
fnbeh-19-1553470 April 5, 2025 Time: 18:27 # 1

TYPE Review
PUBLISHED 09 April 2025
DOI 10.3389/fnbeh.2025.1553470

OPEN ACCESS

EDITED BY

Keith B. J. Franklin,
McGill University, Canada

REVIEWED BY

Nivaldo A. P. de Vasconcelos,
Federal University of Pernambuco, Brazil
Victor Philippe Mathis,
Université de Strasbourg, France

*CORRESPONDENCE

Kathryn Braden
bradenk@wustl.edu

RECEIVED 30 December 2024
ACCEPTED 13 March 2025
PUBLISHED 09 April 2025

CITATION

Braden K and Castro DC (2025) The role
of dorsal raphe nucleus neuropeptides
in reward and aversion.
Front. Behav. Neurosci. 19:1553470.
doi: 10.3389/fnbeh.2025.1553470

COPYRIGHT

© 2025 Braden and Castro. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

The role of dorsal raphe nucleus
neuropeptides in reward and
aversion
Kathryn Braden* and Daniel C. Castro

Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO,
United States

The dorsal raphe nucleus is a critical node for affective and motivated circuits

in the brain. Though typically known as a serotonergic hub, the dorsal

raphe nucleus is also highly enriched in a variety of neuropeptides. Recent

advances in biotechnology and behavioral modeling have led to a resurgence in

neuropeptide research, allowing investigators to target unique peptide systems

with unprecedented clarity. Here, we review and discuss multiple neuropeptide

systems in dorsal raphe and consider how their activity may contribute to

reward and aversion. While this is not an exhaustive review, this short overview

will highlight the many opportunities available to refine our understanding

of multiple dorsal raphe neuropeptides. By more thoroughly studying dorsal

raphe neuropeptides, we will reveal novel pathways to design more effective

therapeutics and tailor treatments for millions of patients.
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1 Introduction

The dorsal raphe nucleus (DRN) in the midbrain has been implicated in reward
processing, mood regulation, and learning (Luo et al., 2015; Luo et al., 2016; McDevitt and
Neumaier, 2011). It is one of seven raphe nuclei along the midsagittal plane of the brainstem
that are characterized by the presence of serotonin positive (5-hydroxytryptamine; 5-HT)
cell bodies (Dahlström and Fuxe, 1964; Taber et al., 1960). Of the raphe nuclei, the DRN
provides the largest source of serotonin to the forebrain (Vertes, 1991). As a result, the DRN
serotonergic system has been the subject of intense interest, particularly in the realm of
affect and motivation. Serotonin was first discovered in 1948 as a vasoconstrictor (Rapport
et al., 1948a; Rapport et al., 1948b; Rapport et al., 1948c; Twarog and Page, 1953). Further
investigation of serotonergic cells within the raphe found extensive projections throughout
the forebrain and cortex, indicating that it could play an important modulatory role in
affect, motivation, and learning (Dahlström and Fuxe, 1964). Decades of research more
or less corroborate that hypothesis, with the advent of SSRIs and other serotonergic drugs
now used regularly in the clinic to treat mood disorders like depression, eating disorders,
and anxiety. While clearly a critical node within affective neural circuits, the myopic focus
on serotonin has occluded an appreciation for the full neurochemical landscape present
within the DRN. Studies find that approximately one to two thirds of DRN neurons are
non-serotonergic (Castro et al., 2021; Wiklund et al., 1981), but are neuropeptidergic,
leaving unresolved how a significant portion of the dorsal raphe complex may or may
not be involved in behavioral phenotypes. For example, despite the presence and high
expression of several neuropeptides like the endogenous opioids, cholecystokinin (CCK),
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and neuropeptide Y (NPY), almost nothing is known regarding the
function of these and other neuropeptides in this region.

