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Theta-gamma coupling:
nonlinearity as a universal
cross-frequency coupling
mechanism

Alex Sheremet1* and Yu Qin2

1Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville,

FL, United States, 2Department of Neuroscience, McKnight Brain Institute, University of Florida,
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The Cross Frequency Coupling (CFC) phenomenon is defined as a statistical

correlation between characteristic parameters neural oscillations. This study

demonstrates and analyzes the nonlinear mechanism of the CFC, with a focus

on the coupling between slow and fast oscillations, as a model for theta-gamma

coupling. We first discuss the usage of the spectrum/bispectrum CFC measure

using experimental data. As a physical paradigm, we propose the concept of

a Class II neural population at low activity: neurons fire intermittently, and

the time spent in the subthreshold regime is much larger that the duration

of an action potential. We verify the emergence of fast oscillations (gamma)

using a direct numerical simulations (DNS) of a population of Hodgkin-Huxley

neurons forced by a slow theta oscillation. To deconstruct the mechanism,

we derive a mean field approximation based on a reduction of the Hodgkin-

Huxley model to a two-equation leaky-integrate-and-fire (LIF) model. Under

theta forcing, mean field model generates gamma oscillations; the solutions

exhibit spectrum/bispectrum CFC patterns that agree qualitatively with both the

DNS model and experimental data. For the theta-gamma coupling problem,

the mean field model may be linearized using an asymptotic expansion. The

analytical solution of the linear system describes theta-gamma interaction as a

gamma stabilization/destabilization cycle and provides explicit expressions of the

gamma amplitude and frequency modulation by theta. The results demonstrate

that nonlinearity as a universal/unifying mechanism of all CFC types.

KEYWORDS

cross frequency coupling, theta-gamma interaction, nonlinear neural activity, two-

equation leaky-integrate-and-fire, gamma instability

1 Introduction

The Cross Frequency Coupling (CFC) phenomenon may be defined as a statistical

correlation between some characteristic parameters of two LFP “rhythms” (Jensen and

Colgin, 2007; Jirsa and Müller, 2013; Hyafil et al., 2015). The coupling of theta and

gamma rhythms is a well known example, identified in rat hippocampus (e.g., Soltesz

and Deschênes, 1993; Bragin et al., 1995; Rosenblum et al., 2000; Colgin et al., 2009;

Lisman, 2005; Belluscio et al., 2012; Colgin, 2014; Pernía-Andrade and Jonas, 2014), in the

visual cortex of primates (Whittingstall and Logothetis, 2009; Mazzoni et al., 2011), and

in humans (Canolty et al., 2006), but CFC phenomena also include sharp waves/ripples

(Buzsáki et al., 1992; Skaggs et al., 2007; Bragin et al., 1999; Buzsáki, 2006; Clemens

et al., 2011; Buzsáki and da Silva, 2012), and slow oscillations/spindles (Marshall et al.,

2006; Rasch and Born, 2013; Staresina et al., 2015; Ladenbauer et al., 2017). CFC has

been associated with a long list of cognitive activity aspects, such as local processing and

communication between thalamus and neocortex (Fitzgerald et al., 2013); formation of
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short term memories (Colgin et al., 2009; Lisman and Jensen, 2013;

Pernía-Andrade and Jonas, 2014; Lega et al., 2014; Bergmann and

Born, 2018); information extraction for decoding motor imagery

types (Gwon and Ahn, 2021); as a mechanism for the orienting

response (Isler et al., 2008); and many others.

However, despite decades of research, the physical foundation

of the CFC process is not well understood (e.g., Jensen and

Colgin, 2007; Jirsa and Müller, 2013; Hyafil et al., 2015). The

CFC classification into PP, PA, AA, PF, and AF subtypes, basically

all two-letter combinations of A, F, and P (amplitude, frequency,

and phase) seems taxonomic than rather founded on some

mechanistic distinction. Only three (PP, PA, and AA) types have

been identified experimentally (Cohen, 2008; Belluscio et al., 2012;

De Hemptinne et al., 2013; Munia and Aviyente, 2019; Qin et al.,

2021; Chehelcheraghi et al., 2017). Of these, only the PP type, also

known as n :m phase synchronization (e.g., Ermentrout, 1981; Jirsa

and Müller, 2013), has found a mechanistic description in the limit

cycle oscillator model (e.g., Kuramoto, 1975, 1984; Ermentrout,

1991; Strogatz, 2000; Stiefel and Ermentrout, 2016; Nakao, 2016).

The origin of other CFC subtypes remains unclear.

This situation is surprising, because all CFC subtypes are in

fact aspects of a single overarching physical phenomenon, the

coupling of activity across scales—if we think of frequencies as

time scales. It is interesting to note that a unifying statistical CFC

test does exists: the bispectrum (Jirsa and Müller, 2013; Sheremet

et al., 2016, 2018b) subsumes other statistical CFC measures

(Kovach et al., 2018). The bispectrum also arises naturally as a

statistical characteristic of nonlinear dynamics, and as such it is a

universal foundation of CFC physics (Sheremet et al., 2020, 2019).

Nonlinearity is of course also the PP coupling mechanism.

Examining the “solved” PP case may shed some light. The

limit cycle oscillator model is a highly simplified mathematical

description of a population of independent oscillators in a

state of sustained periodic oscillations. Oscillators have fixed

amplitudes and frequencies, but are allowed weak interaction,

which causes mutual phase shifts (Stiefel and Ermentrout, 2016).

Because the physical state of the population is completely

described by their phases, the model also known as a “phase

equation” representation.1

Because it assumes that amplitudes are constant, a phase model

cannot describe AA or AF coupling. To understand amplitude

related CFC we need a model that accounts for significant

amplitude variations. However, we cannot simply go back to the

“parent” model of the phase equation and remove the constant

amplitude restriction, because a “parent” model does not exist for

neural populations. We need to construct it.

