to at least one image (51% inMonkey X, 69% inMonkey

R, and 67% in Monkey L). In a passive fixation task after category

training, 89% of neurons in TEO responded to at least one image

(99% in Monkey X, and 77% in Monkey L). 58% of neurons in

TE responded to at least one image (43% in Monkey X, 77% in

Monkey R, and 49% in Monkey L). The proportions of neurons

that responded to at least one image in TEO and TE were not

significantly different between before and after category training

(z-test, p > 0.05).

Tables 4–6 show the number of neurons that responded only to

dog images, only to cat images, to both cat and dog images, and to

none of the presented images, both pre- and post-category training.

The proportion of cat or dog selective neurons does not seem to

change with categorization training. The number of neurons with

specific category selectivity is quite limited, making it challenging

to draw conclusions about category selectivity based solely on these

counts. Therefore, we focused our analysis on the temporal patterns

of neural responses.

Raster plots and firing rate function of representative single

neurons that responded to both cat and dog images are shown in

Figure 1 (Figures of neurons that responded only to cat or only to

dog images are shown in Supplementary Figures 2, 3). The firing

rate of neurons in TEO and TE of Monkey X, TE of Monkey R,

and TEO and TE of Monkey L wae significantly different between

before and after category training (t-test, p < 0.05).
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TABLE 5 Number of neurons that responded to dog or cat images

(Monkey R).

Monkey R TE pre TE post

Only dog 7 9

Only cat 6 4

Both cat and dog 89 92

Not responsive 46 32

Total 148 137

Mean firing rate

(spikes/sec)

3.58 3.42

Std firing rate

(spikes/sec)

6.50 6.06

Mean latency (ms) 106.9 101.4

Std latency (ms) 88.0 87.8

TABLE 6 Number of neurons that responded to dog or cat images

(Monkey L).

Monkey L TEO pre TEO post TE pre TE post

Only dog 1 3 2 3

Only cat 3 2 6 8

Both cat and dog 57 51 30 23

Not responsive 17 17 19 35

Total 78 73 57 69

Mean firing rate

(spikes/sec)

4.60 4.95 1.31 1.55

Std firing rate

(spikes/sec)

7.43 6.69 2.92 3.39

Mean latency (ms) 50.6 42.2 55.6 54.4

Std latency (ms) 47.6 38.5 56.5 59.0

The mean firing rates of population of TEO and TE neurons in

the pre- and post-category training sessions are shown in Figure 2.

The mean onset latencies are 71.9 ms (SD:70.7 ms, TEO pre), 61.4

ms (SD:63.6 ms, TEO post), 65.4 ms (SD:72.4 ms, TE pre), 68.6 ms

(SD:74.6 ms, TE post).

3.2 Category encoding—Logistic
regression analysis

We investigated the encoding of category information by

neuron populations in areas TEO and TE, measured via the cross-

validated accuracy of the LoRmodel over time (Figure 3). Accuracy

of TE neurons significantly increased after the category training

(Figure 3A vs. Figure 3B, one-tailed paired t-test, p < 0.05),

indicative of the influence of category learning on model accuracy.

After the category training, TE neurons yielded higher accuracy

category decoding than that of TEO neurons (Figure 3B, one-

tailed paired t-test, p < 0.05). These findings are in line with

previous studies suggesting enhanced category recognition later

in the ventral stream (DiCarlo et al., 2012; Hong et al. (2016)).

Category encoding in TEO was stable from 100 ms after stimulus

onset, whereas for TE improvement in performance was seen

up to approximately 150 ms, indicating a difference in temporal

dynamics between the two areas. The accuracy in Monkeys X, R,

and L is shown in Supplementary Figure 4.

3.3 Cat and dog information
representation

To explore the population representation of information in

areas TEO and TE, we projected population vectors of each region

onto a one-dimensional space using LDA. In a time window from

82 ms to 182 ms after a stimulus onset, the LoR accuracy of TEO

neurons reached in a peak while the LoR accuracy of TE neurons

reached a peak in a time window from 155 ms to 255 ms. Both in

the pre- and post-category training sessions, neither area TEO nor

TE neuron populations displayed significant separation between

the cat and dog vector distributions in the time window from

82 ms to 182 ms after a stimulus onset (Figure 4A vs. Figure 4E

and Figure 4C vs. Figure 4G). However, in the time window from

155 ms to 255 ms, the separation between cat and dog vector

distributions of TE neurons in the post-session was larger than in

the pre-session (Figure 4D vs. Figure 4H) although the separation

of TEO in the post-session was similar to the separation in the

pre-session (Figure 4B vs. Figure 4F).

