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This functional magnetic resonance imaging (fMRI) study examined resting-state 
(RS) connectivity in adolescent and adult patients with anorexia nervosa (AN) using 
symptom provocation paradigms. Differential food reward mechanisms were 
investigated through separate assessments of responses to food images and low-
caloric/high-caloric food consumption. Thirteen young (≤ 21  years) and seventeen 
adult (> 21  years) patients with AN and age-matched controls underwent two 
stimulus-driven fMRI sessions involving RS scans before and after the presentation 
of food-related stimuli and food consumption. Graph theory and machine learning 
were used for analyzing the fMRI and clinical data. Healthy controls (HCs) showed 
widespread developmental changes, while young participants with AN exhibited 
cerebellum differences for high-calorie food. Young individuals with AN displayed 
increased connectivity during the consumption of potato chips compared to 
zucchini, with no differences in adults with AN. Multiparametric machine learning 
accurately distinguished young individuals with AN from healthy controls based on 
RS connectivity following food visual stimulation (“anticipatory”) and consumption 
(“consummatory”). This study highlights the differential food reward mechanisms 
and minimal developmental changes in RS connectivity from youth to adulthood 
in individuals with AN compared to healthy controls. Young individuals with AN 
demonstrated heightened reactivity to high-caloric foods, while adults showed 
decreased responsiveness, potentially due to desensitization. These findings shed 
light on aberrant eating behaviors in individuals with AN and contribute to our 
understanding of the chronicity of the disease.
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1 Introduction

Anorexia nervosa (AN) is a severe mental disorder with one of 
the highest mortality rates among all psychiatric illnesses (5–6%) 
and a lifetime risk in women estimated to be 0.5–3% (Campbell and 
Peebles, 2014; Preti et al., 2009). The disorder is typically found to 
start in adolescents (aged 12–20 years) (Kanayama et al., 2019). It is 
characterized by significant weight loss accompanied by a persistent 
pattern of behaviors to prevent weight gain. Several neuroimaging 
studies have reported structural and functional brain abnormalities 
associated with the disorder (Friederich et al., 2013; Fuglset et al., 
2016; Scharner and Stengel, 2019). Despite these findings, neural 
mechanisms underlying anorexia nervosa are largely unknown.

FMRI studies have used mainly stimulus-driven fMRI and 
symptom-provoking paradigms to examine the alterations in brain 
function in AN. When presented with food-related pictures, 
patients with AN showed increased activity in the dorsal posterior 
cingulate cortex, the insula, and the amygdala and reduced activity 
of the posterior midcingulate cortex (Gizewski et  al., 2010; 
Horndasch et al., 2018; Joos et al., 2011), suggesting a top-down 
(cognitive control-related neural circuitry) dysfunction theory for 
AN. On the other hand, increased prefrontal activity related to food 
cue presentation (Hildebrandt et  al., 2018) and similar findings 
provide evidence for the idea that cognitive-emotional top-down 
control affects food reward processing, possibly by overriding 
“bottom-up” inputs to the ventral striatum (for a review see 
(Steward et al., 2018)). However, the study did not focus so far on 
how intrinsic brain network activity might be altered due to the 
disorder in reaction to food cues and food consumption. During 
the last decade, researchers have focused their interest on 
spontaneous brain activity in the absence of a task or stimulus, 
specifically, to low-frequency fluctuations (<0.1 Hz) in the BOLD 
signal, known as resting-state fMRI (RS-fMRI) (Biswal et al., 1995; 
Lee et al., 2013). RS-fMRI searches for spontaneous fluctuations 
that can be  correlated between brain regions that are spatially 
distinct (Biswal et  al., 1995; Lee et  al., 2013). The results are 
functional connectivity patterns between specific brain structures 
known as resting-state networks (RSNs) (Greicius et al., 2003; Lowe 
et al., 1998). An advantage of RS-fMRI is the ability to identify 
many networks simultaneously (Lee et al., 2013). Some of these 
functionally connected brain networks have been identified to 
trigger behavior (Esterman et al., 2013). Furthermore, RS-fMRI has 
proven to work as an early indicator of neurological and psychiatric 
disorders due to pathological changes in the brain (Greicius, 2008; 
Zhang and Raichle, 2010). Some RS-fMRI studies have 
demonstrated brain changes in RSNs associated with AN: In 
adolescent and young adult patients with AN, changes were found 
in the fronto-parietal network and default mode network (DMN), 
as well as increased functional connectivity in the anterior insula 
(Boehm et al., 2014). However, in another study in adults with AN, 
decreased connectivity was found in a visual perception network 

with increased co-activation in somatosensory areas (Favaro et al., 
2012). Recovered patients with AN show increased coherence in the 
default mode network (DMN) which is thought to be involved in 
self-referential processing (Cowdrey et al., 2014), but in another 
study decreased connectivity within visual, auditory, and 
somatosensory RSNs (Scaife et al., 2017). These partly inconsistent 
results found in RS-fMRI studies may be due to the study design 
differences between study cohorts (Gaudio et  al., 2016). First, 
longitudinal studies in adolescent patients before and after recovery 
show increased connectivity within the cortico-striatal system 
(CSTS) in adult and adolescent patients with a focus on the left 
dorsal putamen and left precuneus in adolescents (Via et al., 2021) 
and the left nucleus accumbens–left medial orbitofrontal cortex in 
adults (Uniacke et  al., 2019), respectively. These alterations 
improved with weight restoration and symptom improvement. In 
another longitudinal study, widespread prefrontal, sensorimotor, 
parietal, temporal, precuneal, and insular reductions of resting-state 
connectivity were found and similarly proven to normalize over the 
course of recovery (Lotter et al., 2021).