Neuropeptides are small proteins derived from post-
translational processing of precursor proteins that are released
from neurons in dense core vesicles to act on receptors, typically
G-protein coupled receptors (GPCRs) (Russo, 2017). There are
at least 50 neuropeptides expressed in the mammalian brain,
each with varying levels of understanding of their physiological
roles (Eiden et al., 2022). These signaling molecules can have
significant modulatory effects on neuronal transmission and
resulting behavioral phenotypes. In many cases, neuropeptides
are co-released by neurons along with classical neurotransmitters
such as glutamate, GABA, dopamine, or serotonin (Eiden et al.,
2022; Nusbaum et al., 2017). Co-release of neuropeptides and
neurotransmitters enable highly nuanced circuit flexibility,
as peptides can have both neurotransmitter dependent or
independent mechanisms of action. Details regarding co-
transmission and other peptide-specific signaling mechanisms are
reviewed thoroughly elsewhere (Eiden et al., 2022; Nusbaum et al.,
2017; Russo, 2017; Svensson et al., 2019), but are critical elements
to consider in the context of neuropeptide function in the DRN.

This review aims to highlight the current literature on a
selection of neuropeptides within the DRN and describe their
known anatomical, physiological, and functional characteristics.
Below we outline what is known about the general structure and
connections of the DRN, we then summarize the current literature
of specific neuropeptides and their functional effects in this region.
Overall, we aim to emphasize that DRN neuropeptides act both
within and beyond classic serotonergic systems, and provide
important contributions to reward, motivation, and affect that
could be leveraged in the treatment of neuropsychiatric conditions.

2 Structure and connectome of DRN

The DRN can be divided into medial and lateral regions as
well as rostral and caudal portions. It is located directly below the
cerebral aqueduct beginning in the midbrain at the caudal border
of the oculomotor nuclei and extending to the mid-pons where
the aqueduct meets the fourth ventricle (Franklin and Paxinos,
2007; Jacobs and Azmitia, 1992). It is located directly along the
midline with the medial portion extending from the aqueduct
superiorly to surround the medial longitudinal fasciculi (MLF)
inferiorly. The lateral wings form the largest portion of the DRN
and extend out to meet the ventrolateral periaqueductal gray
(vlPAG) at the level of the trochlear nuclei until just below the
fourth ventricle. Importantly the border between the DRN and
vlPAG is not consistently defined; early studies investigating the
vlPAG included portions of what would now be considered the
DRN (Kyuhou and Gemba, 1999; Monassi et al., 1999; Siegel and
Pott, 1988; Yaksh et al., 1976). Recent studies have begun to treat
the vlPAG and lateral DRN (LDRN) as a complex of cells that
work together, perhaps acting as a functionally unique transition
zone (Dougalis et al., 2012; Liu et al., 2023; Xie et al., 2023).
These sorts of transitions zones have been described in a variety
of mesocorticolimbic systems, including caudal accumbens into
rostral bed nucleus of the solitary tract or portions of the extended
amygdala (Thompson and Swanson, 2010; Zahm et al., 2013). But

for the purposes of this review, we will refer to the LDRN as
separate from the vlPAG and adhere to the annotations of Franklin
and Paxinos to approximate this border (Figure 1; Franklin and
Paxinos, 2007).

2.1 Connections of the DRN

As would be expected for the primary source of serotonin
to the brain, the DRN is highly interconnected with many brain
regions with known roles in reward and aversion, including the
nucleus accumbens (NAc) (Castro et al., 2021; Pomrenze et al.,
2022; Vertes, 1991), ventral tegmental area (VTA) (Abraham et al.,
2022), amygdala (Marcinkiewcz et al., 2016; Ren et al., 2018;
Ritchie et al., 2024), and PAG (Xu et al., 2021). The projections
are generally topographically organized, with more rostral DRN
neurons projecting to cortical and subcortical regions and caudal
neurons projecting to septohippocampal structures (Commons,
2020). The nonserotonergic neurons have not been specifically
characterized for potential functional subgroups yet (Huang et al.,
2019). Most tracing studies in the literature have focused on
serotonergic cells, but recent work has made efforts to more
thoroughly characterize the inputs and outputs of the entire DRN
by comparing glutamatergic and GABAergic cell types (Xu et al.,
2021). This in-depth mapping of whole-brain connections of the
DRN highlights the complexity of interconnectedness present in
this highly heterogenous nucleus. For more thorough review of
the current understanding of dorsal raphe circuitry we suggest
the recent reviews by Steinbusch and colleagues (Steinbusch et al.,
2021) or Zhang and colleagues (Zhang et al., 2024a).