To quantitatively investigate the temporal separation of cat

and dog image clusters in areas TEO and TE, we calculated

the Mahalanobis distance D (equation 11) between the mean

population vectors during dog stimulus presentations and cat

stimulus presentations using a sliding time window (Figure 5).

The Mahalanobis distance D represents the maximum value of the

LDA criterion J(w), quantifying the degree of category separation

between cat and dog images. Our analysis between pre- and post-

category-training sessions using Mahalanobis distance revealed

that population vectors in both areas TEO and TE exhibit larger

distances in the post-training sessions compared to the pre-training

sessions (Figure 5A vs. Figure 5B). The Mahalanobis distance is

consistently greater in area TE than in area TEO in both pre- and

post-category-training sessions. In area TEO, the distance either

stabilizes or shows a decreasing trend starting approximately 100

ms after an image presentation. The mean onset latencies of TE

and TEO neurons were less than 100 ms. Therefore, we compared

the Mahalanobis distances in the 0–100 ms time window. There

was no significant difference in the pre- and post-category-training

session (Mann–Whitney U-test, p > 0.05). Conversely, in area

TE, there is a trend of increasing Mahalanobis distance during the

image presentation. TheMahalanobis distances calculated from the

250–350 ms time window in the pre- or post-category training

session were significantly larger than those from the 0–100 ms

time windows (Mann-Whitney U-test, p < 0.05). These results

quantitatively indicate that in area TEO, there is little temporal

change in the separation between cat and dog categories, whereas

in area TE, temporal category separation improves within a trial.

The Mahalanobis distance in Monkey X, R, and L is shown in

Supplementary Figure 5, and the Mahalanobis distance before a

stimulus onset is shown in Supplementary Figure 6.
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FIGURE 1

Raster plots (top) and firing rate function (bottom) of area TEO neurons of Monkey X in the pre (A) and post (B)-session and area TE neurons of

Monkey X in pre (C), post (D), Monkey R in pre (E) and post (F)-session. The neural activities were obtained from the same electrode in pre- and

post-session (A) vs. (B), (C) vs. (D), (E) vs. (F). The response examples (top) indicate time in milliseconds (ms) on the horizontal axis and stimulus

presentation trials on the vertical axis. Time 0 ms indicates a stimulus onset. Yellow regions mark the responses to dog images, while blue regions

indicate responses to cat images. The firing rate functions (bottom) were estimated using kernel density estimation with a Gaussian kernel, with

bandwidth fixed at 10 ms. In these plots, the horizontal axis represents time, while the vertical axis represents firing rate per unit of time.

Visualizing population vectors and computing theMahalanobis

distance D (Equation 11) between average population vectors

during cat and dog stimulus presentations revealed temporal

properties of category discrimination consistent with the

temporal trends seen in LoR model analyses. In the analysis

with LoR, there was not clear difference between TE and

TEO for pre-category training session (Figure 3A), whereas

there was a clear difference between TE and TEO in analysis

using Mahalanobis distance (Figure 5). The LoR model

accuracy reflects category encoding performance, while

the Mahalanobis distance measures the distance between

two categories. These two methods had different roles as

discussed in the discussion section. Therefore, this difference

looks reasonable.
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FIGURE 2

Firing rate function of neuron populations in area TEO and TE. The horizontal axis represents time in milliseconds (ms), while the vertical axis

represents the firing rate (spikes/sec). The firing rate functions were estimated using kernel density estimation with a Gaussian kernel, with bandwidth

fixed at 10 ms. Time 0 ms indicates a stimulus onset. (A): TEO in the pre-category training session (B): TEO in the post-category training session (C):

TE in the pre-category training session (D): TE in the post-category training session.

FIGURE 3

Accuracy of LoR model across time windows. The horizontal axis shows the start time of the time windows, while the vertical axis represents the

average accuracy of the LoR model assessed through cross-validation. Time 0 ms indicates a stimulus onset. The dashed line represents the

accuracy using the population vector of TEO neurons, while the solid line represents the accuracy using the population vector of TE neurons.

Accuracy was evaluated using 10-fold cross-validation. (A): pre-category training session (B): post-category training session.

The difference in Mahalanobis distance between TE and

TEO was found even in the very early window (0–100ms).

The mean onset latencies of TE and TEO neurons were less

than 100 ms. Therefore, the Mahalanobis distances in 100-ms

time window changed even in early time window (0–100 ms).

