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Introduction: The lower levels of dopamine D2 receptor (D2R) in the striatum

and the heightened levels of dopamine D2 receptor (D3R) in the midbrain have

been linked to impulsive behavior and risky decision-making associated with

drug dependence. While D3R has been considered a potential target for treating

drug dependence, the connection between D3R in the prefrontal-striatal regions

and maladaptive drug-related behaviors remains poorly understood.

Methods: This study utilized two high-cost tasks to investigate perseverative

reward seeking, specifically conflict-based approaching behavior and persistent

responding behavior under a progesterone receptor (PR) procedure. Additionally,

D2R and D3R levels in the medial prefrontal cortex (mPFC) and striatum were

examined through Western blotting.

Results: After each task, male rats were divided into two subpopulations: high-

approaching vs. low-approaching and high-responding vs. low-responding. Rats

treated with morphine (MOR) exhibited a 3 fold increase in the likelihood of

developing high-approaching or high-responding behaviors compared to drug-

naïve rats. D2R expression was higher in the ventral striatum of morphine-

treated, low-approaching rats than high-approaching rats, negatively correlating

with approaching behaviors within the morphine-exposed group. After six

consecutive PR sessions, D3R levels in the dorsal striatum di�ered significantly

between morphine-treated, low-responding rats and morphine-treated, high-

responding rats, negatively correlating with responding behaviors within the

morphine-exposed group. An intriguing finding was the non-linear relationships,

resembling an inverted U shape, observed between the level of D3R in the mPFC

and reward-seeking behaviors, as revealed by both tasks.

Discussion: The elevated or relatively higher levels of D2R andD3R in the frontal-

striatal regions may serve as protective factors for individuals abstaining from

opioids, enabling them to control their reward-seeking behavior better.
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1 Introduction

Individuals dependent on substances often exhibit deficits in

inhibitory control, leading to inflexible, impulsive, or perseverative

behaviors that are closely associated with compulsivity and relapse

risk (Ersche et al., 2008; Noël et al., 2013; Jentsch and Pennington,

2014; Smith et al., 2014; Loree et al., 2014). Preclinical studies

have also shown deficits in behavioral inhibition and flexibility in

animals exposed to dependence-producing drugs (Jentsch et al.,

2002; Bai et al., 2014; Gass et al., 2014; Li et al., 2017; Groman

et al., 2017, 2020a), suggesting that the dysfunction of inhibitory

control in dependent individuals is, in part, a consequence of

drug exposure.

The drug-induced dysfunction of frontal–striatal circuits is

critically involved in behavioral disinhibition (Moorman and

Aston-Jones, 2015; Morein-Zamir and Robbins, 2015; Meyer and

Bucci, 2016). Impaired dopamine signaling in these circuits, partly

due to alterations in dopamine D2 receptors (D2Rs or D2/3Rs),

plays an important role, since low levels of D2Rs have consistently

been observed in the striatum of drug-dependent humans (Volkow

et al., 2004; Briand et al., 2008; Fehr et al., 2008; Lee et al., 2009) and

animals exposed to dependence-producing drugs (Spangler et al.,

2003; Nader et al., 2008; Conrad et al., 2010; Tacelosky et al., 2015).

Previous studies have demonstrated a link between low striatal

D2R availability or expression and different facets of impulsivity

in both drug-naïve animals and amphetamine-dependent humans

(Dalley et al., 2007; Simon et al., 2013; Barlow et al., 2018; Lee

et al., 2009; Ballard et al., 2015). Low striatal D2R binding predicts

increased alcohol craving, which correlates with the high relapse

risk in alcoholics (Heinz et al., 2004, 2005). Reduced expression of

D2R in the ventral striatum has been correlated with greater heroin

seeking in rats (Tacelosky et al., 2015), highlighting the importance

of D2Rs in drug-related behavioral processes.

In contrast to D2R, recent research has reported heightened

levels of the D3 receptor, a member of the D2-like receptor family

(Sokoloff et al., 1990), in the brains of stimulant-dependent humans

and drug-exposed rodents. Although there is some controversy

(Chukwueke et al., 2021), several PET studies using the D3R-

preferring ligand ([11C]-(+)-PHNO) have found increased D3R

availability in the midbrain of methamphetamine and cocaine

users, particularly in the substantia nigra (Boileau et al., 2012;

Payer et al., 2013; Boileau et al., 2015). Heightened D3R levels in

the midbrain have been associated with impulsive/risky decision-

making in cocaine-dependent individuals and inflexible decision-

making and susceptibility to cocaine use in rats (Payer et al.,

2013; Groman et al., 2016, 2020b). However, the drug-induced

alterations of D3R in the limbic forebrain, including the striatum,

where D2R expression is highly abundant, remain unclear (Boileau

et al., 2012; Payer et al., 2013; Worhunsky et al., 2017; Chukwueke

et al., 2021). Additionally, while quite many preclinical studies have

reported increased D3R binding, mRNA, and protein expression

in the striatum following exposure to drugs such as cocaine,

morphine (MOR), alcohol, or nicotine (Le Foll et al., 2002, 2003;

Spangler et al., 2003; Neisewander et al., 2004; Vengeliene et al.,

2006; Conrad et al., 2010; Collins et al., 2011), not all studies

have yielded consistent results (Wallace et al., 1996; Chiang et al.,

2003). Human postmortem studies have also observed higher levels

of D3R binding or mRNA in the striatum of cocaine overdose

fatalities (Staley andMash, 1996; Segal et al., 1997; Mash and Staley,

1999), further suggesting the potential role of heightened D3R in

drug-related processes. Several promising preclinical and clinical

results support the utility of D3R antagonism as pharmacotherapy

in drug dependence (Sokoloff and Le Foll, 2016; Galaj et al.,

2018, 2020). However, the relationship between D3R alterations

in the prefrontal cortex and striatum, pivotal regions for drug

dependence, and dependence-related behaviors remains unknown.

Our previous work has shown that rats withdrawn from a

binge-like morphine exposure exhibit two types of maladaptive

behavior: persistent approaching behavior toward a sexual partner

despite a continuously heightened obstacle and persistent operant

responding for sucrose reward on a progressive ratio schedule

(PR) of reinforcement (Bai et al., 2014, 2017; Li et al., 2017).