For this we need a physical paradigm of neural activity. We

reason that understanding amplitude effects requires a model

capable of describing arbitrarily low neural activity, in other words,

amplitude emergence. But amplitude emergence means that 1)

new frequency emerge; and 2) there is an active energy exchange

1 To use a phase model one has to find oscillators. Initially, the role of

oscillators was played by Hodgkin-Huxley neurons (Hodgkin and Huxley,

1952) and derivative models (e.g., FitzHugh, 1955; Abbott and Kepler, 1990;

Ermentrout and Kopell, 1986, and others). In time, neural “circuitry” has also

been considered, such as central pattern generators (e.g., Marder and Bucher,

2001, probably not applicable to the cortex); interacting brain regions (e.g.,

Chehelcheraghi et al., 2017); and others.

between frequencies. Transfers of energy across frequencies

generate phase correlations, in other words, CFC. These two points

are in fact the very definition of nonlinearity.

Therefore, we focus here on neural populations at low activity.

In this state, neurons fire intermittently (as opposed to periodically,

as limit cycle oscillators) and spend most of the time in the

subthreshold regime (e.g., u < −55 mV, where u is the

membrane potential; see Figure 1). Action potentials are random

and sparse, separated by time intervals at least an order of

magnitude larger than the duration of an action potential, and

caused by the superposition of presynaptic excitation received

from the large number of neighborhood neurons. These states

are relevant for populations of recurrently connected Class II

neurons (e.g., Hodgkin, 1948; Ermentrout and Terman, 2010;

Gerstner et al., 2014) where each neuron has of many random

and weak connections (possibly thousands, e.g., Hoppensteadt and

Izhikevich, 1997; Muller et al., 2018).

In these states, the population may transition from a chaotic

firing to some degree of oscillatory organization into spontaneous

neural assemblies. This organization is dynamically distinct from

synchronization of fixed oscillatory circuitry. In this context, the

concept of “amplitude” is related to collective neural activity, and

is measured by the LFP spectrum. Remarkably, these states exhibit

significant CFC patterns, measurable using the general bispectrum

test (e.g., Sheremet et al., 2016, 2019).

The goal of this study is to demonstrate the nonlinear

foundation of CFC. We use two modeling approaches: direct

numerical simulations (DNS) of a population of Hodgkin-Huxley

neurons (e.g., Hodgkin and Huxley, 1952), and a simplified mean

field approximation based on a two-equation leaky integrate-and-

fire (LIF2) model derived from the Hodgkin-Huxley model. The

models represent dual, microscopic-macroscopic descriptions. We

use the DNS model as a baseline for describing nonlinearity in

a neural population. It is straightforward to implement, but its

results are difficult to analyze and interpret. We use the mean field

approximation to deconstruct the nonlinear mechanism and obtain

a simple interpretation of the CFC process. Bothmodels are applied

to study the emergence of gamma-like fast oscillations under a slow

theta forcing. To identify CFC, we use the spectrum/bicoherence

(Jirsa and Müller, 2013; Sheremet et al., 2016, 2018b).

Some experimental evidence is briefly discussed in section

(2), where we also introduce and describe briefly the use of

the spectrum/bicoherence test for CFC. Section 3 formulates the

framework and scope of this study. In Section 4 we discuss direct

numerical simulations of a population of fully nonlinear Class II

neurons (e.g., Hodgkin and Huxley, 1952; Gerstner et al., 2014)

that illustrate the emergence of oscillatory behavior. In Section

5 we derive the simplified model. Slow-fast oscillation coupling

in the mean field approximation is analyzed analytically and

numerically in Section 6. We summarize and discuss the results in

Section 7. The Appendix provides an informal short introduction

to bispectral analysis.

2 Some experimental evidence: the
spectrum/bicoherence pair

In rat hippocampus, power spectra of local field potential (LFP)

recordings exhibit two well studied rhythms: theta, with frequency

Frontiers in Behavioral Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnbeh.2025.1553000
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org


Sheremet and Qin 10.3389/fnbeh.2025.1553000

FIGURE 1

(a) Example of membrane potential evolution of a pyramidal neuron in CA1; 1-s segment intracellular recording data (blue; courtesy of D. English,

please refer to English et al., 2014 for details). The red line represents subthreshold fluctuations, with action potentials removed using a simple

thresholding algorithm applied to the voltage time derivative). Circles mark the initiation of an action potential (arbitrary voltage reference). (b) PDF

function of the threshold for action potential (gray rectangle in (a). In this time series: total time: 3,059 s; total action potentials: 326 seconds;

number of action potentials: 25,907; average firing rate of 8.49 Hz.

f ≈8 Hz, and gamma, a weaker family of oscillations that cover

wide frequency band, approximately 70Hz.< f < 120.With spatial

scales in the order of 10−2 m and frequency in the order of 100 Hz

(speeds of ~ 1 m/s), gamma classifies as mesoscopic activity (Muller

et al., 2018).

A useful method to detect rhythms in LFP recordings and

estimate their statistical coupling uses the Fourier spectrum and

bispectrum (or its modulus, the bicoherence; see Appendix for

a brief account of the bispectral estimate). This method has

the advantage of requiring minimal data processing, and being

comparatively free of assumptions (less prone to a priori fallacies).

The spectrum allows for identifying the dominant LFP frequencies,

as peaks of power density. The bicoherence is a measure of

statistical coupling across the spectrum. If the bicoherence is

statistically zero at coordinates
(

f1, f2
)

, the two frequencies are

statistically independent; alternatively, a statistically significant

(e.g.,> 0.15, Sheremet et al., 2016) bicoherence peak at coordinates
(

f1, f2
)

indicates CFC between frequencies f1, f2, and f1 + f2.