2.2 Cellular characterization of DRN
neurons

As early as the studies of Cajal, the neurons of the
DRN as it is known today were grouped into three to four
morphological categories: fusiform, multipolar (stellate), and
ovoid or triangular cells (Andrade and Haj-Dahmane, 2013;
Baker et al., 1990; Michelsen et al., 2007). These neurons have
divergent and spiny dendrites with fibers concentrating in either
ascending or descending bundles. To date, most efforts into the
anatomical classification of dorsal raphe neurons have focused
on subtyping serotonin cells, the majority of which are clustered
densely along the midline and are present throughout the lateral
wings (Andrade and Haj-Dahmane, 2013). Though not well
described, one study found that nonserotonergic neurons from
the DRN had fewer dendritic spines than serotonin-positive cells.
Additionally, nonserotonergic neurons had more heterogenous
electrophysiological properties than the slow rhythmic firing that
is often used to characterize serotonergic cells (Li et al., 2001).
However, more recent studies have found that even serotonin
neuron firing patterns may be more heterogenous than traditionally
thought (Calizo et al., 2011; Schweimer et al., 2011). These studies
underscore the importance of parsing how 5-HT and non-5-HT
cells in the DRN can be functionally distinguished from each other.

The advent of single cell sequencing has recently led to
several studies attempting a more sophisticated characterization of
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FIGURE 1

Summary of expression patterns of selected neuropeptides throughout the DRN. The coronal sections and annotations are based on the Franklin &
Paxinos mouse brain atlas and depict the DRN from –4.36 to –4.72 Bregma. Opioid peptides are depicted as circles (Dynorphin: purple, Enkephalin:
green; Nociceptin: blue). The additional peptides discussed in depth are depicted as triangles (Corticotropin releasing factor: yellow; Neuropeptide
Y: pink; Galanin: red). The peptides discussed in the Other Neuropeptides section are depicted as squares (Cholecystokinin: green; Neurotensin:
orange; Somatostatin: light blue; Substance P: dark blue). Abbreviations: Aq: Aqueduct, VLPAG: ventrolateral periaqueductal grey, DRL: dorsal raphe
lateral, DRD: dorsal raphe dorsal, DRV: dorsal raphe ventral, PDR: postero-dorsal raphe, 4N: trochlear nucleus, mlf: medial longitudinal fasciculus.

neuronal subtypes within the DRN. But unfortunately, the focus
has once again proven limited with the majority using chemical or
genetic manipulations to select for only serotonergic cells in their
downstream analyses of neurotransmitter expression (Okaty et al.,
2020; Ren et al., 2019), rather than considering other neuronal cell
types that are present in the DRN. While there is an active and
evolving conversation attempting to define and categorize DRN
neurons, consensus has not yet been reached (Andrade and Haj-
Dahmane, 2013; Commons, 2020; Huang et al., 2019; Monti, 2010).
Whether they are divided by transcriptional profile, projection
pattern, or anatomical location, there appears to be a marked
heterogeneity to these neurons suggesting complex and integrative
functional roles that cannot be simplified to 5-HT expression alone.

3 Neuropeptides within the DRN

Many studies have found expression of neuropeptides such
as neuropeptide Y (NPY), Substance P, dynorphin, enkephalin,
and corticotropin releasing factor expressed throughout the DRN
(Commons et al., 2003; de Quidt and Emson, 1986; Fu et al.,
2010; Hökfelt et al., 1977; Hökfelt et al., 1978; Uhl et al., 1979a).
However, little effort has been made to distinguish their functions
apart from the serotonergic neurons in this region. Recent evidence