These persistent reward-seeking behaviors, regardless of cost,

suggest opioid-induced perseveration, inflexibility, or disinhibition

of behavior in rats, potentially involving alterations in D2R

and D3R levels within the frontal–striatal regions. Brain-derived

neurotrophic factor (BDNF), required for the expression of D3R in

some brain regions, may also participate in behavioral regulation

by influencing D3R expression and dopamine responsiveness

(Guillin et al., 2001). Therefore, the present study aimed to

investigate concurrent alterations in D2R, D3R, and BDNF in

the medial prefrontal cortex (mPFC) and striatum following

opioid abstinence, and their relationships withmaladaptive reward-

seeking behaviors.

2 Materials and methods

The experimental design is shown in Figure 1.

2.1 Animals

Sprague–Dawley rats (Vital River Animal Center, Beijing,

China; 155 male rats and 28 female rats in total) were housed

in colony rooms with a controlled temperature (22–24◦C) and

humidity (40–60%) on a 12 h light/dark cycle. All procedures used

in our experiment followed those described previously by Bai et al.

(2017) and Li et al. (2017). They were conducted in accordance with

the National Institutes of Health Guide for the Care and Use of

Laboratory Animals (NIH Publications No. 8023, revised 1978).

2.2 Drugs

Morphine hydrochloride (Qinghai Pharmaceutical Co. Ltd,

Qinghai, China) was dissolved in sterile physiological saline (SAL)

at a final concentration of 20 mg/ml.

2.3 Binge-like morphine treatment

Male rats were treated twice daily for 5 days with intraperitoneal

injections of either saline or morphine delivered in a binge-like

regimen (Bai et al., 2014): 10, 20, 20, 40, 40, 40, 40, 40, 40, 40

mg/kg. The two doses of morphine administered on each day were

at a time gap of approximately 6 h. Rats were returned to their

home cage immediately after each injection. All rats underwent
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FIGURE 1

Experimental design. Rats were treated with and then withdrawn from morphine. Behavioral phenotypes (high- or low-approaching/responding)

were characterized based on the appetitive behaviors or operant behaviors. Brain tissues were sampled after behavioral tests. mPFC, medial

prefrontal cortex; DS, dorsal striatum; VS, ventral striatum.

a withdrawal period of at least 14 days after the last saline or

morphine administration (Bai et al., 2017, 2019).

2.4 Characterization of high- and
low-approaching rats based on the
conflict-based appetitive behaviors

2.4.1 Animals
Twenty-eight male and 28 female rats (males weighing 250–

300 g and females weighing 200–220 g on arrival) were housed

four per cage (50 cm × 22.5 cm × 30 cm) with a reversed 12 h

light/dark cycle (lights on at 21:00). Males weighed 330–400 g at

the beginning of the experiments and females weighed 230–250 g

upon ovariectomy. Females were bilaterally ovariectomized under

1% pentobarbital sodium (55mg/kg, i.p.) anesthesia at least 2 weeks

before use. Artificial estrus was induced by subcutaneous treatment

with estradiol benzoate (25 µg/rat) and progesterone (1 mg/rat)

about 48–52 and 4–6 h before tests, respectively, so that the female

rats used for the conflict-based test were at the same stage of the

cycle and highly receptive (Bai et al., 2014; Li et al., 2017; Bai et al.,

2017). All tests were performed between 10:00 and 20:00 h during

the dark phase of the cycle.

2.4.2 Apparatus
An open-field reward-proximity chamber made of black

Plexiglas was used to assess the conflict-based appetitive behaviors

for sexual reward (Figure 2A). A wire-screen stimulus cage (15 cm

× 25 cm × 25 cm high) was mounted at one end of the open-field

arena (85 cm × 35 cm × 50 cm high). The front of the cage was

made of wiremesh (1-mmwire, mesh size: 10mm× 10mm), which

allowed the male subjects to approach and investigate (i.e., to sniff)

the estrous female rat in the stimulus cage but prevented physical

contact with the female rat.

2.4.3 Behavioral screening of experimental male
rats

Male rats were screened for copulation under dim light during

the dark phase of the cycle (13:00∼19:00 h). Individual male rats

were placed for a 5-min acclimation period in a box (60 cm ×

50 cm × 40 cm height) with pine wood shaving bedding. Then, a

receptive female rat was introduced, and male copulatory behaviors

were monitored by experienced observers. The copulation on each

day ended after the rat completed its first ejaculation within 30min.

Only those that performed successful ejaculation within 30min

for 3 consecutive days were assigned to the saline or morphine

treatment group (24 male rats passed the screening).

2.4.4 Conflict task procedure
Male rats pretreated with SAL (n = 8) or MOR (n = 16)

underwent the conflict-based test for sexual reward (Bai et al., 2014;

Li et al., 2017) on day 14 post-morphine treatment. We deliberately

included a high number of rats in the morphine group because we

anticipated that the morphine-treated rats would be further divided

into high and low subgroups based on our previous studies. This

experiment was performed during the dark phase (13:00∼20:00).

On the day before the test, all rats were habituated for 15min to

the open-field arena (without any obstacles). On the testing day,

male rats were exposed for 10min to the open-field arena prior to

the introduction in the stimulus cage of a sexually receptive female

and some female-soiled bedding (about 30 g) previously collected

from one cage that had contained three sexually receptive females

for 5 days (females replaced every day) and stored in the freezer

until the day of the experiment. The male rats were then given

5min to freely approach and investigate the sexual reinforcer, after

which they were moved away from it, and the first trial of the test

began with the insertion of an obstacle on the floor of the open

field, 20 cm away from the wire screen of the stimulus cage. For the

first trial, the obstacle consisted of a 14-cm wide, 3-mm thick board

filled with pins (0.5mm in diameter). With the test continuing, the

obstacle became more and more difficult to surmount by replacing

the board with pins of different features and repeatedly heightening

the board. According to the length of, and the average distance

between pins, three types of board were used: (a) length: 0.5 cm;

average distance: 1 cm; (b) length: 0.8 cm; average distance: 0.5 cm;

(c) Length: 2 cm; average distance: 1 cm. The board was repeatedly

heightened as follows: 0, 2, 4, 7, 10, 13, 17, 21, 25, 29 cm. Thus, the

12-level difficulties of surmounting the obstacle, that is, 12 trials

during the test were as follows: a + 0 cm, a + 2 cm, a + 4 cm, b +
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FIGURE 2

Characterization of the high- and low-approaching rats in the conflict-based test of appetitive behavior. The subjects in the open-field chamber had

to surmount a dangerous obstacle, that is, climb over a continuously heightened board thick with pins, to approach the stimulus cage holding an

estrous female rat (A). (B) Shows the scores for approaching behavior in saline (SAL)- and morphine (MOR)-treated rats. Two subpopulations of rats

were identified by a K-means cluster analysis of the scores: H, high-approaching; L, low-approaching. The logarithmic scores [Log(Score)] for

approaching behavior in the subpopulations were compared (SAL-L, n = 7; SAL-H, n = 1; MOR-L, n = 9; MOR-H, n = 7) (C). Data are expressed as

data points of each rat (B) or mean ± SEM (C). ***p < 0.001.