Figure 2 illustrates these ideas on using the transformation of

LFP with the running speed (Sheremet et al., 2016, 2018a, 2020).

As running speed increases, the original theta peak at f ≈ 8 Hz

grows and sharpens, and develops prominent secondary peaks at

16 Hz and 24 Hz, clearly visible in the spectrum corresponding

to v > 15 cm/s (red lines in Figure 2a). The spectrum also

shows power accumulating in a broad gamma band spanning

frequencies between approximately 70 Hz and 120 Hz (gamma

oscillations). In the bicoherence map (Figures 2b, c), the growth

of the theta and gamma spectral peaks is accompanied by the

development of significant peaks at matching frequencies. For

example, the two large peaks at coordinates (8,8) and (16,8) Hz

in the bicoherence map (Figure 2c), indicate CFC between theta

(8 Hz), and 16 Hz and 24 Hz spectral peaks; this identifies the

16 Hz and 24 Hz oscillations as theta harmonics. Weaker, but

statistically significant bicoherence peaks match theta harmonic

frequencies (domain marked red triangles in Figures 2b, c) up to

the 6th, 48 Hz harmonic. This is remarkable, because there are no

detectable corresponding peaks in the spectrum: the bicoherence

is able to detect CFC at nascent forced frequencies with very weak

amplitudes. The two wide horizontal bands parallel to the x-axis

and extending approximately between 75 Hz and 120 Hz indicate

CFC between theta and its second harmonic, on the one hand, and

gamma on the other.

This brief spectrum/bicoherence analysis shows that

emergence of new frequencies (theta harmonics and gamma)

and their amplitude growth are intimately connected to CFC. The

spectrum/bicoherence test can detect CFC at low activity levels.

Below, we use this approach to test for CFC coupling.

3 Formulation of the problem

Here, we consider low activity levels of populations of Class

II neurons. To demonstrate the nonlinear mechanism of CFC,

we formulate the problem in its simplest form, retaining only

the elements strictly necessary to support the emergence of new

frequencies: nonlinearity, and the ability to support collective

oscillations. The former is an intrinsic property of neural activity;

the latter requires some negative feedback, such as inhibitory
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FIGURE 2

Example of CFC involving both amplitudes and phases of rat hippocampal LFP rhythms, as a function of rat running speed v (Sheremet et al., 2019,

2020). (a) LFP power density as a function of speed; the spectrum is normalized by f−2, where f is the frequency. (b, c) Bicoherence maps; peaks

indicate CFC at the coordinates of the peak; triangles mark the domains of theta-theta coupling (red) and theta-gamma (blue); see text for discussion.

activity, adaptation, etc (e.g., Palkar et al., 2023, and references

therein). For simplicity, we use here only Hodgkin-Huxley neurons

(Hodgkin and Huxley, 1952); their intrinsic refractoriness will be

used as negative feedback.

3.1 Neuron model

The Hodgkin-Huxley model (Hodgkin and Huxley, 1952;

Hodgkin, 1958), describes explicitly the dynamics of ion gates.

Because the model is well known, (e.g., FitzHugh, 1955; Abbott and

Kepler, 1990; Kepler et al., 1992, and many others), here we only

summarize its basic characteristics.

The microscopic model describes the evolution of the unit

surface membrane potential u and three gating variablesm, n, and h

du

dt
= −jL − jNa − jK + jNt , (1)

jL = gL (u− EL) ; jNa = gNam
3h (u− ENa) ;

jK = gKn
4 (u− EK) , (2)

dξ (u, t)

dt
= −κξ (u)

[

ξ (u, t)− ξ0(u)
]

, ξ = m, n, h, (3)

where jL, jNa, jK, and jNt denote ionic currents due to: sodium-

potassium pump and passive transport (leaky, L), Na+, and K+

ion channels, and neurotransmitters, respectively. The currents

are normalized by the capacity of the cell; EL, ENa, EK are

the corresponding reversal potentials; gL, gNa, and gK are

constant conductivity values. The evolution of gating variables

m, n, and h (Equation 3) is described as relaxation process to

equilibrium values ξ0(u) with characteristic relaxation rate κξ ,

or relaxation time τξ = 1/κξ . The parameters used in the

calculations below are based on Mainen et al. (1995) for a cortex

excitatory neuron. The characteristic behavior of the neuron is

shown in Figure 3.

3.2 Numerical models

The activity of a neural population activity is modeled here

using direct numerical simulations (DNS) of neural populations

(e.g., Kadmon and Sompolinsky, 2015; Hasegawa, 2000) and a

mean field approximation (e.g., Wilson and Cowan, 1972; Jirsa

and Haken, 1996, 1997; Coombes et al., 2003; Palkar et al., 2023).

The former describes explicitly the dynamics each of the neurons,

and can incorporate arbitrarily detailed information of microscopic

brain physiology, but are numerically expensive, and produce a

wealth of information that is difficult to process and interpret. The

latter describe the evolution of population averages; it has direct

relevance to macroscopic measurements, it is fast and relatively

inexpensive numerically, but involves significant simplifications,

and the relationship between its parameter space and physiological

quantities is not explicit or simple to obtain.

We use direct numerical simulations of a population of

Hodgkin-Huxley neurons under oscillatory forcing to demonstrate

the emergence new frequencies, and to test for CFC. We use the

mean field approximation to deconstruct the role of nonlinearity in

the CFC generation.

3.3 Cautionary note about the
interpretation of results

To study the nonlinear foundation of CF we leverage here

three means on investigation: experimental data, and twomodeling

approaches, a DNS and a mean field approximation. These tools

provide significantly radically different perspectives on the activity

of neural populations.