Before looking further into RSN reactions toward symptom-
provoking paradigms involving visual food cues and food 
consumption in AN, it is important to clarify how healthy responses 
to such paradigms work. Our early studies carried out on rats 
showed that specifically the mixture of 35% fat and 50% 
carbohydrate rather than the pure energy content in food leads to 
hedonic hyperphagia. This specific fat/carbohydrate ratio can 
be  found in high-caloric snack foods such as potato chips. 
Furthermore, Schulte et al. (2015) assessed among 518 participants 
a list of 35 foods and their likelihood to be addictive. Of those, 
potato chips were found to be the third most addictive food. Our 
previous study in healthy adults showed that viewing followed by 
ingestion of high-calorie (potato chips) vs. low-calorie food types 
was able to generate different changes in RSNs. Furthermore, in 
healthy participants, we found that BMI positively correlated with 
nucleus accumbens activity when consuming potato chips, pointing 
toward a significance of this brain region that has been shown to 
be  affected in AN in motivational processes related to food 
consumption (Mendez-Torrijos et  al., 2018). Following these 
findings, we aimed to extend our research to clinical populations of 
AN. It is crucial to consider the involvement of differential food 
reward systems in the brain, as abnormal responses to food in AN 
were found to be  more driven by altered motivational salience 
(“anticipatory”) than by explicit “consummatory” responses 
(Cowdrey et  al., 2013). These two different mechanisms are 
necessary to experience reward completely and have been proven 
to have distinct brain connectivity patterns (Berridge, 1996; Rolls, 
2012; Simon et al., 2017). On the other hand, inhibitory control 
networks involving mainly (pre-)frontal but also a range of other 
brain areas could be of interest in AN (Kang et al., 2022). Overall, 
a deeper understanding of the neuronal processes involved in the 
perception and processing of food stimuli would contribute to a 
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better understanding of AN and, consequently, to the development 
of better pathogenetic models and therapy concepts. In addition, 
only a small number of studies include adolescents in their sample. 
Adolescents have a higher risk of developing an eating disorder due 
to a number of different environmental, social, psychological, and 
biological factors. Given the significance of this early onset of AN, 
it is crucial to include adolescents/young adults in AN studies to 
clarify the etiology and course of this disease.

The aim of this study was to contribute to the understanding of 
the underlying neuronal processes of food-related information 
processing in AN from adolescence into adulthood. For this 
purpose, patients with AN and healthy controls (HCs), each in two 
different age groups (young: ≤21 years and adult: >21 years), were 
examined in a symptom provocation experimental design including 
the presentation of disorder-specific stimuli to assess “anticipatory” 
responses and food consumption to assess “consummatory” 
responses. Thus, the role of motivational and affective eating 
processes was differentiated by RS-fMRI measurements.

The following questions were assessed for each of the 
experimental stages (see Figure 1):

First, the study sought to determine whether there are RS 
connectivity alterations in the brains of patients with AN compared 
to HCs and whether developmental differences in RS connectivity 
exist between these groups. This was done via the first RS-fMRI 
scan, referred to as baseline due to the lack of previous stimulation.

Additionally, the impact of visual stimulation on RSNs was 
investigated to see whether it differentially affects AN vs. HC 
participants. This focused on the differences between the baseline 
and the second RS-fMRI scan.

Finally, the study also explored how food consumption 
influences RSNs in AN, specifically examining whether the intake 
of low-calorie and high-calorie foods has different effects. 
Furthermore, it aimed to identify which brain structures respond 
selectively to the consumption of high vs. low-calorie foods. This 
last objective focused on the third RS-fMRI scan, which followed 
the food consumption phase.

2 Methods

2.1 Participants

Participants were individuals with AN or HCs. Eligible 
patients for young and adult groups were females and between 12 
and 41 years old. The participants with AN were recruited during 
inpatient treatment at the University Clinic Erlangen and fulfilled 
the diagnostic criteria of AN (ICD-10: F50.0 or F50.1), diagnosed 
by an experienced (child) psychiatrist or psychologist using the 
“Kinder-DIPS” diagnostic interview (Schneider et al., 2017) in 
adolescents and the Structured Diagnostic Interview for Mental 
Disorders (Suppiger et al., 2009) in adults. HCs were included if 
they had a normal BMI (18–25 kg/m2) and no previous history of 
an eating disorder. All individuals were excluded if they 
suffered from chronic physical diseases, especially cardiovascular 
and neurological diseases, had any MRI contraindications, a 
current pregnancy, profound developmental disorders, 
intellectual disabilities, or psychotic disorders. Anxiety and 
depressive disorders were not exclusionary, as these disorders 
share high comorbidity with AN. The study was open to all 
qualified volunteers throughout its 3-year duration. It should 
be  noted that compliance, in particular with young patients, 
needing parental approval, is not very high. Participants were 
group-matched by age at the first MRI measurement, resulting in 
two groups: young: ≤21 years (developing brain) and adult: 
>21 years (mature brain).

Seven participants were excluded: one due to excessive head 
movement (> 3.5 mm which can lead to brain structure 
misidentification, particularly for small subcortical structures); 
one due to scanning corruption; and five dropouts during the 
measurements (three adults (all AN) and two young (1 HC, 1 
AN)). All participants with AN corresponded to the restrictive 
type diagnosis.

The final sample consisted of 15 adult HCs, 13 adults with AN, 
16 young HCs, and 17 young individuals with AN.

FIGURE 1

Schematic of the study protocol.
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All participants gave written informed consent, the Ethics 
Committee of the University Clinic Erlangen approved the study, 
and all research activities were conducted in accordance with the 
Declaration of Helsinki (2013).