4 cm, b + 7 cm, b + 10 cm, b + 13 cm, b + 17 cm, c + 17 cm, c

+ 21 cm, c + 25 cm, c + 29 cm. One trial was completed when the

subject climbed or jumped over the obstacle 3 times within 4min.

Then the subsequent trial started. After surmounting the obstacle,

the subject was moved away from the stimulus cage about 15–20 s.

The test ended if the subject surmounted the obstacle <3 times

within 4min. The amount of difficulty the subject overcame every

time to approach the stimulus cage was graded and summed up

to the total individual score as the measurement of approaching

behavior (Table 1).

2.5 Characterization of high- and
low-responding rats based on the PR
performance

2.5.1 Animals
One hundred and twenty-seven male rats weighing 300–340 g

on arrival were individually housed in the home cages (25 cm ×

22.5 cm× 30 cm) under a 12 h light-dark cycle (lights on at 07:00 h).

All rats were familiarized with sucrose to avoid neophobia by giving

them 48-h access to a bottle of 2.5% sucrose solution (w/v) in

their home cages. Food was given ad libitum during this period.

Bottle weights were recorded prior to and immediately after this

familiarization period. The consumption of sucrose solutions by

each rat was calculated as a function of body weight [the amount

(g) of solution consumed per weight (100 g)]. Rats were randomly

assigned to either the saline-treated or the morphine-treated group

while maintaining equal amounts of sucrose consumption across

the two groups.

2.5.2 Apparatus
Instrumental responding for sucrose was measured in eight

operant chambers (33 cm × 27 cm × 33 cm; AniLab Software

and Instruments Co., Ltd., Ningbo, China). Each chamber was

enclosed in a sound-attenuating box with a 50-dB background

noise generated by the self-administration hardware. Each chamber

was fitted with two nose-poke operandi (2.5 cm in diameter)—each

of them located on the left or the right side of a central liquid

receptacle. Two yellow LED cue lights (20 mW) were separately

inside each nose-poke hole. A white cage light was fixed 20 cm

above the right nose-poke. Sucrose solution was delivered through

a metal spout attached to a 60-ml syringe pump with tubing that

delivered fluid at 34.50-ml/min speed. The pumps were calibrated

to dispense 0.08ml in 0.139 s of the solution into a reinforced liquid
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TABLE 1 Conflict-based appetitive behavior test.

Trial Amount of di�culty Graded per approach

1 a+ 0 cm 0.5

2 a+ 2 cm 1

3 a+ 4 cm 1.5

4 b+ 4 cm 3

5 b+ 7 cm 3.5

6 b+ 10 cm 4

7 b+ 13 cm 4.5

8 b+ 17 cm 5

9 c+ 17 cm 6

10 c+ 21 cm 6.5

11 c+ 25 cm 7

12 c+ 29 cm 7.5

“a”, “b,” and “c” represented three types of boards with different lengths and average distances

between pins. (a) Length: 0.5 cm; average distance: 1 cm; (b) Length: 0.8 cm; average distance:

0.5 cm; (c) Length: 2 cm; average distance: 1 cm. “0, 2, . . . 25, 29 cm” indicated different heights

of boards.

receptacle in 0.139 s. A 10-s time-out period was initiated following

each reinforcement so that subsequent responding produced no

effect in this period.

2.5.3 Operant behavior procedure
All the operant behavior experiments were performed during

the light cycle (09:00∼17:00). Rats were trained to respond for a

15% sucrose solution under continuous reinforcement (on fixed

ratio 1 schedule, FR1) or respond for the same sucrose solution on

a progressive ratio schedule (PR) of reinforcement as previously

described (Bai et al., 2014). Briefly, on day 11 post-morphine

treatment, all rats were allowed to habituate to the operant

chambers for 15min (without any light on), following which they

were trained to learn the contingency between house light (as

the stimulus) and the delivery of 0.08ml water dispensed in the

central liquid receptacle for 60min. The chamber was continuously

illuminated by two nose-poke lights, and the liquid was delivered

into the central receptacle on a variable interval (40 s on average,

ranging from 10 to 70 s) schedule independent of nose-poke

behaviors (Chudasama and Robbins, 2003). Notably, 1 s before a

liquid dropped, the house light was switched on for 4 s. Water and

food were removed from home cages 12 and 18 h, respectively,

before the habituation session.

On the following day, rats were trained to nose poke to obtain

0.08ml of 15% sucrose under an FR1 schedule (Rossetti et al.,

2013). Rats were considered to have acquired the task when they

successfully obtained 60 reinforcers within one session over two

successive days (40 min/session; one session a day). If they failed

to achieve this performance within the allocated time, they were

re-trained in an additional session after a 3- interval. Rats were

excluded from the experiment if they failed to meet the criterion

after this re-training session. Rats could be trained only for three

sessions at most.

No rats dropped out of the training. Then, 25 saline-treated

and 29 morphine-treated rats were subjected to daily sessions (1

h/session) under an FR1 schedule from day 14–20 post-morphine

treatment, and 24 saline-treated and 32 morphine-treated rats were

subjected to a FR1 session (1 h) on day 14 and to daily sessions

(1 h/session) from day 15–20 post-morphine treatment under a

PR schedule. Reinforcers were earned according to the following

number of nose pokes: 1, 2, 4, 6, 9, 12, 15, 20, 25, 32, 40, 50, 62, 77,

95, 118, 145, . . . This number series was derived from the following

equation (Richardson and Roberts, 1996):

Response ratio (rounded to

nearest integer) =

[

5e(reinforcer number × 0.2)
]

− 5

The final response ratio achieved represented the “breaking

point” value, which was adjusted as “reinforcers obtained” in the

figures. The session ended either when rats failed to reach the

following nose-poke criterion within 30min, or when the session

duration reached 1 h. The number of reinforcements obtained by

each individual under FR1 and PR was recorded.

Throughout the operant training and testing phases, water was

removed for 2 h before the daily session, and food was supplied for

1 h after each session ended to maintain a body weight above 85%

of their baseline weight (Dias-Ferreira et al., 2009).

2.5.4 Contrafreeloading (CFL) behavior
The same operant chambers and experimental procedures (as

described above) were also used to investigate CFL behaviors of

saline- and morphine-treated animals (SAL, n = 8, MOR, n = 9)

and their relations to PR performance.