points to neuropeptides within the DRN having powerful effects
on motivation independent of serotonin effects (Castro et al., 2021;
Li et al., 2016; Nectow et al., 2017). Here we have summarized
what has been revealed thus far about neuropeptide expression
and function within the DRN and emphasize the importance of
understanding how nonserotonergic signals act in concert and in
parallel to traditional serotonergic systems. Due to the lack of
specific studies, we have focused on four peptide families with
more substantial literature on their role in the DRN and included a
final section of “Other Neuropeptides” describing peptides with less
extensive investigation into their roles in DRN circuitry. Due to the
lack of quantitative data on many of these peptides in the DRN, we
have summarized their general expression patterns of their mRNA
throughout the DRN in Figure 1 based on Allen Brain Atlas in situ
data (Lein et al., 2007).

3.1 Endogenous opioids

3.1.1 Expression patterns
The endogenous opioid system is comprised of the

four precursor peptides proopiomelanocortin (POMC),
preproenkephalin (Penk) preprodynorphin (Pdyn), and
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prepronociceptin (Pnoc). Correspondingly, there are four Gi-
coupled receptors, mu opioid receptor (MOPR), delta opioid
receptor (DOPR), kappa opioid receptor (KOPR), and nociceptin
opioid receptor (NOPR). Decades of research show that opioids
can powerfully influence affective and motivated behaviors via
their actions in cortex (Castro and Berridge, 2017; Cole et al., 2024;
Mena et al., 2013), striatum (Al-Hasani et al., 2015; Bakshi and
Kelley, 1993; Castro and Berridge, 2014; Castro et al., 2021; Guy
et al., 2011; Massaly et al., 2019; Ragnauth et al., 2000; Toddes
et al., 2021), amygdala (Lichtenberg and Wassum, 2017; Nygard
et al., 2016), ventral pallidum (Smith and Berridge, 2007; Smith
et al., 2009; Wulff et al., 2019), ventral tegmental area (Bals-Kubik
et al., 1993; Echo et al., 2002; Margolis et al., 2014; Thomas et al.,
2022), and periaqueductal gray (Brandão, 1993; Sante et al., 2000).
Like these mesocorticolimbic regions, dorsal raphe is highly
enriched in opioids. Both enkephalin and nociceptin appear
to be primarily expressed in the lateral wings, extending into
vlPAG (Castro et al., 2021). In contrast, dynorphin is exclusively
expressed along the midline (Figure 1) and appears to partially
colocalize with serotonergic neurons (Pomrenze et al., 2022).
Receptor mRNA for MOPR, KOPR and NOPR has been found
throughout dorsal raphe, with NOPR additionally having strong
expression along the midline (Mansour et al., 1994a; Neal et al.,
1999). Surprisingly, DOPRs do not appear to be endemic to dorsal
raphe, although that does not preclude potential DOPR expression
on incoming terminals. Oppositely, while MOPR mRNA is
expressed in a large proportion of dorsal raphe neurons (about
30%) (Castro et al., 2021), receptor binding is fairly low (Mansour
et al., 1994b). This could indicate that MOPR proteins may be
enriched on downstream terminals rather than cell bodies. These
MOPR-expressing DRN neurons have been found to be largely
non-overlapping with serotonergic markers, but rather distributed
between glutamatergic and GABAergic cells (Castro et al., 2021;
Welsch et al., 2023b). Regardless, ample evidence indicates that the
dorsal raphe nucleus is enriched in endogenous opioids, suggesting
a potential role for this system in regulating behavioral phenotypes.