2.2 Magnetic resonance imaging 
acquisition

The MRI data were collected at a 3 T scanner (Magnetom Trio; 
Siemens) using a standard 12-channel, phased-array head coil: for 
anatomic datasets, a T1-weighted, magnetization-prepared, rapid 
gradient-echo (standard Siemens MPRAGE: TR = 1900 ms, TE = 2.52 ms, 
matrix: 256×256, FOV = 256 mm x256 mm, voxel resolution = 1 mm x 
1 mm, 176 slices, and slice thickness = 1 mm). Functional RS data were 
acquired using a standard single-shot, echo-planar imaging (EPI) 
sequence of 200 volumes with each 36 slices (TR/TE = 3000/30 ms) using 
a 128 × 128 matrix resulting in a spatial resolution of 1.5 mm in plane, 
3 mm slice thickness, and 0.75 mm gap between slices.

2.3 Study design

The current study is designed as a non-randomized, controlled 
clinical-experimental study. The study included three dates (D1 to 
D3), one pre-measurement and two experimental measurements, the 
latter separated by 1 week.

During D1 (duration approximately 1 h), participants were asked 
to taste the test food: potato chips brand “funny-frisch® salted chips” 
(528 kcal/100 g, 33% fats, 49% CHO), raw zucchini slices (17 kcal/100 g, 
3% fats, 3.5% CHO), and raw carrot slices (41/kcal, 2% CHO, 9.6% 
fat). Zucchini was chosen as the test food because it is one of the 

vegetables with the lowest caloric content (Tejada et al., 2020) and has 
a mild, neutral taste as opposed to more savory vegetables and 
therefore serves as a control food. The subjects were informed that 
they would eat two of these three foods during the measurements. 
Carrots were not administered, but shown for distraction purposes 
(participants could not foresee what food they would receive as this 
might have had an unwanted effect at the second scan). Then, a 
psychopathological interview was carried out by a researcher trained 
in psychodiagnostics. Participants filled in several questionnaires (see 
Figure 2), their height and weight were measured, and a blood sample 
was taken by a physician to examine endocrine values.

The MRI measurements (D2 and D3) took place at the same time 
(4–5 pm) each week. Participants attended half an hour before the 
MRI measurement and received a standardized snack consisting of 
200 mL of orange juice and 70 g Brandt® rusk “Snack-Pack” to ensure 
that all participants had about the same state of satiation. Their current 
fatigue, anxiety (STAI-S), hunger sensation, and possible sleep 
disturbances were noted. At the end of each measurement, their 
current hunger and momentary anxiety were registered again.

Each fMRI session (sequence protocols in Figure 1) had a length 
of ∼50 min in total. The experimental software Presentation® Version 
20.2 (Neurobehavioral Systems Inc., Berkeley, CA) was used for 
stimulus presentation and response acquisition. The images were 
presented through a projector, which the subjects saw through a 
mirror located above their heads. The subjects gave the answers to the 
assessments of the stimuli within the MR scanner via response grips 
(NordicNeuroLab AS, Bergen, Norway).

Each fMRI session started by acquiring the individual 
T1-anatomy. Then, the participants were instructed to keep their eyes 
open, and the first RS-fMRI was measured. The stimulation/priming 
scan was a block design with 16 blocks. Each block (18 s) was 
composed of six images of the same stimulus category (chips, zucchini, 

FIGURE 2

Schematic of the assessment schedule and acquired data.
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carrots, and colorful wooden blocks). Wooden blocks were used as a 
visual control condition; furthermore, all pictures of high-and 
low-calorie food were matched according to color, image density, and 
area (in percentage of the total picture) occupied by the (food) item. 
At the end of each block, a fixation cross was presented (18 s). Before 
and after the stimulation, the participants were instructed to rate on a 
scale from 0 to 9 their desire to eat chips, zucchini, and carrots 
(0 = none, 9 = very strong). The stimulation and second rating were 
followed by the second RS scan. There was then a pause of 5 min, 
during which the participants were moved out of the scanner but 
remained on the motor table and consumed chips or zucchini slices 
(the session in which each participant received one or the other was 
randomized) ad libitum for 2 min with a minimum amount of 5 g of 
chips and 20 g of zucchini. They were then moved back into the 
scanner for the third RS scan and a last rating [Note: The results of the 
BOLD stimulation are beyond the scope of the current publication].

2.4 Data processing and analysis

The RS-fMRI data were analyzed for each subject, session, and 
measurement. The preprocessing of functional data in BrainVoyager 
QX® (V. 2.8, Brain Innovation B.V. Maastricht, Netherlands) included 
slice scan time (sinc interpolation with TR = 3,000 ms and appropriate 
slice ordering) and head-motion correction (3D trilinear with sinc 
interpolation) in order to detect and correct small head movements by 
spatially aligning all volumes to the first volume through rigid body 
transformations (Goebel et al., 2006). Due to software limitations of 
BrainVoyager®, MagnAn® (BioCom GbR, Uttenreuth, Germany) was 
used to regress out the white matter and ventricle signals and next to 
perform a band-pass filter (0.009 Hz. to 0.08 Hz) followed by a 3D spatial 
smoothing with FWHM = 3 mm. T1 and the average RS volume (the 
average volume of all time points of each RS serves as an anatomical 
reference for the respective functional scan) were skull-stripped using 
the HD-BET tool (Isensee et al., 2019). Afterward, each low-resolution 
EPI BOLD dataset was registered using ANTS (ANTS; Penn Image 
Computing and Science Lab) in two steps to the MNI space (first an 
affine registration to the T1 anatomical image and then a symmetric 
diffeomorphic image registration to the MNI space for the T1 anatomical 
images); the registration process generates the transformation files from 
one space to the other, which were used in reverse to transform our 
in-house optimized probability atlas from the MNI space to the BOLD 
image subject space, and doing so segmenting the low-res bold images. 
For our study, we designed an optimal MNI-based probability atlas 
combining different existing parcellation schemes based on the Harvard 
Oxford Atlas (Desikan et al., 2006; Frazier et al., 2005), arousal system 
critical to consciousness and disorders (Edlow et  al., 2012), and 
hypothalamic sub-parcellation (Makris et al., 2013) to complete 205 
brain regions relevant for eating disorders. This atlas was used to define 
the different regions of interest (ROIs) necessary for the multi-seed 
region analysis, which preceded graph theory.