Rats were given free access to food for 1 h after each session and

were water-restricted for 2 h before each session over the training

and testing period. From day 13 post-morphine treatment, after a

15-min habituation period, all rats were trained to respond for 15%

sucrose solution on an FR1 schedule for two 40-min daily sessions

(as described above). On day 16 post-morphine treatment, CFL

testing started with a bottle (identical to a water bottle in a home

cage) filled with 15% sucrose solution mounted on the chamber’s

front wall. Hence, animals had access to two sources of sucrose

reward simultaneously during 1-h CFL testing, that is, freely

available in the bottle and upon responding under FR1. On the next

2 days, all rats were trained for 1 h to respond to a 15% sucrose

solution on an FR3 schedule and then tested for CFL behavior for

1 h under FR3. The amount of sucrose solution ingested by animals

was measured by weighing the bottle before and after each session

and calculating the total volume of delivered sucrose solution in the

magazine (number of reinforcements × 0.08ml). The CFL level,

a measure of perseveration/compulsivity, was calculated as the

percentage of the fraction of total fluid intake gained instrumentally

(delivered sucrose solution/total sucrose solution intake × 100;

Milella et al., 2008; Frederick and Cocuzzo, 2017). From the day

next to the last CFL testing, rats were subjected to four PR sessions

(1 h/session/day) under food and water deprivation. The number

of reinforcers obtained by each rat was recorded.
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2.6 Western blotting

Rats were decapitated 30min after the conflict task or the last

PR session under anesthesia. Brains were harvested and instantly

frozen in dry ice (−60◦C) for 45 s and stored at −80◦C. Punches

were obtained from brain slices (coronal sections) no thicker than

300µm with a puncher in a 3-mm outer diameter in a cryostat

microtome. The ventral striatum (VS) and dorsal striatum (DS)

were each collected bilaterally from Bregma +2.76 to +0.96mm,

ML ± 1.2mm, DV 7 to 7.2mm, and from Bregma +1.92 to +

0.00mm, ML ±2.4 to ±2.8mm, DV 5.2 to 5.6mm. The mPFC,

including the prelimbic and anterior cingulate cortices, was taken

along the midline from Bregma+3.72 to+2.52mm, ML±0.6mm,

DV 2.8 to 3.2mm (see Supplementary Figure). Samples from the

mPFC, VS, and DS were then stored at −80◦C until Western

blotting assays.

An aliquot of brain sample from each rat was homogenized

(15,000 rpm, 30 s) in a lysis buffer (50-mM Tris–HCl, pH 8.0;

150-mM NaCl; 1% NP-40 [Sigma-Aldrich (Shanghai) Trading Co.

Ltd]; 1% sodium deoxycholate sulfate (SDS), 0.1%). Notably, 1-

mM phenylmethanesulfonyl fluoride (PMSF) was added to the

homogenate, which was placed on ice for 30min, and then

centrifuged (13,000 rpm) for 10min. Quantification of total protein

in the supernatant was performed with a bicinchoninic acid

(BCA) kit (Pierce, Rockford, IL, USA). Samples (60-µg total

protein) were diluted in electrophoresis sample buffer and loaded

onto 10% sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE).

After separation by SDS-PAGE, proteins were electroblotted onto

polyvinylidene fluoride (PVDF) membranes and blocked with

5% non-fat dried milk in Tris-buffered saline with 0.1% Tween-

20 (TBST) for 1 h. After rinsing in TBST, blots were incubated

in anti-BDNF (Epitomics, 2960-1, 1:5,000), anti-D2R (Abcam,

ab85367, 1:4,000), or anti-D3R (Santa, sc-9114, 1:500) antibodies

with 5% nonfat dried milk at 4◦C overnight. Rinsed in TBST

again, the blots were then incubated in HRP-conjugated anti-

rabbit IgG (1:10,000) for 1 h at room temperature. After several

rinses in TBST, target proteins were visualized by enhanced

chemiluminescence (Pierce, Rockford, IL, USA) and analyzed by

densitometry using a computer-assisted gel quantification system

(TotalLab2.01, Phoretix, UK). Western blot data were obtained

as background-subtracted optical densities and normalized to

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression.

Normalized values were converted to percent-of-saline for each gel

(Change fold).

2.7 Data analyses

Data are presented as mean ± standard error of mean (SEM).

For all analyses, assumptions for homogeneity of variance and

normal distribution of the datasets were verified using the Levene

and Shapiro–Wilk tests, respectively. In case of violation of at

least one of these assumptions, datasets were log-transformed. A

non-parametric test compared the approaching behaviors between

saline- and morphine-treated groups. A K-means cluster analysis

was performed to identify the high- and low-approaching animals

in the conflict-based test and the high- and low-responding animals

during PR sessions (Ansquer et al., 2014). One-way Analysis of

Variance (ANOVA) was used to analyze approaching behaviors

(scores logarithmically transformed). Two-way repeated-measures

ANOVA was used to analyze operant responses in FR1 and PR

sessions, as well as the contrafreeloading level, with “time” or “FR”

as the within-subject factor and “group” or “treatment” as the

between-subject factor. The one-way ANOVA was used to analyze

protein expression within the brain regions. Tukey’s post hoc

analyses were performed to reveal group differences further. Linear

and non-linear correlation/regression analyses were performed

between protein expression and appetitive or operant behaviors and

among the operant responses on different testing days. Significance

level was set at 0.05. All statistical analyses were performed using

Statistical Package for the Social Sciences (SPSS) version 25.0 (IBM,

Armonk, NY).

3 Results

3.1 Characterization of high- and
low-approaching rats based on the
conflict-based appetitive behaviors

A non-parametric test (Mann–Whitney U test) performed on

the behavioral scores showed that the morphine-treated group did

not differ from the saline-treated group in approaching behaviors (p

= 0.25; Figure 2B). In view of the large interindividual differences

in approaching behaviors, a cluster analysis was performed on the

scores that rats acquired in the conflict task to confirm the existence

of two subpopulations of rats: high-approaching rats (H, n = 8)

and low-approaching rats (L, n = 16; Figure 2B). Approximately

87% or 7 out of 8 high-approaching rats came from the MOR

group, showing that individuals were three times more likely to

display perseverative reward-seeking behavior when they had been

exposed to morphine than if they had been exposed to saline

[Baysian probability: P(H/MOR) = P(MOR/H or 7/8) × P(H or

8/24)/P(MOR or 16/24)= 0.43; while P(H/SAL)= 0.12]. Since only

one saline-treated rat was identified as H rat, it was not considered

for the following analyses. The log-transformed data [Log(Score)]

successfully passed the tests of homogeneity of variance and normal

distribution. The morphine-treated H rats displayed significantly

more approaching behaviors than either morphine-treated L rats

or saline-treated L rats [i.e., SAL group in figure; F(2,20) = 24.72, p

< 0.0001; MOR-H vs. MOR-L: p < 0.0001, MOR-H vs. SAL: p <

0.0001; Figure 2C].