The numerical models represent a highly simplified neural

system, a neural mass of Class II point neurons with refractoriness,

under a simple oscillatory forcing. Experimental data is infinitely

more complicated that that.
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FIGURE 3

Characteristic evolution during an action potential: (a) membrane potential u; (b) gating variables m, h, n; (c) ion currents. The action potential event

is marked by a gray rectangle. (d) Voltage-dependent equilibrium values of gating variables m, h and n; (e) Voltage-dependent time constants of the

gating variables. vertical lines mark reversal potentials. Circles mark the limits of the subthreshold band EL ≤ u / ET , where EL = −65 mV is the leaky

reversal potential, and ET ≈ −55 mV is a characteristic value of the threshold potential.

The numerical models themselves are not just different, they

represent two opposite perspectives: microscopic in the DNS case,

macroscopic in the mean field case. In principle, they could be

calibrated to produce matching results, but this is an effort beyond

the scope of this study. Getting the models to agree with the

experimental data is obviously impossible in the simplified setup

used her.

However, our purpose is to demonstrate and investigate the

nonlinear mechanism of CFC in populations of neurons at low

activity levels. For this, a qualitative agreement between patterns

in the CFC spectral/bicoherence test suffices.

4 The DNS model

The DNS model uses the Brian2 numerical simulator for

spiking neural networks (Stimberg et al., 2019) to integrate

equations (Equations 1–3) for a population of 1,000 interconnected

neurons. Neurons receive input through 20 connections on

average, and have on average 30 recurrent connections. The

external forcing is modeled as Poisson time series corresponding

to a firing rate of the form F(t) = F0 + A cos 2π ft, where F0 = 100

Hz, A = 10 Hz, and f = 8 Hz. The 8 Hz modulation emulates the

theta oscillation.

The simulations confirm that a population of Hodgkin-Huxley

neurons exhibits emergent oscillations under periodic forcing.

Figure 4 summarizes some essential aspects of the population

activity that illustrate our concept of low activity. The population

responds to the modulated input with an oscillation on the same

frequency, clearly detectable in the mean firing rate, membrane

potential u, and gating variable h (Figures 4a, c, d). However,

individual neurons fire intermittently (Figure 4b), with action

potentials separated by large time intervals spent in subthreshold

regime. The oscillations represent a spontaneous organization

of collective activity oscillation, driven by input, rather than

synchronization of limit cycle activity of individual neurons.

(Synchronization may be achieved if the input is strong enough to

drive all neurons into limit cycles).

The results also show the hallmark signs of nonlinear CFC.

While the mean input is Gaussian (not skewed, and symmetric),

the response of the population shows significant skewness (positive

for mean u, negative for mean h), and asymmetry (negative for the

mean firing rate and mean u; positive for the mean h; Figures 4a,

c, d). This deformation is associated with the appearance of higher

harmonics of the theta frequency. The spectral density shows four,

maybe five peaks at theta harmonics, with matching peaks are

prominent in the bicoherence map (Figures 4e, f).

The spectrum exhibits also a broad gamma peak approximately

between 80 and 180 Hz, with the bicoherence peaks coupling

gamma and theta (both 8 Hz peak and 16 Hz harmonic).

This behavior is qualitatively similar to the measurements

discussed in Section 2. Compared to experimental data, the most

obvious differences are the strength of the CFC effect (number and

height of peaks in both spectrum and bicoherence), and the higher

frequency of the “gamma” band, possibly due to the reliance of the

DNS model on refractoriness as inhibitory feedback.

The results demonstrate that slow oscillatory forcing of a

population of interconnected Hodgkin-Huxley neurons at low

activity levels causes the emergence of new, high-frequency

oscillations, that show statistically significant CFC patterns.

5 The mean field approximation
model

To develop a mean field approximation compatible with

the Hodgkin-Huxley population model used in the previous

section, we first derive a lower dimension approximation of
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FIGURE 4

Response of a population of Hodgkin-Huxley neurons to slow oscillatory forcing. (a) Mean input action potential rate received by a population

neuron (blue) and mean firing rate of a population neuron. (b) Time series of the membrane potential of neuron; the subthreshold regime is marked

by a gray band. (c, d) Population mean membrane potential u and gating variable h. (e) Bicoherence of the mean membrane potential; (f) normalized

spectral density of mean membrane potential and input firing rate.

equations (Equations 1–3) and then apply a population average.

The procedure follows the classical work of FitzHugh (1955),

Abbott and Kepler (1990), and Kepler et al. (1992). The main

distinction between their work and the present approach is the

treatment of action potentials. Because we expect neurons to spend

most of the time in the subthreshold regime, with intermittent and

scarce action potentials (Figures 1–4b), we assume that the duration

of action potentials is much smaller than subthreshold residence

time scales and neglect action potentials.

5.1 Dimension reduction for subthreshold
dynamics

The dimension reduction of equations (Equations 1–3) is based

on the following observations. In the subthreshold regime EL ≤
u / −55 mV (see Figure 3):

(1) The small relaxation time of m (Figure 3e) indicates that it

relaxes quickly to its equilibrium value; we neglect its explicit

time dependency and replace it everywhere withm0(u).

(2) The dependence of h on u is weak (Figure 3d); we a write

h(u, t) ≈ h(u0, t), with h0(u0) = h00 and κh = κh(u0) = κh0

constants u0 is a reference value, say u0 = EL.

(3) In the subthreshold regime n ≪ 1, and it appears at

fourth power in the potassium current; we neglect n

dynamics altogether.

Therefore, the subthreshold dynamics of equations

(Equations 1–3) may be approximated as

d

dt
u(t) = jL(u)+ jNa(u, t)+ jN(t), (4)

jL = gL (u− EL) , jNa =
h(t)

h00
G(u), with

G(u) = gNah00m
3
0(u)

[

ENa − u(t)
]

, (5)

d

dt

h(t)

h00
= −κh0

[

h(t)

h00
− 1

]

. (6)

This approximation is not complete, however, because is does

not account for the resetting effect an action potential.