2.5 Functional connectivity analysis via 
graph theoretical method

To explore connectivity differences across brain regions we used 
the multi-seed region analysis approach (MSRA) (Kreitz et al., 2018), 

which relies on multiple seed correlation maps: the mean time course 
of a seed region per brain region was correlated with the time course 
of every voxel in the brain resulting in one correlation volume per 
brain region. Seed regions (six voxels) were determined automatically 
through the center of mass per atlas brain region. Significant 
correlations within that correlation volume were determined using a 
false discovery rate (FDR, q = 0.05). For each seed region, the 
significant correlation values were averaged per atlas brain region, 
resulting in a 200 × 200 asymmetric correlation matrix. This matrix 
could also be represented as network graphs consisting of vertices (or 
nodes) and edges. Vertices represent the structures of the brain, 
whereas edges between pairs of brain regions indicate their 
functional connectivity.

Network metrics were derived from the binarized matrices using 
MagnAn. Global graph metrics quantify the network’s properties of 
integration and segregation and, therefore, are suitable to describe the 
efficiency of information flow within a network. Weighted density 
thresholded networks per subject measurement and RS were 
characterized using the following graph theoretical global network 
measures for a density range from 2 to 20% of all possible connections: 
the clustering coefficient γ and the average path length, λ both 
normalized to 100 random networks of the same size, and the small 
world index σ, i.e., the quotient of g and l (Watts and Strogatz, 1998). 
In case of σ, this resulted in a hyperbolic curve (cf. 
Supplementary Figure S1). As the topology of a network graph is 
strongly dependent on the number of represented connections, 
we chose the density in the turning point of the obtained s-curve (7%) 
for further graph theoretical analysis and statistics between networks 
(cf. Supplementary Figure S1). At this density, the graph is highly 
interconnected but sparse enough to be  distinguishable from a 
random network. Additionally, the node-specific node graph 
theoretical parameters strength, degree, and hub scores (Watts and 
Strogatz, 1998) were calculated.

Comparisons of demographic and clinical characteristics and 
ratings for food desire during measurements between each cohort for 
their corresponding age group were performed on SPSS (IBM SPSS 
Statistics for Macintosh, Version 25.0., Armonk, NY: IBM Corp) 
using the independent two-sample t-test, with p < 0.05 
considered significant.

Significant connectivity differences, i.e., topology differences, 
between average group networks based on connectivity strength per 
subject were determined using network-based statistics (NBS) first 
introduced by Zalesky et al. (2010) (Supplementary Table S1). NBS is 
sensitive for detecting effects in spatially extended networks of altered 
connectivity, therefore accounting for mutual and dynamic 
interactions between brain regions. To test for the different types of 
hypotheses, we performed two different types of NBS, paired and 
homoscedastic testing.

For homoscedastic NBS the largest component of altered 
connections was determined using homoscedastic t-statistics at a 
significance level of α = 0.05 and controlled for the family-wise error 
(FWE) using permutation testing with 10,000 random permutations 
of the subject between groups.

However, when the hypotheses implied testing for paired design 
groups, permutations cannot be used. To overcome this limitation for 
some hypotheses, we implemented a modified version of the network-
based statistics first described by Kreitz et al. (2018), where an additional 
control experiment consisting of the same patients without experimental 
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stimulation is included. The control experiment is used to adjust alpha, 
to test for significant modulations specific to the experimental group. In 
this study, we examined the influence of food consumption between the 
second and third resting-state measurements (cf. study design, Figure 2). 
During the control experiment, the participant ate zucchini in between 
both resting-state measurements, during the stimulated experiment 
chips. The control experiment served to rule out the effects of 
interrupting the fMRI session, thereby highlighting the effect of junk 
food (i.e., chips) consumption.

The different contrasts and resulting statistical values are shown 
in Supplementary Table S1. The resulting networks were represented 
using Amira 5.4 (Thermo Fisher) using custom-made modules.

2.6 Multiparametric machine-learning 
analysis

Modern technologies provide high-dimensional data spaces that 
are hard to analyze with classical statistics (e.g., multiple comparison 
problems and curse of dimensionality). Datasets with small sample 
sizes and a few dozen input parameters were the basis for designing 
classical statistics. However, with high-dimensional datasets, the 
number of input variables increases, increasing their possible 
associations. As a result, these relationships are more complex, 
consequently leading to statistical inferences that are less precise 
(Bzdok et  al., 2018) or combinatorial relationships might 
be overlooked. Therefore, we employed a dedicated machine-learning 
(ML)-based analysis framework to assess the resting-state data with 
all available global graph metrics and node-specific parameters. The 
framework extracts, purely data-driven, the most notable feature 
combinations, i.e., RS-biosignature, that indicate separations between 
the different experimental groups and conditions.

Our dataset comprised a total of 6,272 features, i.e., a combination 
of brain structure and measured value, derived from two atlases: 
GraphInfo with 266 parameters and NodeParams with 2,870 features, 
for each of the two resting states (RS2 and RS3). The ML algorithms 
were provided with GraphInfo parameters across a range of network 
densities from 0.02 to 0.2. This approach allowed a comprehensive 
view of network properties at different levels of brain connectivity.

Training data comprised 75%, while 25% were used as test datasets 
and cross-validated 100 times. For additional algorithmic cross-
validation and to emphasize robustness and reliability, we used (a) two 
different feature selection (FS) approaches [Boruta (Kursa et al., 2010; 
Kursa and Rudnicki, 2010) and sparse partial least squares 
discriminant analysis (sPLS-DA) (Cao et  al., 2011)] both using 
XGBoost classifier (Chen and Guestrin, 2016) which provided best 
results. This approach aided in acknowledging the fact that all models 
do not work well on all datasets and also cross-validating the results 
across models. The FS algorithms aided in filtering out the most 
relevant features from the high-dimensional dataset comprising the 
spectrum of network densities and network parameters.