3.2 Approaching behaviors were associated
with D2R within the ventral striatum and
D3R within the mPFC in morphine-exposed
rats

Seventeen male rats from SAL, MOR-L, and MOR-H groups

(n = 6, 5, and 6, respectively) were randomly selected for Western

blotting test for D2R, D3R, and BDNF expressions in the mPFC,

ventral striatum (VS), and dorsal striatum (DS). The ANOVA

showed a significant difference in D2R levels in the mPFC among
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FIGURE 3

Expressions of D2R, D3R, and BDNF in the mPFC (A), ventral striatum (VS) (B), and dorsal striatum (DS) (C) after the conflict-based test. Protein

expression was examined 30min after the test. Data are expressed as mean ± SEM of protein expression percentage vs. saline (Change fold). SAL-L, n

= 6; MOR-H, n = 6; MOR-L, n = 5. SAL, saline; MOR, morphine. H, high-approaching; L, low-approaching. *p < 0.05 and **p < 0.01.

groups [F(2,14) = 4.01, p = 0.042], but post hoc analyses only

revealed the differences with a trend toward significance between

saline- andmorphine-treated groups (SAL vs. MOR-L: p= 0.1, SAL

vs. MOR-H: p= 0.05; Figure 3A). The VS D2R level of MOR-H rats

was found to be lower than that ofMOR-L rats, and theMOR-L and

SAL group also significantly differed [F(2,14) = 6.80, p< 0.01;MOR-

L vs. SAL: p = 0.037, MOR-L vs. MOR-H: p < 0.01, MOR-H vs.

SAL: p > 0.7; Figure 3B]. There were significant group differences

in D3R level in the DS [F(2,14) = 3.94, p = 0.044], but lack of

significant post hoc comparisons despite a trend toward significance

(MOR-L vs. SAL: p = 0.12, MOR-H vs. SAL: p = 0.05, MOR-L vs.

MOR-H: p > 0.9; Figure 3C). The mPFC, VS, or DS BDNF level,

VS D3R level, or DS D2R level did not show any change following

morphine exposure (Statistics were not shown). Thus, there was no

significant difference between the groups in any protein measured

in the mPFC and DS. The only finding was a significant increase in

D2R level in the VS of MOR-L rats.

Pearson’s correlation analysis was used to identify the linear

relationships between protein levels and appetitive behaviors

in morphine-treated rats. The VS D2R levels were negatively

correlated with approaching behaviors (r = −0.74, p < 0.01;

Figure 4E), while no correlation was found between other protein

levels and approaching behaviors (Figure 4). Notably, the level of

mPFC D3R was found to be significantly related to approaching

behaviors according to a non-linear, third order polynomial

relationship {mPFC D3R = −0.14 + 1.17 × Log (Score) - 0.15

× [Log (Score)]3, R2 = 0.69, p < 0.01; Figure 4G}. We also

merged the groups treated with saline and morphine to examine

the general relationship between protein levels in three regions

and approaching behaviors. No significant correlation was found

between protein level and approaching behavior (statistics and

figures were not shown).

3.3 Characterization of high- and
low-responding rats based on the PR
performance

Under a PR procedure, the morphine-treated rats exhibited

significantly higher responding for 15% sucrose solution than the

saline-treated rats across 6 daily sessions [Effect of treatment:

F(1,54) = 5.96, p = 0.018; Effect of time: F(5,270) = 3.76, p < 0.01;

Interaction: F(5,270) = 0.42, p > 0.8; Figure 5B], while the level of

responding under FR1 did not differ between two treatment groups

[Effect of treatment: F(1,52) = 0.01, p> 0.9; Effect of time: F(6,312) =

9.884, p < 0.001; Interaction: F(6,312) = 1.37, p > 0.2; Figure 5A].

Moreover, in the saline-treated group, responses under the last

FR1 (Day 14) were significantly linearly related to responses in the

first PR session (day 15;R2 = 0.35, p< 0.01; Figure 6A). At the same

time, this relationship was not found in morphine-treated rats (R2

= 0.001, p > 0.80; Figure 6B). Then, responses under the last FR1

were no longer related to responses in any of the previous five PR

sessions (day 16–20; Figure 6C).

In a contrafreeloading test, rats were chosen between freely

available sucrose and delivered sucrose via responding under

FR. The CFL level (percentage of delivered sucrose) significantly

declined after the workload increased from FR1 to FR3 [Effect
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FIGURE 4

The associations of BDNF, D2R, and D3R in the mPFC, ventral striatum (VS), and dorsal striatum (DS) with approaching behaviors in morphine-treated

rats. (A–C) Show the correlation relationship between BDNF and behaviors in mPFC, VS and DS, respectively. (D–F) Show the correlation between

D2R and behaviors in mPFC, VS and DS, respectively. (G–I) Show the relationship between D3R and behaviors in mPFC, VS and DS, respectively.

Protein expression data are expressed as a percentage vs. saline (Change fold). Behavioral data are represented as logarithmic scores for approaching

behavior in the conflict-based test, N = 11.

FIGURE 5

The operant responding under fixed ratio 1 (FR1) (A) or progressive ratio (PR) (B) procedure after protracted abstinence from morphine. Values are

mean ± standard error of mean (SEM) of reinforcers obtained (number of reinforcements) in each session. Rats were treated with saline (SAL) or

morphine (MOR). *p < 0.05 (group e�ect).
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FIGURE 6

The relations between responding behaviors in the FR1 and PR sessions. The relation of responding behavior under FR1 on day 14 post-morphine

treatment (D14-Post) to the responding behavior under PR on day 15 post-morphine treatment (D15-Post) was displayed in this figure (A, B). Data

are expressed as reinforcers obtained (number of reinforcements). (C) shows the correlation relationship (r) between the responding behaviors in the

sessions from day 14 to 20 post-morphine treatment (D14–D20), including the upper right (SAL) and the lower left (MOR) matrices. SAL,

saline-treated group, n = 24; MOR, morphine-treated group, n = 32.

of FR: F(1,15) = 6.91, p < 0.02; Effect of treatment: F(1,15) =

1.38, p > 0.2; no interaction: F(1,15) = 0.37, p > 0.5; Figure 7A].