To correct this, we note that the wide distribution of the

threshold membrane potential (Figure 1b; see also Gerstner et al.,

2014) indicates that a fixed-value threshold criterion is a severe

simplification (e.g., Koch et al., 1995; Rinzel and Ermentrout, 1998).

Adopting the more natural threshold criterion jNa ≈ jL codifies the

variability of the threshold u value in Equation 4: the small post-

spike value of h (Figures 3b, c) reduces the sensitivity of the sodium

channel to membrane potential, and consequently, the ability of the

neuron to fire.

To switch to a threshold criterion based on jNa, it is

convenient to change state variable from u to jNa. Differentiating

jNa in Equation 5 to time, and using Equations 4, 6, after some

straightforward algebra obtains

d

dt
jNa =

h

h00
ϕN

(

jNa, jN
)

− κj
(

jNa, h
)

jNa, (7)

where ϕN represents rate of change rate jNa induced by

neurotransmitters in absence of refractoriness

ϕN

(

jNa, jN
)

= hG′jN , κj
(

jNa,φNt

)

= −
(

hG′ jL
jNa

+ hG′
)

−
1

τh0

(

1−
h

h00

)

, (8)
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and all dependencies on u become dependencies on jNa and t.

Replacing Equation 4 with 7 completes the change of variable from

u to jNa.

We can now approximate the threshold criterion as jNa = jT ,

where jT is characteristic (constant) value, and represent the action

potential resetting as a Dirac delta function (e.g., Roxin et al., 2011):

d

dt

jNa

jT
=

h

h00
ϕN − κj

(

jNa

jT
,
h

h00

)

jNa

jT
−

jNa

jT
δ

(

jNa

jT
− 1

)

; (9)

d

dt

h

h00
= −κh0

(

h

h00
− 1

)

−
h

h00
δ

(

jNa

jT
− 1

)

, (10)

where we assumed for simplicity that, post spike, jNa = 0 and

h = 0.

Equations 9, 10 represent a two-equation “leaky integrate and

fire” model (LIF2). The model follows the same principle as other

LIF models (e.g., Lapicque, 1907; Hill, 1936; Abbott, 1999; Dong

et al., 2011), with the addition of Equation 10 accounting for

excitability (h).

5.2 Mean field approximation

For a neural mass with no spatial dimensions, averaging

equations (Equations 4–6) over the population and assuming that

h and jNa are uncorrelated obtains

d

dt
J = Hφ − κjJ −

〈

jNa

jT
δ

(

jNa

jT
− 1

)〉

, (11)

d

dt
H = −κh0 (H − 1) +

〈

h

h00
δ

(

jNa

jT
− 1

)〉

, (12)

where 〈·〉 is the average operator, J =
〈

jNa/jT
〉

, H =
〈

h/h00
〉

, and

φ = 〈ϕN〉, with and κj ≈ κj0 constant. The δ terms are nonzero

only for neurons firing in the interval [t, t + dt], i.e., they count the

action potentials in the population, recorded in the unit of time,

divided by the number of neurons in the population. This quantity

is the firing rate N,

N =
1

n

ν
∑

j=1

n
j
sτs

dt
, (13)

where ν is the number of neurons firing in [t, t + dt], n
j
sτsj

approximates the time spent firing by neuron j, τs is the mean

duration of a spike, and n
j
s is the number of spikes. Further writing

φ = µ (N + Q), where Q is the external input, described as a

firing rate, and µ is a “connectivity” parameter that describes the

conversion of the presynaptic firing rates N + Q into postsynaptic

jN currents, Equation 11 become

d

dt
J = Hµ (N + Q) − κj0J − N, (14)

d

dt
H = −κh0 (H − 1) − NHT , (15)

where HT = hT/h00 is the threshold value of H. The system

(Equations 14, 15) is closed by prescribing the relation between

the state variable J and the firing rate N, also known as the

activation function. Because τs is assumed infinitesimal, the time

interval 1t → 0 can contain an arbitrary number of spikes. In

general, Equation 13 implies that N ≥ 0 and can be arbitrarily

large at maximum activity level J = 1 when all neurons fire

continuously. Here, we use the activation function derived by

Qin and Sheremet (2022)

N(J) = α
J

1− J
, (16)

where α is the “susceptibility” parameter, related of the intensity of

endogenous membrane potential fluctuations, which may also be

understood as the susceptibility of a neuron to fire. The activation

function (Equation 16) is approximately linear for J ≪ 1 and is

unbounded as J ր 1.

Equations 14, 16 are the mean field approximation of the LIF2

model. The state of the neural field is described by two state

variables: the mean current density J and the excitability H. Both

are normalized 0 ≤ J,H ≤ 1; whereH = 0 after an action potential

and H = 1 in the resting state; and J = 0 after an action potential

and J = 1 at the action potential threshold.

The equations have a straightforward interpretation in terms

of energy balance. The variable J may be interpreted as the kinetic

energy density (also, intuitively, as the “temperature”, by analogy

with an ideal gas, where temperature and kinetic energy density

are proportional). The firing rates N (internal) and Q (external,

Equation 14) represent the energy flux into the system due to

internal and external action potentials; the conversion into local

kinetic energy is controlled by the excitability H and the synaptic

connectivity parameter µ. The second term in Equation 14 is the

natural dissipation rate of the kinetic energy density due leaky

currents and refractoriness. The third describes energy loss due to

post action potential refractoriness.

The neural mass is collectively characterized by four “material”

parameters. Two characterize the mean neuron – the relaxation

rates κh0 (Equation 15) and κj0 (Equation 15). The other two

characterize the inter-neuron communication—the connectivity µ

(Equation 14), and susceptibility α (Equation 16).