3.1.2 Functional effects
Dorsal midbrain opioids have been known to modulate

behavior for quite some time, but most of these effects have
been attributed to the periaqueductal gray (PAG), with the most
well-characterized function being the descending modulation of
nociception. However, a reevaluation of the literature from the
1980s and 1990s indicates that papers that ostensibly targeted the
ventrolateral PAG very likely hit portions of the lateral dorsal raphe
(Fardin et al., 1984; Monassi et al., 1999; Sim and Joseph, 1991;
Smith et al., 1994). Here, opioid agonists were generally shown
to suppress evoked behaviors, such as suppressing electrically
stimulated defensive behaviors in cats, vocalizations in guinea pigs,
or food intake in rats (Jenck et al., 1987; Kyuhou and Gemba,
1999; Siegel and Pott, 1988). More recent studies using specific
targeting have focused mostly on the opioid receptors rather than
the peptides. In general, MOPR activation in the DRN appears to
potentiate reward behaviors, and produce antinociception (Castro
et al., 2021; Ferreira and Menescal-de-Oliveira, 2014; Welsch et al.,
2023b). Negative states such as withdrawal and food deprivation
may impair the MOPR-expressing neurons in the DRN (Welsch
et al., 2023a). Additionally morphine withdrawal studies have
indicated that opioid receptors interact with the DRN serotonergic

system to modulate behavioral outputs as well as neuronal function
(Jolas and Aghajanian, 1997; Li et al., 2024; Lunden and Kirby, 2013;
Welsch et al., 2023a). Similar to its role in other regions of the
reward system, KOPR agonism in the DRN has been characterized
as an opponent process relative to MOPR. For example, whereas
MOPR stimulation increases serotonin release, KOPR stimulation
suppresses it (Tao and Auerbach, 2005; Tao et al., 2007). NOPR
DRN effects have yet to be fully explored, with just a few studies
indicating that it is modulated during state changes and antagonism
may be protective against antinociceptive tolerance to morphine
(Ge et al., 2007; Le Maître et al., 2013; Przydzial et al., 2010).

Unlike opioid receptors, which have been readily targetable
with selective pharmacology for decades, opioid peptides have
been far more difficult to study. Enkephalin in particular poses
difficulty as there are several splice variants that can have different
receptor affinities that can have profound effects on functional
interpretability. However, recent developments in opioid peptide
technology, such as the development of preproenkephalin-cre
(Penk-cre) mice and CRISPR-Cas9 knockdown viral vectors,
have allowed for the discovery of unique circuit mechanisms
important for motivated behaviors. For example, dorsal raphe
enkephalinergic projections to the NAc have been found to
modulate reward consumption (Castro et al., 2021). Parallel opioid
circuit mechanisms have also been described. For example, infusion
of nociceptin into the DRN decreases 5-HT neuron activity and
downstream serotonin release in the NAc (Nazzaro et al., 2009;
Tao et al., 2007). Similarly, a population of dynorphin expressing
DRN neurons were found to modulate opioid withdrawal-induced
social deficits via KOPR-mediated serotonin release to the NAc
(Land et al., 2009). Dynorphin, and its associated KOPR, has
been additionally implicated in regulating stress responses, as
stress manipulations and CRF injections into the DRN caused
dynorphin-dependent KOR activation (Land et al., 2008). Other
populations of DRN dynorphin neurons projecting to the VTA
activate KOPR to modulate dopamine-dependent enhancement
of drug reward learning (Abraham et al., 2022). Ultimately,
while several local and circuited-based opioidergic mechanisms
have been uncovered over the years, there remains extensive
gaps in knowledge on their precise cellular mechanisms. Moving
forward, it is imperative that we continue to isolate these
mechanisms, as well as integrate their function with known roles
for other complementary systems, such as the serotonin and
GABA/glutamate.

3.2 Corticotropin releasing factor

3.2.1 Expression patterns
Corticotropin releasing factor (CRF) has long been studied

in the context of stress and motivation (Hupalo et al., 2019;
Valentino et al., 2010). First identified in dorsal raphe in 1984
(Merchenthaler, 1984), the peptide and its receptors (CRF1 and
CRF2) have been extensively characterized in multiple vertebrates
(Alderman and Bernier, 2007; Chappell et al., 1986; Lim et al.,
2005; Mancera et al., 1991; Palkovits et al., 1985; Shu et al.,
2015). The expression patterns in the DRN appear to be state-
dependent, with stress or aversive states modulating expression and
localization of both the CRF peptide and its receptors (Chappell
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et al., 1986; Waselus et al., 2009). In general, CRF precursor mRNA
has been found in the medial DRN. In contrast, CRF receptors
have a more complex expression pattern that is dependent on the
receptor subtype. Specifically, CRF1 is sparsely present and partially
colocalized with 5-HT neurons, whereas CRF2 mostly colocalizes
with 5-HT in rostral DRN and colocalizes with GABAergic cells in
caudal regions (Day et al., 2004).