The whole pipeline was built on R, and various packages [Boruta 
(Kursa et al., 2010), RandomForest, Caret, and mixOmics (Rohart 
et al., 2017) among others] were used for FS and classification.

3 Results

3.1 Sample characteristics

The demographic and clinical characteristics of the final sample are 
summarized in Table 1. There were no significant differences in age 
between the cohorts for each age group. The AN sample showed overall 
significantly lower BMI and higher BDI, FCQ, EDQ, and EDI-II scores. 

TABLE 1 Demographic characteristics and clinical data of the included sample.

Adult (> 21  years) Young (≤21  years)

HC (N  =  15) AN (N  =  13) HC (N  =  16) AN (N  =  17)

M (SD) M (SD) p M (SD) M (SD) p

Age (years) 25.2 (4.3) 25.1 (3.5) 0.89 17.3 (2.5) 16.8 (3.0) 0.57

BMI* (kg/m2) 23.5 (3.5) 17.1 (1.8) <0.001

BMI–Age percentile 56.8 (22.6) 7.4 (7.8) <0.001

Education Duration (years) 11.7 (1.9) 11.1 (1.3) 0.46 8.5 (2.1) 7.9 (2.5) 0.27

FSH (IU/mL) 3.9 (2.9) 3.4 (2.8) 0.65 3.5 (2.3) 4.6 (2.5) 0.25

Estradiol (pg/mL) 63.6 (9.2) 21.8 (2.0) 0.11 68.5 (8.4) 22.0 (3.3) 0.06

BDI 4.9 (5.8) 24.2 (9.3) <0.001 5.9 (5.1) 28.4 (12.1) <0.001

FCQ-T 27.0 (10.6) 44.1 (15.9) 0.002 25.4 (10.3) 46.1 (19.7) 0.001

EDE-Q ** 0.63 (0.35) 3.27 (1.26) <0.001 0.56 (0.58) 3.89 (1.5) <0.001

EDI-II 141.7 (30.5) 225.1 (30.6) <0.001 131.8 (26.4) 245.9 (42.1) <0.001

STAI-S pre*** 43.0 (3.3) 37.9 (4.3) 0.002 42.8 (3.1) 38.5 (4.0) 0.002

STAI-S post*** 43.1 (4.9) 37.86 (4.8) 0.008 41.2 (4.1) 39.1 (2.1) 0.18

HC, healthy control; AN, anorexia nervosa; SD, standard deviation; N, numbers; BMI, body mass index; FSH, follicle-stimulating hormone; BDI, Beck’s Depression Inventory; FCQ-T, Food 
Cravings Questionnaire—Trait; EDE-Q, Eating Disorder Examination—Questionnaire; EDI-II, Eating Disorder Inventory-2; STAI-G, State Trait Anxiety Inventory–State (pre = before MRI, 
post = after MRI). Independent t-test applied, Levene’s test for equality of variances, two-tailed p provided. *BMI for the young age group was calculated using the corresponding BMI-for-age 
percentile based on Kromeyer-Hauschild (Kromeyer-Hauschild et al., 2001). **Two separate versions (adult and youth) of the EDQ were applied to their corresponding age group. ***Show 
the average STAI-S results for the two measurements as there was no significance found across them. Bold values: significance p < 0.05.
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On the other hand, results for the STAI-S showed that the AN cohort had 
lower state anxiety before and after the scan than the control participants 
with significant differences between the groups except for the post-
questionnaire between the younger groups. Furthermore, these STAI-S 
ratings before and after measurements were constant for each group. FSH 
was found to not differ significantly between the two groups. Estradiol 
was only analyzed for values above 5.0 (pg/mL); lower values were not 
registered. Nevertheless, a tendency toward lower values in AN 
was shown.

Results from ratings (food desire) shown in Figure 3 revealed 
significant differences solely between AN and HCs for young 
participants at baseline (p = 0.01), after visual stimulation (p < 0.001), 
and after food consumption (for chips and zucchini p < 0.001), with 
significantly higher ratings for HCs. This effect was not found among 
adults with the exception of the chips ratings after consuming chips, 
where HCs rated once again significantly higher than AN (p = 0.03). 
Results also showed significantly higher ratings for adults with AN 
than HCs for baseline zucchini ratings (p = 0.01) and young HCs 
compared with AN after the visual stimulation (p < 0.001). Of note, the 
small error measures in Figure 3 indicate low individual preferences. 
Overall, AN responded relatively similarly in their ratings across the 
three RS and did not variate their responses according to the different 
types of stimulation and reported less explicit anticipatory responses 
for high-calorie food than for the two low-calorie conditions. On the 
other hand, HCs increased their overall ratings after stimulation when 
compared to the baseline (cf. Figure 3).

3.2 Connectivity analysis

Overall, the general global RSN connectivity as indicated by the 
normalized clustering coefficient, normalized average shortest path 
length, and small world index did not differ across the cohorts and age 
groups for the different RS (Supplementary Figure S1). The small 
world values ranged between 2 and 4 at high densities above 10% and 
were in the normal range of adult human resting-state networks. Thus, 
the overall efficacy of information flow within the RSN given by those 
measures was unaffected.

The resulting values for NBS according to our hypotheses are 
shown in Supplementary Table S1. In consistent with our previous 
publication where we  found stable RSNs across measurements 
(Mendez-Torrijos et al., 2018), we focused on measurement one for 
our analyses. The resulting networks are displayed in Figure 4. NBS 
revealed that young participants (AN vs. HCs) present larger baseline 
RS connectivity differences in the cerebellum and adults (AN vs. HCs) 
in the sensory cortex and basal ganglia (Figure  4A). In both age 
groups, the RS connectivity in the thalamus was also significantly 
increased. Developmental changes (differences between young and 
adult groups) result in more widespread connectivity differences 
between both HC age groups than in those with AN (Figure 4B). 
Furthermore, AN showed a high pFWE of 0.49 
(Supplementary Table S1), indicating a high probability that the few 
developmental differences in this group are random. For HCs, the 
thalamus, motor cortex, and amygdala displayed significant 
connectivity differences between the younger and the older groups.