When two variables, responses on FR3 and the CFL on FR3,

were involved into the linear regression analyses to predict the

following responses over four PR sessions. The responses on FR3

were significantly related to the responses in the first and second,

but not third or fourth PR sessions (R2
first

= 0.19, p = 0.047 and

R2
second

= 0.28, p = 0.018; Figure 7C). However, the CFL on FR3

was found to be significantly related to the responses in the fourth,

but not first, second, or third PR session (R2
fourth

= 0.27, p = 0.018;

Figure 7B).

Also considering the individual difference in PR responding, a

cluster analysis was performed on two dimensions: FR1 responses

(day 14 post-morphine treatment) and the averaged responses over

the last three PR sessions (day 18–20 post-morphine treatment),

confirming eight distinct subpopulations. About 62% of rats (n

= 23) that displayed responses above 250 (reinforcers obtained)

under FR1 belonged to 3 subpopulations. The rest of the rats

(n = 14) that displayed responses below 250 were spread in 5

subpopulations and laid aside in this study. According to the

responding level under PR, the 23 rats were further classified as

high-responding rats (H, n = 6) and low-responding rats (L, n =

17; Figure 8A). Approximately 83% or 5 out of 6 high-responding

rats came from the MOR group, showing that individuals were

nearly three times more likely to display high-responding behavior

when they had been exposed to morphine than if they had been

exposed to saline (Baysian probability: P(H/MOR) = P(MOR/H

or 5/6) × P(H or 6/23)/P(MOR or 15/23) = 0.33; while P(H/SAL)

= 0.12). Since only one saline-treated rat was identified as H rat,

it was discarded from the following analyses. The MOR-H rats

earned significantly more reinforcers than both MOR-L and SAL-

L rats (i.e., SAL group in figures) over six PR sessions [Group

effect: F (2,19) = 30.24, P < 0.0001; Time effect: F (5,95) = 2.61,

P < 0.05; No interaction; post hoc: MOR-H vs. MOR-L: P <

0.0001, MOR-H vs. SAL: P < 0.0001, MOR-L vs. SAL: P > 0.7;

Figure 8B].
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FIGURE 7

The performance in a contrafreeloading test in which rats had access to a sucrose reward freely or upon instrumental responding concurrently.

Contrafreeloading (CFL) level was expressed as the percentage of the fraction of total fluid intake gained instrumentally [CFL(%)]. The CFL level under

FR1 or FR3 was displayed by rats after long-term cessation of saline or morphine treatment (A). The CFL level on FR3 is significantly related to the

following responding behavior in the fourth PR session (B). (C) demonstrates the linear relations of responses on FR3 and CFL level on FR3 to the

following responses in four PR sessions (PR1, PR2, PR3, and PR4) (R2). SAL, saline, n = 8; MOR, morphine, n = 9. * p < 0.05, CFL%-FR1 vs. CFL%-FR3.

FIGURE 8

Characterization of the high- and low-responding rats based on the PR performance. Eight subpopulations of rats were identified by a K-means

cluster analysis based on the FR1 responding and the averaged responding in the last three PR sessions. The subpopulations in which FR1 responding

was above 250 were designated as high-responding (H) or low-responding (L) rats according to their PR responding (A). The responding behaviors of

H and L subpopulations during six PR sessions were compared (SAL-L, n = 7; SAL-H, n = 1; MOR-L, n = 10; MOR-H, n = 5) (B). Data are expressed as

data points of each rat (a) or mean ± SEM (B). SAL, saline; MOR, morphine. D14-Post, day 14 post-morphine treatment; D18∼20-Post, day 18∼20

post-morphine treatment. ***p < 0.001.
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FIGURE 9

Expressions of D2R, D3R, and BDNF in the mPFC (A), ventral striatum (VS) (B), and dorsal striatum (DS) (C) after the operant task. Protein expression

was examined 30min after the last (sixth) PR session. Data are expressed as mean ± SEM of protein expression percentage vs. saline (Change fold).

SAL-L, n = 6; MOR-H, n = 5; MOR-L, n = 6. SAL, saline; MOR, morphine. H, high-responding; L, low-responding. *p < 0.05.

3.4 PR responding behaviors were
associated with D3R within the dorsal
striatum, D3R and BDNF within the mPFC in
morphine-exposed rats

Twelve rats from the L subpopulation (MOR-L: n= 6; SAL: n=

6) and five rats from theH subpopulation (MOR-H) were randomly

selected for the Western blotting test. The MOR-H rats had the

increased BDNF expression in the mPFC [BDNF: F (2,14) = 4.88,

P = 0.025, MOR-H vs. SAL: P = 0.025, MOR-L vs. SAL: P > 0.8,

MOR-H vs. MOR-L: P = 0.07; Figure 9A]. There was a remarkable

difference in D3R level within the DS between MOR-H and MOR-

L groups, and the difference with a trend toward significance was

found when comparing theMOR-L group to the SAL group [F (2,14)

= 8.13, P < 0.01, MOR-L vs. MOR-H: P < 0.01, MOR-L vs. SAL:

P = 0.08, MOR-H vs. SAL: P > 0.2; Figure 9C]. The other protein

expressions did not show significant difference among three groups

(Ps > 0.05; e.g., Figure 9B).

Pearson’s correlation analyses were used to identify the

relationships between protein levels and responding behaviors in

the last PR session (day 20 post-morphine treatment) in morphine-

treated rats. The only significant findings are that PR performance

positively correlated with the mPFC BDNF level (r = 0.61, P =

0.046; Figure 10A) and negatively correlated with the DS D3R level

(r = −0.92, P < 0.001; Figure 10I). Consistent with the finding

in the conflict task, the mPFC D3R level was related to the PR

performance according to a non-linear, second order polynomial

relationship [mPFC D3R = −5.83 + 1.04 × reinforcers obtained -

0.04 × (reinforcers obtained)2, R2 = 0.54, p = 0.044; Figure 10G].

No significant differences were found in other protein expressions

(Figures 10B–F, H). We also merged the groups treated with saline

andmorphine to examine the general relationships of protein levels

in three regions to responding behaviors. The significant findings

are that responding behavior in the last PR session is positively

correlated with BDNF and D3R expression in the mPFC (r = 0.68,

p < 0.01; r = 0.53, p= 0.029; Figures 11A, C).