3.2.2 Functional effects
Early research indicated that DRN CRF was highly sensitive to

stressors, potentially indicating that it may interact with serotonin
systems to modulate reward or aversive processing. Support for
this hypothesis gained traction in the 1990s and 2000s, wherein
CRF stimulation was shown to modulate serotonin output and
neural activity (Calizo et al., 2011; Kirby et al., 2000; Kovács
et al., 2025; Lowry et al., 2000; Lukkes et al., 2009b; Pernar
et al., 2004; Price et al., 1998; Thomas et al., 2003). Further
work revealed that CRF primarily impacted serotonin activity by
increasing GABA release (CRF1 mediated) and sensitivity (CRF1
and CRF2 mediated), as well as effecting other surrounding cell
types (Kirby et al., 2008). Functionally, strong associations between
generalized stress responses and DRN CRF systems have been well
described (Marcinkiewcz et al., 2016). For example, restraint and
forced swim stress models elevate dorsal raphe c-fos expression
in a CRF dependent manner (Roche et al., 2003; Summers et al.,
2018). Maternal aggression and novel object exploration is reduced
after CRF administration, and CRF alone is sufficient to generate a
conditioned place avoidance. These results potentially point toward
CRF increasing anxiety and goal directed avoidance (Clark et al.,
2007; Gammie et al., 2004; Land et al., 2008; Wood et al., 2013).
Correspondingly, CRF antagonism prevents behavioral deficits due
to strong stressors, such as normally increased defensive behaviors
in socially defeated hamsters (Cooper and Huhman, 2007) or
social deficits after early-life social isolation (Bledsoe et al., 2011;
Lukkes et al., 2009a). These and other studies implicating CRF
as an important modulator of stress resilience in other brain
regions (Chudoba and Dabrowska, 2023) warrant further study
of how the DRN CRF system promotes stress coping behaviors.
Beyond endogenous or social stressors, DRN CRF also appears
to modulate responses to various drugs of abuse, particularly in
the context of stress. This appears to hold true for a variety of
drugs, including alcohol (Hwa et al., 2013; Knapp et al., 2011;
Quadros et al., 2014), psychostimulants (Reinbold Scholl et al.,
2014; Verheij et al., 2018; Zorrilla et al., 2012), and opioids
(Lunden and Kirby, 2013; Ritchie et al., 2024; Staub et al.,
2012). Future work incorporating polysubstance models would be
particularly interesting, as this may reveal unexpected synergistic
or antagonistic phenotypes.

Though beyond the scope of this review, it is notable that there
appears to be regional and anatomical heterogeneity of CRF effects
across the DRN (Day et al., 2004; Li et al., 2021; Salvatore et al.,
2018; Valentino et al., 2001; Waselus et al., 2005; Waselus et al.,
2009). Such functional localization has been observed with other
neuropeptides (e.g., opioids) in several other brain regions (Al-
Hasani et al., 2015; Castro and Berridge, 2014; Castro and Berridge,
2017; Castro et al., 2016; Parker et al., 2019; Peciña and Berridge,
2005; Smith and Berridge, 2005), but whether these effects map on
to DRN-mediated behavioral phenotypes remains to be tested.