Before stimulus onset (in −200 to 0 ms, Supplementary Figure 6),

the differences of Mahalanobis distances between TE and TEO

did not change a lot, almost flat. The Mahalanobis distance
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FIGURE 4

Visualization results of population vectors during the early (82 ms–182 ms) and late (155 ms–255 ms) phases of stimulus presentation in the

pre-category training session (A–D) and post-category training session (E–H) in a first LDA dimension (horizontal axis). The darker histograms

represent population vectors corresponding to dog images, and the lighter histograms represent population vectors corresponding to cat images.

The vertical dashed lines represent the mean of each distributions. (A): TEO population vectors during early phase of stimulus presentation in the

pre-training session. (B): TEO population vectors during late phase of stimulus presentation in the pre-training session. (C): TE population vectors

during early phase of stimulus presentation in the pre-training session. (D): TE population vectors during late phase of stimulus presentation in the

pre-train session. (E): TEO population vectors during early phase of stimulus presentation in the post-training session. (F): TEO population vectors

during late phase of stimulus presentation in the post-training session. (G): TE population vectors during early phase of stimulus presentation in the

post-training session. (H): TE population vectors during late phase of stimulus presentation in the post-training session.
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FIGURE 5

Mahalanobis distance between mean population vectors for cat and dog images in area TEO (dashed line) and TE (solid line). (A): pre-category

training session. (B): post-category training session. Time 0 ms indicates a stimulus onset.

in TE or TEO after stimulus onset was larger than before a

stimulus onset.

4 Discussion

To investigate the influence of category training experience

on category encoding in neural populations in IT cortex, we

recorded neuronal activity in area TE from three monkeys,

and in TEO from two of the three, during a passive fixation

task. We analyzed the category information encoded by their

neuronal populations using three analysis methods (LoR, LDA,

and the Mahalanobis distance). In LoR, we calculated encoding

accuracy for cat and dog categories (Figure 3). LDA determined

a low-dimensional space with the largest Mahalanobis distances

between the cat and dog categories. Each population vector

for each image was shown in one-dimensional LDA space in

two different time windows to visualize the population vectors

for individual cat and dog images (Figure 4). To investigate

the detail temporal change of the separation between cat and

dog categories, we showed Mahalanobis distance in each time

window (Figure 4). Therefore, these three measures have different

roles. We obtained consistent results across the three methods

of analysis, suggesting that our observations regarding the

temporal properties of category information processing differences

between areas TEO and TE are robust. The LoR model of TEO

neurons produced increased category discrimination performance

during the initial phase of stimulus presentation and then

remained stable. Conversely, the LoR model of TE neuorons

continued to show improvement in category discrimination

performance into later time windows than did TEO. Additionally,

by visualizing population vectors with LDA, we compared

category representations of cats and dogs in areas TE and TEO.

Comparing visualization results from the early and late phases

of stimulus presentation, we qualitatively confirmed that category

representations in area TE become more distinctly separated

during stimulus presentation than do representations in area

TEO. The temporal characteristics of the respective regions were

quantitatively evaluated by calculating the Mahalanobis distance

between populations in both areas. The temporal properties of

the information represented by the neural populations in the two

areas, within a trial, were consisted with the temporal trends in

category discrimination reported using the LoR model analysis—

little change in category information during the trial in area

TEO, but increased category information in area TE during the

trial.

In the post-category training session, the neuronal populations

in area TE exhibited superior categorization capabilities over area

TEO (Figure 3B). Previous studies have shown that the category

discrimination capabilities of neuronal populations improve along

the pathway from V1 to IT (DiCarlo et al., 2012; Hong et al., 2016).

The fact that category discrimination abilities are higher in TE

than TEO aligns with the observation that category information for

complex objects can be more easily decoded with a linear decoder

at later stages of the ventral stream. The category discriminative

ability of TEO neuronal populations improved during the initial

phase of stimulus presentation and then remained stable. The initial

improvement could be considered a reflection of the latency in

image responses. However, category discrimination capabilities in

populations of TE neurons continued to improve at later time

windows than those in TEO. There was no significant difference

between the onset latencies of TEO and TE neurons (Figure 2,

t-test, p > 0.05). Hence, the difference in accuracy during the

trial between the LoR models of TEO and TE is likely not due

to differences in onset latency, but rather due to differences in

the temporal nature of category information processing. Most

electrophysiological studies of category information processing

have analyzed either TE alone or IT’s encoding of category

information (Sugase et al., 1999; Matsumoto et al., 2005; Kiani et al.,

2007; Meyers et al., 2008; Kriegeskorte et al., 2008; Dehaqani et al.,

2016; Hong et al., 2016). However, as the analysis using the LoR

model suggests, there are differences in categorization capabilities

and their temporal properties between areas TEO and TE, making

it beneficial to distinguish and analyze them separately.
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Our study found that the time at which neuronal populations