4 Discussion

In our previous studies, we observed that exposure tomorphine

resulted in increased approaching behaviors toward sexual stimuli

in the presence of a dangerous obstacle in a conflict task,

as well as higher engagement in pursuing sucrose under a

progressive ratio (PR) procedure. These high-cost behaviors related

to perseveration persisted long after withdrawal from morphine

and exhibited significant individual differences (Bai et al., 2014,

2017; Li et al., 2017). In this study, we further classified the rats

into subpopulations based on their performance in these two

tasks. We found that rats treated with morphine were more likely

to develop high-performance behaviors, i.e., high-approaching

and high-responding.

Using fixed ratio 1 (FR1) and PR procedures allowed us to

investigate different motivational constructs (Markou et al., 1993;

Brennan et al., 2001). Consistent with previous research, we found

that the significant difference between the two treatment groups

was observed in responding behaviors under the PR procedure but

not the FR1 procedure (Figure 5). Additionally, we observed no

overall relationship between FR1 responding and subsequent PR

responding (Figure 6C), except for a positive relationship between
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FIGURE 10

The associations of BDNF, D2R, and D3R in the mPFC, ventral striatum (VS), and dorsal striatum (DS) with the responding behaviors in

morphine-treated rats. (A–C) Show the correlation relationship between BDNF and behaviors in mPFC, VS and DS, respectively. (D–F) Show the

correlation between D2R and behaviors in mPFC, VS and DS, respectively. (G–I) Show the relationship between D3R and behaviors in mPFC, VS and

DS, respectively. Protein expression data are expressed as a percentage vs. saline (Change fold). Behavioral data are represented as reinforcers

obtained (number of reinforcements) in the last (sixth) PR session. N = 11.

FIGURE 11

The associations of BDNF (A), D2R (B), and D3R (C) in the mPFC with the responding behaviors in a group consisting of saline- and morphine-treated

rats. Protein expression data are expressed as percentage vs. saline (Change fold). Behavioral data are represented as reinforcers obtained (number of

reinforcements) in the last (sixth) PR session. N = 17.

FR1 responding and responding in the first PR session in saline-

treated rats (Figure 6A). This suggests that drug-naive rats relied

on their experiences from FR1 sessions to guide their behaviors

under the new contingency of reinforcement (PR), at least partially

based on their preferences and desires for sucrose. However,

this relationship was absent in morphine-treated rats (Figure 6B),

indicating that their motivation toward sucrose was distorted by

the uncertainty introduced by the new contingency in the initial PR

session. Furthermore, we found that PR responses may reflect more

than just motivation. By conducting a contrafreeloading (CFL)

task, we discovered that the unnecessary/perseverative responding

behaviors (the CFL level on FR3) explained a portion of responding

during the fourth PR session. And the responding in the first two

PR sessions was predicted to some extent by prior responding
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on the CFL task (responding on FR3), but not by the CFL level

itself (Figures 7B, C). This suggests that repeated training under

the PR procedure may facilitate the development of perseverative

responding behaviors, which may not only reflect the reinforcing

efficacy of the reward and motivation but also perseverative

behaviors. Moreover, we observed that morphine-treated rats were

more likely to develop high-responding behaviors after repeated PR

sessions than saline-treated rats (Figure 8A). Taken together with

the findings from the conflict task, it is suggested that a history of

opioid exposure enhances perseverative reward-seeking behaviors,

indicating impaired inhibitory control in some individuals.

Previous studies have consistently reported lower availability

of dopamine D2 receptors (D2Rs) in the striatum of individuals

dependent on cocaine, opiates, and other substances during

abstinence (Martinez et al., 2004; Volkow et al., 2004; Martinez

et al., 2005). Similarly, rodents with a history of repeated morphine

administration or chronic heroin/cocaine self-administration also

exhibit reduced D2Rs in the striatum (Turchan et al., 1997;

Spangler et al., 2003; Conrad et al., 2010; Tacelosky et al., 2015).

However, in this study, we did not observe a reduction in D2R

expression in either striatum region. This may be attributed to

the prolonged withdrawal period, as previous studies have shown

that the decrease in D2R mRNA and availability induced by

morphine or cocaine administration returns to normal levels with

an extended withdrawal period (Georges et al., 1999; Nader et al.,

2006). Furthermore, there are individual variations in the rate of

recovery of D2R availability, with some individuals never fully

recovering D2R availability even after 12 months of abstinence

(Nader et al., 2006). Although we did not examine the longitudinal

changes in D2R expression since the cessation of morphine

administration, we did observe individual differences in the level of

D2R in the ventral striatum (VS), which were negatively correlated

with approaching behaviors in morphine-treated rats (Figure 4E).

In addition, morphine-treated low-approaching rats exhibited

increased D2R expression in the VS compared to drug-naive

rats and morphine-treated high-approaching rats (Figure 3B). Low

striatal dopamine D2Rs in humans and rodents, whether prior to or

after drug exposure, represent a risky marker for trait-like waiting

impulsivity (Dalley et al., 2007; Caprioli et al., 2013; Simon et al.,

2013; Barlow et al., 2018), dependence vulnerability (Volkow et al.,

1999, 2002; Dalley et al., 2007; Belin et al., 2008) and enhanced

impulsivity after drug abuse (Dawe and Loxton, 2004; Lee et al.,

2009; Ballard et al., 2015). On the contrary, a high level of D2Rsmay

be protective against alcoholism, as a few studies have discovered

that the adenoviral vector-mediated overexpression of D2R in

the VS can reduce alcohol preference and intake in rats (Thanos

et al., 2001, 2004). Moreover, the unaffected members of alcoholic

families (social drinkers) are found to have higher D2R availability

in the striatum than the family-history-negative social drinkers

(Volkow et al., 2006; Alvanzo et al., 2015). Consistent with these

studies, the findings in our study provide additional support for the

notion that a higher level of D2R in the VS may be protective for

individuals, allowing them to maintain standard control over their

reward-seeking behaviors after a history of opioid exposure.