3.3 Galanin

3.3.1 Expression patterns
Galanin is an evolutionarily conserved peptide that is typically

associated with areas like the hypothalamus and locus coeruleus.
However, multiple neuroanatomical mapping studies across
mammalian and non-mammalian vertebrates show significant
galanin peptide and receptor expression in DRN (Figure 1;
Araneda et al., 1999; Gundlach et al., 1990; Holmqvist and Carlberg,
1992; Lu et al., 2005b; Melander et al., 1986; Mennicken et al.,
2002; Skofitsch and Jacobowitz, 1985; Smith et al., 1994; Sutin
and Jacobowitz, 1988). In DRN, galanin primarily colocalizes with
serotonergic neurons (Xu and Hökfelt, 1997). However, there
is also significant innervation of galanin in DRN that appears
to be separate from DRN-derived galanin, indicating that there
may be multiple galanin subsystems associated with this region
(Xu et al., 1998). Support for this idea can be observed with
exogenous galanin infusion in DRN. Here, galanin inhibits 5HT+
neurons and decreases the expression of 5HT1A receptor and
galanin mRNA in cell bodies in a GalR3, but not GalR1 dependent
manner (Kehr et al., 2002; Razani et al., 2000; Sharkey et al.,
2008; Xu et al., 1998). These effects are thought to arise via
differential expression of the receptors on presynaptic (GalR1)
versus postsynaptic (GalR2/3) membranes (Swanson et al., 2005).
However, it should be appreciated that this system is likely
highly nuanced, as GalR2 agonism and GalR1/GalR3 antagonism
both reduce anxiety and depressive-like phenotypes (de Souza
et al., 2018; Lu et al., 2005a; Morais et al., 2016; Silote et al.,
2013).

3.3.2 Functional effects
Regardless of the precise mechanism, galanin administration

in DRN generally appears to ameliorate aversive phenotypes
(García-Durán et al., 2021). Notably, galanin and galanin
receptor expression is dynamic and responsive to stress and
therapeutic interventions. For example, painful capsaicin
exposure increases DRN galanin (Okere and Waterhouse,
2006), traumatic brain injury increases galanin and galanin
receptor mRNA (Kawa et al., 2016; Kawa et al., 2020), and
galanin receptor mRNA increases after chronic mild stress
(Wang et al., 2016). From a clinical perspective, this increase
in galanin may be part of a larger response mechanism to
rebalance galanin function to increase GalR2 activity and
decrease Gal1R activity. For example, the commonly prescribed
anti-depressant fluoxetine (a selective serotonin reuptake
inhibitor) and electroconvulsive shock increases DRN galanin
and GalR2 binding, whereas GalR2 knockout mice show enhanced
depressive-like symptoms (Lu et al., 2005a; Lu et al., 2008).
In tandem, DRN GalR1 expression is downregulated after
stress, and its recruitment appears to account for increases in
avoidance-like behaviors (Medel-Matus et al., 2017; Morais
et al., 2016). In sum, the galanin system within the DRN has
significant control over appetitive and aversive behaviors, with
functional interactions between multiple receptor subtypes
biasing behavioral responses toward one phenotype or the
other. Future studies should clarify how these galanin systems
converge in the DRN to impact behavior, as well as dissociate how
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incoming versus outgoing galanin systems regulate behavioral
phenotypes.

3.4 Neuropeptide Y

3.4.1 Expression patterns
Early studies established the presence of Neuropeptide Y (NPY)

in the DRN across species (Figure 1), including rats (Smith
et al., 1994; Yamazoe et al., 1985), lemurs (Bons et al., 1990),
newts (Perroteau et al., 1988), and lampreys (Chiba, 1999). NPY
in the DRN often colocalizes with serotonin (5-HT), suggesting
functional interactions (Blessing et al., 1986). NPY exerts its effects
in the brain mainly through the NPY receptor subtypes Y1, Y2, Y4,
Y5, and Y6 (Díaz-Cabiale et al., 2011). Of these receptors, mRNA
for Y1, Y2, and Y5 have been found throughout the DRN (Díaz-
Cabiale et al., 2011; Gustafson et al., 1997; Kishi et al., 2005; Parker
and Herzog, 1999). Detailed colocalization studies are lacking but
Y2 receptor binding is enriched on glutamatergic neurons within
the DRN, suggesting a possible relationship (Yoon et al., 2013).