The NBS of the visual stimulation effects on RS networks was not 
carried out given that the alpha calculated using HCs as control was 
too low; therefore, no different connections for AN could be observed 

for that specific alpha. The reason for that usually is that the control 
group has more significant differences than the experimental group.

The resulting networks for the different food items consumed 
(Figure 4C) showed overall significant differences (NBS with α = 0.05, 
FWE) for all conditions in the cerebellum, sensory, and association 
cortex. Adult HCs vs. AN participants showed no significant 
differences for chips. Young participants showed more significant 
differences between individuals with AN and HCs in the visual cortex 
and even stronger in the cerebellum for the condition of the chips. 
Interestingly, both young groups showed differences in the substantia 
nigra for both food items and in the parabrachial pigmented nucleus 
for zucchini. The adult group showed additional thalamic, middle 
temporal, and parahippocampal gyrus differences between individuals 
with AN and HCs for the zucchini condition.

When checking which RS network brain structures selectively 
respond to high-vs. low-calorie food consumption (Figure 4D) results 
showed predominantly significantly increased connectivity after 

FIGURE 3

The response rate for food desire ratings during measurements:  
(A) chips; (B) Zucchini; (C) Carrots. Error bars represent standard error. 
The average and standard error of response rate for the different 
ratings that took place across the two measurements are presented. 
Independent t-test applied, Levene’s test for equality of variances, 
two-tailed p provided; t-tests were calculated between each cohort 
for their corresponding age group (*  =  p  <  0.05, **  =  p  <  0.01).
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FIGURE 4

The figure shows the increased significant network differences for the different hypotheses identified by NBS (for p and alpha values check 
Supplementary Table S1). The nodes and the edges are overlaid with an MNI glass brain in two different planes (axial and sagittal). Node size represents 
the total degree (total amount of significant connections with the rest of the network).
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eating chips vs. zucchini for young individuals with AN in the 
cerebellum and association cortex, specifically in the cuneus and 
occipital areas. However, adults with AN had no significant differences. 
Young HCs showed less striking significant differences and similar 
patterns to adult HCs.

3.3 Machine learning analysis

Beyond classical parameter statistical assessments, we used ML on 
RS2 (“anticipatory”) and RS3 (“consummatory”) data to establish a 
biosignature of parameter combinations that lead to the separation of 
AN from HCs. We found no separation for the adult group. For the 
young group, AN could be separated from HCs using RS after visual 
stimulation (RS2) compared to RS after food consumption (RS3).

Both FS algorithms consistently separated AN from HCs in 
the young group. The number of features selected by each 
algorithm on different age groups is summarized in Table 2. As 
separation in the young group was better with the Boruta FS 
algorithm together with the XGBoost classifier vs. sPLS-DA 
(Table 2), we continued using the Boruta algorithm for further 
analysis. In addition to this, Boruta identified a more streamlined 
set of features that required less extensive hyperparameter 
optimization, while at the same time performing better or similar 
to sPLS-DA. Figure  5 shows the distributions of the selected 
features of Boruta algorithm (for top features, ref. Table 3) as 
chord plots for the young and adult datasets. The figure shows 
that RS2 and RS3 node parameters (NP) (shown in green and 
purple, respectively) dominate the separation and are relatively 
equal in their contribution. For both the datasets, adult and 

TABLE 2 Performance comparison of feature selection algorithms and classifiers on adult and young RS2 and RS3 datasets.

Data 
(RS2  +  RS3)

FS algorithm Features 
selected

Classifier Balanced 
accuracy

Sensitivity Specificity

Adult data Boruta 5 XGBoost 31,54% 33,83% 29,25%

Adult data sPLS-DA 20 XGBoost 42,08% 40,25% 43,92%

Young data Boruta 10 XGBoost 65% 72,25% 57,75%

Young data sPLS-DA 20 XGBoost 63,46% 60,25% 66,67%

The table shows balanced accuracy, sensitivity, and specificity for combinations of Boruta and sPLS-DA feature selection with the XGBoost classifier. All metrics represent means over 100 
iterations, with young data models generally outperforming adult data models.

FIGURE 5

This figure shows the different chord plots containing the distribution of the features selected by the Boruta algorithm classifying anorexia to controls, 
with the feature counts representing the sum over 100 iterations. The plots show (A) the young RS data comprising of measurements 2 and 3 with a 
sensitivity: 72.25%; specificity: 57.75%; balance accuracy: 65% and (B) the adult RS data comprising of measurements 2 and 3 with a sensitivity: 33.83%; 
specificity: 29.25%; balanced accuracy: 31.54% meaning no separation found. In the lower semicircle, we see the atlases GraphInfo (GI) and 
Nodeparams (NP) with their relative percentages and distribution to the various measures on the upper semicircle. The percentages shown represent 
the proportion of times each feature was selected across 100 runs, with 100% indicating consistent selection in all iterations.
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young, RS2 NP is more frequent than others (Figure  5). It is 
important to note that the number of features represented in 
these chord plots is the sum of over 100 iterations of the 
algorithm, providing a comprehensive view of feature importance 
across multiple runs. The percentages displayed represent the 
frequency of feature selection across 100 iterations, where 100% 
indicates consistent selection in all runs.

Of note, for the young dataset, RS3 GI parameters (shown in blue) 
(largest component, lambda, and average shortest path) show up and 
support the separability. This indicates that the overall network 
topology changes stronger after food consumption than after 
visualization. In contrast, for the adult group, where no separation was 
found, nearly only node parameters are depicted, meaning changes 
are more specifically addressed to nodes, i.e., brain structures.