It is worth noting that the alteration of D2R expression was not

consistent across all morphine-treated groups, varying depending

on the behavioral tasks and brain regions examined. This is

also true for D3R and brain-derived neurotrophic factor (BDNF)

expressions. D3R, which has a more restricted distribution pattern

compared to D2R, is preferentially expressed in the mesolimbic

systems that play a crucial role in reward and motivation

(Bouthenet et al., 1991; Levesque et al., 1992; Landwehrmeyer et al.,

1993a,b; Murray et al., 1994; Gurevich and Joyce, 1999; Clarkson

et al., 2017). Many studies have reported elevated D3R levels in

the VS of cocaine victims and animals administered with cocaine

(Staley andMash, 1996; Segal et al., 1997; Mash and Staley, 1999; Le

Foll et al., 2002; Neisewander et al., 2004; Le Foll et al., 2005; Conrad

et al., 2010; Collins et al., 2011). Similarly, repeated administration

of morphine and long-term alcohol intake have been shown to

increase D3R mRNA in the dorsal striatum (DS) of rats (Spangler

et al., 2003; Jeanblanc et al., 2006; Vengeliene et al., 2006). In

contrast, in our study, we did not observe significant changes in

overall D3R expression after morphine exposure and behavioral

tasks. Nevertheless, we did find increased D3R expression in the

DS of the morphine-treated low-approaching group compared to

the morphine-treated high-approaching group after continuous

PR training (Figure 9C). Additionally, there was a strong negative

correlation between DS D3R levels and PR responses (Figure 10I),

suggesting that the interaction between PR training and morphine

exposure may have led to differential expressions of D3R between

the high and low subgroups.

Interestingly, we observed a positive correlation betweenmPFC

D3R expression and PR responses in merged groups of saline-

and morphine-treated rats (Figure 11C), indicating a general

association between D3R and operant behaviors reinforced by

sucrose. Previous research has shown that D3R expression highly

depends on dopamine neuron activity (Lévesque et al., 1995).

Increase in phasic dopaminemay invoke D3R regulatory responses,

since dopamine receptor agonists (dopamine and quinpirole)

induce rapid upregulation of D3R in cell lines (Cox et al., 1995) and

3-h incubation by alcohol induced significant expression of D3Rs

in vitro (Jeanblanc et al., 2006). Therefore, the linear relationship

between mPFC or DS D3R expression and PR responses observed

in our study may reflect reactive alterations of D3R following

consecutive PR training, during which dopamine release undergoes

changes. This aligns with the view that D3R is involved in

reinforcement learning, particularly in tasks with high work

requirements, such as the PR schedule (Di Ciano et al., 2002; Xi

et al., 2005; Ross et al., 2007; Xi and Gardner, 2007; Higley et al.,

2011a,b; Song et al., 2012; Chen et al., 2014; Galaj et al., 2013; Galaj

et al., 2018).

Furthermore, in morphine-treated rats, we discovered a

non-linear relationship (approximate inverted U-shape) between

responses in the last PR session andmPFCD3R levels (Figure 10G).

Interestingly, the same non-linear relationship was observed

in morphine-treated rats during the conflict task (Figure 4G),

suggesting that rats displaying more perseverative behaviors did

not necessarily have the highest levels of D3R. This finding was

further supported by the significantly lower levels of D3R in the DS

of morphine-treated high-responding rats compared to morphine-

treated low-responding rats (Figure 9C), as well as the strong

negative correlation between DS D3R levels and PR responding

behaviors (Figure 10I). The role of relatively low D3R expression

in these brain regions after morphine exposure remains unclear.

Previous studies have suggested that low D3R availability in the

brain may be a risk factor, as genetic deletion of D3R in mice leads
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to increased seeking/perseverative behaviors for sucrose, heroin,

and cocaine under PR and extinction procedures (Song et al.,

2011, 2012; Zhan et al., 2018). To date, no other studies have

reported substance abuse-related alterations in D3R expression in

the prefrontal cortex. D3R has been observed in the L5 prefrontal

cortex in both primates and rodents (Bouthenet et al., 1991;

Lidow et al., 1998). It has been reported to exert inhibitory effects

on mesocortical dopamine activity (Gross and Drescher, 2012).

Impaired dopamine signaling, possibly via D3R, in the prefrontal

regions of the brain can disrupt executive processes and weaken the

ability to resist intense urges (Goldstein and Volkow, 2011; Volkow

et al., 2016).

BDNF is required for the expression of D3R in the VS, as

previous studies have shown that local infusion of BDNF induces

D3R expression, whereas BDNF deprivation selectively reduces

D3R expression in rats (Guillin et al., 2001). The cortical neuron

groups contain high levels of BDNF mRNA (Seroogy et al., 1994;

Altar et al., 1997; Conner et al., 1997). Operations that increase

dopamine activity, such as exposure to substances of abuse or

administration of levodopa in the 6-OHDA-lesioned rat, have been

found to induce BDNF expression in the frontal cortex (Guillin

et al., 2001; Le Foll et al., 2005). However, very few studies

have investigated whether BDNF regulates D3R expression in the

prefrontal cortex. Our study observed positive correlations between

responding behaviors and both BDNF and D3R in the mPFC

after consecutive PR sessions (Figure 11), suggesting a possible

regulatory relationship between these two molecules in this region.

BDNF may influence dopamine responsiveness by regulating D3R

expression in the mPFC and VS, thereby participating in the

regulation of behaviors. In the DS, where basal levels of BDNF and

D3R expression are low (Nakamura et al., 1996; Diaz et al., 2000),

alcohol intake has been shown to increase the levels of BDNF and

D3R in rats (Mcgough et al., 2017; Vengeliene et al., 2006). Repeated

administration of levodopa in unilaterally 6-OHDA-lesioned rats

also triggers dorsal striatal D3R overexpression (Bordet et al.,

1997), which is induced by BDNF originating partly from cortical

neurons (Guillin et al., 2001). However, in our study, we did not

observe parallel alterations in BDNF and D3R expression in the

DS, suggesting alternative regulatory mechanisms for D3R beyond

BDNF in this region.

In summary, this study employed two high-cost tasks to

characterize two phenotypes of perseverative reward-seeking

behaviors observed in subpopulations of rats after abstinence from

opioids. We also identified behaviorally and regionally specific

alterations in D2R and D3R expression in the mPFC and striatum.

Our findings provide novel evidence supporting the idea that

higher levels of D2R and D3R in the VS and DS, respectively, may

represent protective factors for individuals abstinent from opioids,

allowing them to maintain control over their reward-seeking

behaviors in the face of adversity. The non-linear relationship

between mPFC D3R levels and reward-seeking behaviors observed

in our study suggests the involvement of D3R in appetitive

behaviors and behavioral perseveration. This finding supports

a previous study showing that manipulating D3R activity with

agonists and antagonists improved compulsive nose-poke behavior

in a stop-signal task (Bari and Robbins, 2013). Further research is

needed to fully understand the exact relationship between D3R and

perseverative behavior and the underlyingmechanisms. Identifying

molecular markers and neural targets associated with deficits in

behavioral control during the drug abstinence period would greatly

aid in recognizing and intervening in individuals at risk of relapse.
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