The mean field approximation serves the purpose of this

demonstration by retaining the two elements we consider essential

for CFC generation: negative feedback, represented by the

excitability H; and nonlinearity, represented by the activation

function and the first term in Equation 14.

6 Nonlinear coupling between slow
and fast oscillations

Equations 14–16 represent an approximation of the DNS

model described in Section 4, and can be used to gain insight

into the CFC mechanism. For this, we use a standard asymptotic

approach (e.g., Bender and Orszag, 1991) that takes advantage of

the different scales of the coupled oscillations. For simplicity, all

material parameters are approximated as constants.

In the theta-gamma coupling, theta is a low frequency, high

power oscillation, while gamma a high frequency, low power

one. This relationship may be formalized by introducing a small

parameter ǫ ≪ 1 and writing

J(t, ǫt) = J0(ǫt)+ ǫJ1(t, ǫt)+ O
(

ǫ2
)

, (17)
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H = H0(ǫt)+ ǫH1(t, ǫt)+ O
(

ǫ2
)

, (18)

N = N0(ǫt)+ ǫN1(t, ǫt), where N0 = N(J0), and

N1 =
∂N

∂J

∣

∣

∣

∣

0

J1, (19)

where ∂N
∂J is a variational derivative. From Equation 16 one obtains

∂N

∂J
= α (1− J)−2 ≈ α (1+ 2J + . . .) . (20)

Theta (the slow oscillation, subscript 0), is represented as an

order 1 component that evolves on the “slow” time ǫt. Gamma, (the

fast oscillation, subscript 1), is an order ǫ component and assumed

to evolve on two time scales: a “fast” time t, with a slow modulation

of ǫt scale induced by theta. Substituting into Equations 14–16

and separating the powers of ǫ obtains, after some straightforward

algebra, two sets of equations.

6.1 Leading order system

Over the fast t time scales the slow variables satisfy the

equilibrium (no explicit time dependency) equations

H0 (µN0 + Q) = κj0J0 + N0, (21)

κh0 (1−H0) − N0H
T = 0 (22)

Equation 21 represents the balance between incoming energy

flux and energy losses due to the natural relaxation rate κ0 and

post spike resetting. Equation 22 describes the rate of growth

of population refractoriness (1 − H) as a consequence of

action potentials.

From Equation 16, J0 = N0
α+N0

; solving Equation 22 in H0 and

substituting into Equation 21 obtains for the equilibrium firing rate

the cubic equation

(

1− τh0H
TN0

)

(µN0 + Q) (α + N0)−κj0 (α + N0)N0−N0 = 0,

(23)

where τh0 = 1/κh0. Keeping fixed the mean neuron material

parameters κh0 and κj0 implies that the solutions of Equation 23

for a given external forcing Q0 are uniquely defined by the network

material parameters µ and α.

6.2 Second order system

At order ǫ, setting ∂N
∂J

∣

∣

∣

0
J1 ≈ αJ1 for low activity levels obtains

[

I
d

dt
− � (J0,H0)

]

[

J1
H1

]

= −
d

dt

[

J0
H0

]

; (24)

where I is the the identitymatrix, and� is a 2×2matrix with entries

�11 = H0µα − κj0 − α, �12 = µαJ0 + Q, �21 = −αHT , and

�22 = −κh0. (25)

Equation 24 describes the stability of the equilibrium states with

respect to small perturbations (J1,H1). Seeking solutions for J1and

H1∝ eλt obtains the eigenvalues

λ1,2 = κ ± iω, with κ =
1

2
T, ω =

1

2

√
1, and

1 = T2 − 4D, (26)

where T and D are the trace and the determinant of �,

T = �11 + �22 = µαH0 − κj0 − α − κh0, (27)

D = �11�22 − �12�21 = −κh0
(

µαH0 − κj0 − α
)

+ αHT (µαJ0 + Q0) . (28)

The stability of equilibrium states is also completely defined

by the network parameters µ and α. Equilibrium states are

unstable to small perturbations if growth rate κ > 0 and stable

if κ ≤ 0; if 1 < 0, the perturbations are oscillatory with

eigenfrequency ω. Figures 5b, c shows the stability characteristics

of the equilibrium states.

6.3 Linear equilibrium and stability

Figure 5 shows the characteristics of the linearized mean field

Equations 23, 24 in the (µ,α) parameter space.

Equilibrium states correspond to the real roots of Equation 23.

Triple equilibrium states exist for low susceptibility α and strong

connectivity µ (typically with two stable points separated by an

unstable one) where they occupy the cusp-like white region (this is

a typical feature for this kind of systems, e.g., Ermentrout, 1998).

Low susceptibility maintains stability at low activity by reducing

the effect of endogenous activity on firing rates; strong connectivity

ǫ maintains stability at higher activity levels by sustaining a high

firing rate and recapturing a large amount of the energy released.

Low connectivity µ and low susceptibility α (lower left corner)

correspond to an inefficient conversion ofN0 energy fluxes, and the

system is driven primarily by external forcing Q. The opposite is

true for high connectivity and susceptibility (upper right corner).

As J0 and N0 increases, higher order terms in the expansion

(Equations 17–19) become important, the relationship between

(J0,N0) and external input Q0 weakens, and the stability of the

equilibrium point decreases.