in area TE exhibited the highest categorization capability in the

post-category training session was between 155 ms and 255 ms

following stimulus presentation. This indicates the amount of

category information for cats and dogs encoded by the neuronal

populations in TE peaked approximately 155 ms after an image was

presented. According to Sugase et al. (1999), the peak for category

information for human vs. monkey faces in TE neurons occurs

approximately 100 ms after stimulus presentation. The difference

in the timing of these peaks may reflect differences in the image

sets presented to the monkeys. Processing category information

for cats and dogs is more challenging than that for primate faces

(Matsumoto et al., 2016). Additionally, the images of cats and dogs

presented in this study were associated with waiting time (cats)

or a reward (dogs) through the category training task. Therefore,

after the category training, the amount of category informationmay

increase due to feedback from higher brain areas, e.g., perirhinal

or prefrontal cortex. Such feedback might also contribute to the

observed differences in the timing of the peak.

As shown by the visualization of population vectors through

LDA, histograms corresponding to cat and dog distributions

overlap to the same extent in early (82 ms–182 ms) and late

(155 ms–255 ms) time windows for neuronal populations in

area TEO (Figures 4A, B, E, F). In contrast, for TE neuronal

populations, distributions were distinctly separated in the later

window compared to the earlier time window (Figures 4C, D,

G, H). Furthermore, the Mahalanobis distance D (Equation 11)

(Figure 5) between population vector means for cat and dog images

increased over time in area TE, while it remained constant in area

TEO. This shows that the separation of category representations

within a trial is progressing in area TE. Such separation enhances

the LoRmodel’s ability to discriminate categories; thus these results

are consistent. Moreover, our data for TE neuronal populations

showed a larger Mahalanobis distance immediately following a

stimulus presentation in the pre-category training session than in

the post-training session. The accuracy rates of LoR models trained

with TE populations also showed greater distinction in the time

window immediately after a stimulus onset in the pre-category

training session than in the post (Figures 3A, B), reflecting the

relationship between Mahalanobis distances.

Neurons in perirhinal cortex responds the association between

visual images and reward (Mogami and Tanaka, 2006; Ohyama

et al., 2012). During the category training, monkeys were rewarded

for releasing a bar when the color of a square changed from red

to green in dog-presentation trials. Conversely, in cat-presentation

trials, they had to wait for the next trial if they released a bar during

a green period. This task learning may have altered the connectivity

state between TE and other areas, such as the perirhinal cortex, and

influenced the temporal changes in TE’s categorization capabilities

based on feedback from these regions.

Another explanation for the temporal changes in categorization

during a stimulus presentation in TE is that the representation

of category information encoded by TE neuronal populations

changes over time. Studies have shown that individual neurons

and neuronal populations in TE encode different representations

of information over time (Sugase et al., 1999; Matsumoto et al.,

2005). These studies imply a temporal shift in information

representation from coarse to fine classifications in TE neurons, but

the detailed comparison between this study and the corase-to-fine

categorization will be discussed in a future work.

The LoR accuracy of TEO neuronal populations improved

within 50 ms after a stimulus presentation, which is consistent

with the latency of visual information arriving in this region

and then exhibited a steady trend during stimulus presentation.

Furthermore, there was no progression during a trial in the

separation of cat and dog distributions obtained by visualizing

population vectors. Compared with the analysis of TE neurons, our

analysis suggests that there is little temporal change in category

information representation among TEO neuronal populations.

However, since only cat and dog categories were presented in this

study, we could not examine in detail the temporal changes in

category representation in the two areas. By visualizing population

vectors, when presenting an image set with a hierarchical category

structure, as demonstrated in previous studies (Sugase et al., 1999;

Matsumoto et al., 2005; Dehaqani et al., 2016), in areas TEO and

TE (using methods such as principal component analysis or LDA),

and analyzing the temporal changes of these visualized vectors,

significant insights can be gained into the temporal changes in

category representation in TEO and TE neurons. This will be

discussed in a future work.

5 Conclusion

We investigated the influence of experience on category

information processing in areas TEO and TE. A previous study

by Pearl et al. characterized the effect of experience on category

representation in TE neurons (Pearl et al. (2024)). Our analyses

provide additional insight into the temporal characteristics of

category representation, and contrast category encoding, in TE

neurons with that in TEO neurons. We thereby demonstrate that

area TE neurons exhibit sufficient plasticity after category training.
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