Table 3 shows the most relevant brain structures for the separation 
of AN vs. HCs in the young group, being the frontal medial cortex, 
most frequently selected in data separation, appearing in 96 out of 
100 iterations.

4 Discussion

This study compared the impact of diverse sensory short-term 
modulations on RSNs through graph-theoretical and ML approaches 
in young and adult patients with AN vs. age-matched HCs. Overall, 
underlying RSNs of AN differed from HCs and additionally were 
differentially affected by visual stimulation (“anticipatory”) and food 
consumption (“consummatory”).

To summarize, the findings to the main questions showed baseline 
(no stimulation) RS connectivity alterations due to developmental 
differences in patients with AN vs. HCs. There were extensive 
developmental connectivity differences for the HCs when comparing 
young vs. adult, reflecting the natural RS development for HCs in 
contrast to very limited developmental maturation changes for 
AN. Short-term visual stimulation had an effect on AN and HC RSNs, 
particularly for the young cohort. Finally, the type of food 
consumption (low vs. high calorie) had a differential impact on RSNs, 
the cerebellum being particularly relevant during this process. The 
following discussion will deepen into each of these findings.

Patients with AN displayed significant differences in their RSNs for 
each age group. In both cases, the thalamus presented significantly 
different connectivity for AN vs. HCs. Previous studies have associated 
impaired thalamus connectivity with AN and its symptomatology 
regarding somatosensory/visual integration processes (Ehrlich et al., 2015; 
Geisler et al., 2016; Lord et al., 2016). Young participants showed more 
significant differences in the cerebellum and adults in the basal ganglia. 

Recently, neuroimaging attention has been redirected toward the 
cerebellum. Historically, most fMRI studies used to exclude this area, but 
it has been lately proven to play a much bigger role in higher-order 
functions than previously thought. The cerebellum seems to have a role 
in both feeding behavior and emotion regulation; studies showed the 
presence of different RS alterations in the cerebellar network in AN 
(Amianto et al., 2013; Sudo et al., 2024). In a previous study, we detected 
multiple seemingly non-specific activation differences in both directions 
with differential patterns in adolescents (mostly hypoactivation) and 
adults with AN (Horndasch et al., 2018). In young participants more acute 
starvation effects are likely; however, more research on differences 
between age groups is necessary to further elucidate developmental 
mechanisms. The finding of differences in basal ganglia connectivity is 
also consistent with other neuroimaging findings and have been linked to 
reward evaluation, reward-motivated decision-making, and controlling 
behavior (Via et al., 2021; Leppanen et al., 2020), which are likely to play 
a role in habit forming and maintenance of dysfunctional behavior and 
therefore could be  present to a greater extent in more chronic, 
adult patients.

These disturbances in both AN age groups seemed to have been 
the result of impaired developmental differences caused by AN. Our 
NBS results showed widespread developmental connectivity 
differences for the HCs when comparing young vs. adults, 
corresponding to the natural RS development for HCs (Stevens 
et  al., 2009). By contrast, only a few (most likely random) 
connectivity differences for AN were observed in networks 
involving the thalamus, basal ganglia, and frontal structures, all 
involved in mediating aspects of cognitive dysfunction in patients 
with AN (Gaudio et al., 2016). The AN cohort showed a whole brain 
generalized disturbed RS connectivity maturation. This is 
interesting in the context of a recent study showing in adolescent 
patients with AN—unlike our study—decreased functional 
connectivity in the DMN and two subcortical networks and linking 
the functional alterations to structural deficits in the sense of 
reduced cortical thickness. The authors conclude that restricted 
food intake in patients with AN can disrupt normal age-related 
brain maturation and the development of functional networks 
(Myrvang et al., 2021). However, to the best of our knowledge, until 
today no literature described the maturation disturbances in RS 
connectivity from adolescence to adulthood in AN. Furthermore, 
previously observed deep and enduring functional differences in 
brain organization could be an additional explanation for reduced 
RS connectivity in recovered restricted AN (Scaife et  al., 2017; 
Gaudio et al., 2016).

In addition, our study revealed that the type of stimulation 
affected the RSNs, supporting the evidence of differential affective and 

TABLE 3 Most relevant features (present in over 50% of the iterations) from the Boruta algorithm*.

Structure Hemisphere Measure Resting State Value

Frontal medial cortex Left Path length RS3 96

Superior temporal gyrus Right Indegree RS2 71

Frontal opercular cortex Left Clustering coefficient RS2 68

Habenula nuclei Right Out strength RS3 60

Cerebellum Middle Path length RS2 53

*Boruta algorithm selected all the vital features from the entire feature space over 100 iterations based on random seeds. The number of times each feature is selected (value) represents the 
relative importance of the feature in the group classification.
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motivational eating processes. This theory was particularly supported 
through our ML analysis for the young group where, in addition to 
global network topology, the frontal medial cortex, superior temporal 
gyrus, and frontal operculum were found vital for separation between 
stimulation modality in AN vs. HCs. These regions had already been 
associated with symptom-provoking paradigms (Uher et al., 2004), 
body image processing (Vidal et al., 2021), or taste processing (Frank 
et al., 2016). Our ML analysis was found unable to separate between 
conditions for the adult groups, which parallels our finding that only 
minor differences were found by all other statistical assessments (see 
above and below).