6.4 The nonlinear CFC mechanism for
slow/fast oscillations

Because the system of equations (Equation 24) is linear, it may

be solved using elementary methods. Without going into details, if

ω 6= 0, the eigenvalues (Equation 26) are distinct and the system

may be uncoupled by diagonalizing the � matrix

(

I
d

dt
− 3

)

P1 = −
d

dt
P0, P0,1 = S

[

J0,1
H0,1

]

(29)
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FIGURE 5

Distribution of characteristic parameters of the linearized equations (Equations 23, 24) in the (µ,α) parameter space for constant forcing Q0. Each

(µ,α) point in plane represents a unique networks configuration. (a) Current density J. (b) Excitability H. (c) Firing rate N. (d) Frequency ω. (e) Growth

rate κ . (f) Schematic map of the stability of equilibrium states. The point A marks the weakly stable configuration used in the numerical simulations.

where 3 is a diagonal matrix with entries λ1,2 and S is the matrix

of eigenvectors. The solutions of the problem (Equation 29) have

the form

P
j
1 = Aj(t)e−iθ j , with θ j = −i

∫ t

λ(ζ )dζ , and

Aj(t) = −
∫ t dP

j
0(ζ )

dζ
ei

∫ ζ
λ(ξ )dξdζ . (30)

where P
j
0,1 are the j-th, (j = 1, 2) components of the vectors P0,1,

and λ is one of the two eigenvalues.

Note that in Equation 30 the amplitude and Aj, the phase

θ j, and frequency λ of the fast (gamma) oscillation P ∗ j1 all

depend on the variables J0 and H0 that characterize the slow

(theta) oscillations via the eigenvalues λ1,2. This solution describes

explicitly the role of nonlinearity in coupling between all theta

and gamma characteristics parameters, including all combination

of amplitudes, phases, and frequencies.

The linearization achieved by expansion (Equations 17–19)

preserves the nonlinear terms, but breaks them into factors of

different scales and assigning their contribution accordingly. For

example, the nonlinear term HJ in Equations 14–16 appears in

Equation 24 as H0J1, mixing slow (theta, subscript 0) and fast

variables. This reduces the evolution of the slow component

(J0,H0) as sequence of equilibrium states (Equations 21, 22), and

describes the fast oscillations (J1,H1) as a transient process of

adjustment to the next equilibrium state (Equation 24).

Because throughout this evolution the system is approximately

at equilibrium, each state may be represented in the (µA,αA),

Figure 5. A slowly varying forcing Q0 shifts the topology of

equilibrium regions with respect to a fixed point A = (µA,αA).

As Q0 increases, the triple equilibrium cusp flattens, and shifts

to a lower position relative to A (Figure 6a). The values of

current density J, the eigenfrequency ω and the growth rate

κ at point A also increase. Stability decreases globally in

the (µ,α) space.

In summary, the linearized equations (Equations 23, 24)

describe the nonlinear mechanism of CFC between slow and

fast oscillations (theta-gamma) as a cyclic destabilization of the

eigenfrequencies of the system.

6.5 Numerical simulations

The validity of the linearized equations (Equations 23,

24) is limited by the assumptions used by expansion

(Equations 17–19). Whether it is realistic of not to assumes

that theta and gamma are separated in both power and

frequency by, say, ǫ ∼ 10−2, such a scaling only describes

short time behavior, because unstable eigenoscillations

can grow over time and break the original ordering.

To obtain long term solutions, Equations 14–16 must be

integrated numerically.
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FIGURE 6

(a) Shifting of equilibrium stability as a function of forcing Q0 (Equation 23). Compare with Figure 5. As the forcing increases, the configuration A

becomes unstable. In the linearized model (Equation 24) the high frequency oscillations are unbounded. (b) In fact, the full nonlinear system

undergoes a Hopf bifurcation from node to stable orbits. Theta-gamma CFC may be visualized as a slow Q0 running through this range of values,

periodically destabilizing and re-stabilizing the high frequency oscillations (gamma, limit cycles).

FIGURE 7

A segment of the time series Q(t) used as forcing in both linear and nonlinear numerical simulations. (a) A 1-second segment of the forcing

time-series; (b) Spectral density of Q(t) power; (c) Q(t) bicoherence.

6.5.1 Numerical setup
For numerical integration of the full system of equations

(Equations 14–16), we represent forcing Q as a non-skewed,

symmetric stochastic process with narrow-spectrum Gaussian pink

noise ∝ f−1.5 superposed on a monochromatic oscillation of

8 Hz (Figure 7). The noise is added in order to provide a

frequency smoothing for spectral estimators, but has otherwise no

dynamical effect. By construction, the forcing time series does not

contain any cross-frequency coupling, therefore its spectrum only

exhibits the 8 Hz peak and the bicoherence is statistically zero

(Figures 7b, c).

Here, we present numerical solutions for pointA in Figures 5, 6,

chosen because it is weakly stable at approximately middle of the Q

oscillation range (Figure 6a; see also Figure 5e). In these conditions,
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FIGURE 8

Numerical solution of the linear approximation (Equation 24) for neural network A (Figure 6), under the forcing Q defined in Figure 7. (a, b) time

current density and mock LFP. (c) Spectral densities of current density J, forcing Q and Q+ J, the mock LFP. (d, e) Bicoherence of the current density

J, and Q+ J, mock LFP.

eigenoscillations are stable throughout most of the lower forcing

values, but unstable at high Q values.

To enable some comparison with measurements, we construct

here a mock LFP by the simple superposition

LFP ∼ (Q+ J) . (31)

In the CA1 region in the hippocampus, for example, Q

might represent external synaptic excitation excitation though

Schaffer collateral path, while J might represent the current source

near stratum pyramidale. Both these signals contribute to LFP

recordings in the rat hippocampus. However, this description does

not account for other synaptic and somatic activities such as spiking

and hyperpolarization activities, and other ionic processes (Buzsáki

et al., 2012).

6.5.2 Results
Figures 8, 9 show that numerical solutions of the linearized

(Equation 24) and the fully nonlinear mean field approximation

(Equation 14–16) are qualitatively similar behavior. The gamma

stabilization/destabilization cycle is obvious in the time series of the

current density (Figures 8a, 9a). The effect is dampened in themock

LFP by the contribution of the Q (Figure 7a).