Visual stimulation by food items is associated with “anticipatory” 
neuronal mechanisms. Our cohort of young HCs revealed the 
strongest impact by this stimulation. Healthy young adolescents often 
prefer the flavors of high-calorie foods (Cooke and Wardle, 2005) 
without the concerns of the potential weight gain. Furthermore, our 
results showed how young patients with AN presented a diminished 
response to visual stimuli in comparison with their corresponding 
HCs, which is also manifested in the food desire ratings, where young 
patients with AN scored significantly lower than HCs (p < 0.001). 
Previous BOLD stimulation fMRI studies have associated stimulation 
with food images with increased cortical neural responses in 
adolescents and adults with AN in some brain regions, but diminished 
activation in others (Horndasch et  al., 2018; Brooks et  al., 2012). 
However, our results do not match the aforementioned findings given 
that RSNs, especially in adolescence, may be differentially affected by 
stimulus-driven fMRI responses, and still be showing and reflecting 
different underlying cognitive processing mechanisms toward food 
stimuli. As mentioned earlier, the fact that AN causes altered and few 
RS developmental changes could explain why these differences remain 
the same from young to adult age. Following this, adult and young 
individuals with AN may become desensitized to affective visual 
stimulation throughout the course of the disease [in the context of 
alexithymia and impaired emotional awareness in AN, see, e.g., 
(Horndasch et al., 2018)] and therefore present fewer RS changes by 
short-term stimulation. Studies have suggested sensitization-like 
changes in brain networks shaped by exposure to certain diets and 
restrictions that model oscillations between dieting and binging on 
palatable foods (Berridge, 2009). Regarding alcohol use disorder, 
previous research also demonstrated that the sensitization to affective 
visual stimuli as indicated by an attentional bias is moderated by the 
duration of the illness, cognitive function (Loeber et al., 2009), and the 
duration of abstinence (Vollstädt-Klein et al., 2009).

Altered RS consummatory mechanisms in AN were investigated 
here through food consumption stimulation. Our results evidence that 
the HC group presents similar RS outcomes to high-and low-calorie 
foods although they had more explicit anticipatory reactions during 
the rating for high-calorie foods. The small but significant differences 
between young and adult HCs could be explained by to the natural 
maturation of the brain previously discussed for the baseline 
differences. Furthermore, young and adult individuals with AN 
showed dramatically opposite connectivity responses to food 
consumption, particularly to high-calorie food consumption. Young 
individuals with AN presented significant network changes, differently 
affected by high-and low-calorie food consumption. In contrast, 
adults with AN showed no significant differences in network changes 
for the two conditions. These findings can support the theory of RS 
desensitization toward food stimuli with aging, being present during 

the “anticipatory” RS and the “consummatory” mechanisms. This 
desensitization can at least partly be explained as a consequence of the 
structural atrophy caused by the disease (Scharner and Stengel, 2019; 
Fonville et  al., 2014) and therefore poor maturation of the RSNs, 
which, in turn, could contribute to the aberrant eating behaviors and 
the high chronicity of the disease. In addition, the results showed once 
again that the cerebellum plays an important role in feeding behaviour 
in young patients with AN, and to a considerable extent after food 
intake (consummatory mechanisms). These results contrast previous 
literature where adult patients with AN show for high-calorie stimuli 
stronger but for low-calorie stimuli weaker cerebellum activity than 
young patients (Horndasch et al., 2018). Again, this could be due to 
the fact that previous studies did not focus on the impact on the RSN 
connectivity changes and did not distinguish between the two 
different reward mechanisms involved in food consumption.

Several limitations of the current study should be acknowledged. 
The study was carried out by administering two specific types of food, 
chips and zucchini. Potato chips were chosen as they are considered 
one of the most “addictive” foods (Schulte et  al., 2015) and—as 
opposed to, e.g., pizza or ice cream—can be easily administered in the 
experimental setting. Regarding desire ratings, the variation between 
participants was relatively low, but, of course, food preferences in 
general vary and individual differences could not be considered. The 
length of the disease or first onset was not collected. This measure 
could be interesting to see whether the RS maturation changes are 
more accentuated in patients with a longer disease history. Moreover, 
the time since hospitalization was also not registered. As all 
measurements took place at the beginning of treatment and no 
longitudinal data for the same person were acquired, no conclusions 
can be made about whether the RS effects could be reversed after 
weight restoration or intensive therapy treatment. Finally, note that 
the average BMI for adults with AN was 17.1, not extremely 
underweight. Due to the estradiol standard clinical analysis routine, 
we were only able to see quantitative values above 5.0 (pg/mL). Given 
that this procedure is not sensitive enough, results could only show a 
trend toward significant differences (adult p = 0.11; young p = 0.06)—
this could be improved with further technical advanced analysis. This 
more in-depth analysis has the potential to reveal significant 
differences between groups and might serve as a disease biomarker. 
Furthermore, recent studies have been trying to use estrogen 
stimulation to potentially improve bone mineral density in AN 
(Resulaj et al., 2020).

The results from this study contribute to elucidating how AN plays 
a role in the maturation of the RSNs of the brain and how this could 
be a maintaining factor for the longevity and chronicity of the disease. 
Furthermore, it is of great importance to understand and study the 
nature of the food-related brain reward system while considering its 
different mechanisms, which are distinctively affected by AN. Further 
research involving longitudinal approaches and the inclusion of 
recovered AN participants could help to understand the predictive 
value of these brain connectivity changes for long-term recovery.

4.1 Conclusion

This study supports the hypothesis of differential reward 
mechanisms for food “anticipatory” and “consummatory” responses in 
AN. Additionally, baseline RS connectivity showed minimal maturation 
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changes from young to adult patients with AN in comparison with HCs. 
The RS manifestations for the different reward mechanisms seem to 
be  determined by the developmental stage of the individual. The 
‘consumptive’ mechanism shows a high RSN reactivity in younger 
patients with AN, especially with high-calorie foods. This RSN reactivity 
decreases with age and is no longer present in adult patients with 
AN. This is probably due to desensitization that takes place after years 
of stimulus inhibition together with structural atrophy (Boto et al., 
2017) and to the poor maturation of the RSNs, which could serve as a 
maintaining factor for the aberrant eating behaviors in individuals with 
AN, and therefore contribute to the high chronicity of the disease.
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