However, In the linearized representation, fast gamma

oscillations are described as noise preferentially amplified at

unstable eigenfrequencies, and can grow to arbitrarily large values.

In the fully nonlinear model, the growth mechanism is initially

the same, but as the gamma amplitudes increase, nonlinear terms

become important and limit the growth. The solutions of the

nonlinear system remain globally stable, and exhibit a bifurcation

of the supercritical Hopf type (Figure 6b). This effect limits the

power in the gamma band, as seen by comparing spectral densities

(Figures 8c, 9c).

Theta harmonics are visible in both the spectrum and

bicoherence. The bicoherence also exhibits peaks indicating

significant phase correlations between theta and gamma

(Figures 8c–e, 9c–e). The patterns of CFC between theta and

gamma are in qualitative agreement with DNS results and

experimental data. The also confirm that CFC between theta and

gamma can arise strictly as a nonlinear response of the neural

network to a Gaussian forcing.

7 Summary and discussion

The goal of this study is to demonstrate and analyze the

nonlinear foundation of the CFC phenomenon.

The modeling framework is based here on a paradigm of

“irregular”, low-intensity neural activity, defined as a state where

neurons fire intermittently and spend most of the time in the

subthreshold regime. These conditions allow neural population to

organize into oscillatory patterns, with amplitudes measured by the

LFP spectrum. These states are relevant for populations of Class II

neurons, and have been shown to exhibit significant CFC bispectral

patterns (e.g., Sheremet et al., 2016, 2019).

The nonlinear low-activity paradigm is supported by the

analysis of LFP rat hippocampus recordings. The LFP spectrum

and bicoherence (Jirsa and Müller, 2013; Sheremet et al., 2016,
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FIGURE 9

Numerical solution of the fully nonlinear mean field approximation (Equation 14–16) for neural network A (Figure 6), under the forcing Q defined in

Figure 7. (a, b) time current density and mock LFP. (c) Spectral densities of current density J, forcing Q and Q+ J, the mock LFP. (d, e) Bicoherence of

the current density J, and Q+ J, mock LFP.

2018b) shows distinctive CFC patterns that indicate coupling

between theta and its harmonics, and between theta and gamma.

Importantly, the growth of theta-gamma coupling with the power

(amplitude) of the oscillations indicate that amplitude and phase

types of CFC are related.

The numerical modeling framework discussed here has two

components: a DNS model of interacting (Hodgkin and Huxley,

1952) neurons, and a simplifiedmean field approximation based on

two-equation LIF model. The mean field equations are nonlinear,

and retain the negative firing rate feedback, but have a much

simpler structure than the DNS population model. In both models,

the neural population is forced by a slow (theta) oscillation. In both

models, Spectral/bicoherence of the mean membrane potential

time series exhibit patterns similar to LFP recordings.

The DNSmodel is used to verify the nonlinear CFCmechanism

directly. However, because the complexity of the DNSmodel makes

further analysis difficult, to understand nonlinear CFC mechanism

we turn to the mean field approximation model. An asymptotic

expansion that takes advantage of the scale differences between

theta and gamma can readily be used to linearize the system. This

provides a few notable results:

(1) The linearized model describes the coupling between

theta and gamma as a eigenfrequency (gamma)

destabilization/restabilization cycle forced by theta: underlying

mechanism of gamma forcing by theta is nonlinearity.

(2) The analytical solution of the linearized equations gives

an explicit expression of the effect of nonlinearity on all

gamma characteristics: amplitude, phase, and frequency. This

demonstrates the role of nonlinearity as a unifying mechanism

for all CFC types identified in literature. Indeed, the simplified

modeling framework we use here allows for writing explicitly

(Equations 26, 30) the relationship between all characteristics

of the slow and fast (theta-gamma) oscillations: amplitude,

phase, and frequency.

(3) The “gamma” frequencies produced by our simulations are

different (higher) than experimentally observed. This is likely

the result of relying on the short-time intrinsic Hodgkin-

Huxley refractorinessU for negative feedback. Indeed, from

Equations 24–30, the frequency λ (Equation 26) of the fast

oscillation depends on the characteristics decay rates κ

(Equations 27–28), originally defined in Equation 6 for the

refractoriness, and Equation 8 for the sodium current. Note

that in this mechanism, gamma oscillations are indeed

controlled by the time scale of the negative feedback (e.g.,

in Equation 15, τh0 → 0 implies H → 1 and nonlinearity

is disabled). However, further research into this dependency

is beyond the scope of this study, and would be of doubtful

usefulness, given the simplicity of the models used here

(inhibition largely overrides these effects).

These results show that, under theta forcing, a population

of Hodgkin and Huxley (1952) neurons can spontaneously

generate high frequency (gamma) oscillations due to the intrinsic

nonlinearity of the neural activity. The theta-gamma system

of oscillations has CFC characteristics similar to observations.

This suggests the nonlinearity of brain activity is a fundamental

mechanism for the generation of theta-gamma CFC (see also

Sheremet et al. 2019, 2020). This is consistent with general physics

results and theories for the evolution of large systems as diverse

as water waves, plasma, aggregation-fragmentation in particulate

systems, chemical reactions, etc (e.g., L‘vov 1998; Zakharov et al.
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1992; Connaughton et al. 2006; Proment et al. 2009). Our results

suggest that nonlinearity also plays a role in brain activity CFC

processes and cognitive activities.

However, we should stress that albeit fundamental, nonlinearity

is only one of a number of CFC mechanisms identified in

brain activity at various scales, that include, e.g., the celebrated

ING/PING mechanisms based on inhibition, as well as interaction

between different brain regions (e.g., Bartos et al., 2007;

Tiesinga and Sejnowski, 2009; Buzsáki and Wang, 2012, and

many others). Further research is needed to understand the

importance of the nonlinear element in this complex context of

brain activity.
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