3.4.2 Functional effects
NPY exerts diverse effects in the DRN, with implications

for stress, feeding, and social behaviors. Receptor-level studies
reveal distinct roles for Y1 and Y2 receptors in the DRN.
Functional studies suggest that NPY modulates GPCR but not
amino acid signaling via Y2 in DRN neurons (Kombian and
Colmers, 1992) with Y2 receptor activation suppressing food intake
via glutamatergic neurons (Nectow et al., 2017). Y1 receptor
activation leads to reduced maternal care in ad libitum-fed dams
and suppressed male sexual behavior in fed mice (Inaba et al., 2016;
Muroi and Ishii, 2015). Functional effects of Y5 receptors in the
DRN have yet to be tested. Recent work found a unique population
of NPY-expressing neurons in the DRN that are activated by
stress and when they were exogenously activated through either
chemogenetics or optogenetics they were able to improve stress
resilience, including alleviation of stress-induced hypophagia, by
interacting with Y2 receptors in the PVT and lateral hypothalamus
(Zhang et al., 2024c). Additional work has found reduced DRN
NPY levels in chronic pain and social fear conditioning models,
further highlighting its critical role in DRN-mediated behavioral
regulation (Hamann et al., 2022; Upadhya et al., 2009). Collectively,
these data indicate that NPY within the DRN may act as an
“aversion buffering” system. During endogenous recruitment, NPY
may facilitate resilience-type phenotypes, whereas its loss (e.g.,
during chronic pain) allows for unusually high aversion. Future
work is needed to elucidate the therapeutic potential of NPY within
the DRN.

3.5 Additional neuropeptides

Although the DRN has been the focus of hundreds of
studies, as this review illustrates, there is a significant paucity for
what we know regarding DRN neuropeptides. Here, we briefly
describe several poorly characterized DRN neuropeptides that
are well known to impact reward and aversion in other brain
circuits, including cholecystokinin, neurotensin, somatostatin,
and Substance P.

3.5.1 Cholecystokinin
Cholecystokinin (CCK) peptide was originally isolated from

the gastrointestinal system, but is found throughout the central
nervous system and densely in the DRN in rodents (Innis
et al., 1979) and birds (Lovell and Mello, 2011). Functional
CCK receptors reside within the DRN, and CCK application
activates DRN 5-HT neurons primarily via CCKA receptor (Boden
et al., 1991). However, CCK itself does not colocalize with
5HT-containing neurons (van der Kooy et al., 1981). There
is some variable colocalization of CCK with neurotensin and
dopamine within the DRN (Seroogy et al., 1988). This expression
pattern suggests that CCK-expressing neurons may be a distinct
subpopulation within the DRN that could have unique effects on
behavior. Limited behavioral studies have shown that DRN CCK
has diverse behavioral effects. For example, CCK-positive neurons
have been found to project from the arcuate nucleus to 5-HT cells
within the DRN (Sim and Joseph, 1991) and systemic antagonism
of CCKA receptor potentiates intra-DRN 5-HT1A agonist-induced
food intake (Currie and Coscina, 1995) and activation of DRN
CCK+ neurons suppressed food intake (Chowdhury et al., 2025).
However, direct administration of CCK to the DRN has no
effect on food intake (Blevins et al., 2000), suggesting DRN CCK
receptors may have divergent roles from the CCK peptide produced
by DRN cell bodies and released downstream elsewhere. The
mRNA for CCK is increased in the DRN following stress such
as social isolation, chronic pain, or nocebo nausea (Del Bel and
Guimarães, 1997; Keay et al., 2021; Zhang et al., 2024b). These
DRN CCK-producing neurons have been found to project to
the paraventricular thalamus, which is an important node for
emotional and motivated behaviors (Bhatnagar et al., 2000; Otake,
2005). Altogether, while evidence indicates a complex role for CCK
in DRN, more studies are needed to clarify its precise contributions
and mechanisms of action.

3.5.2 Neurotensin
Neurotensin expression in DRN was first described in the

1970s and 80s (Beitz, 1982; Jennes et al., 1982; Moyse et al., 1987;
Sutin and Jacobowitz, 1988; Uhl et al., 1979b). Its receptors were
mapped several decades later, with neurotensin receptor 2, but not
neurotensin receptor 1, expressed in DRN (Boudin et al., 1996;
Sarret et al., 2003). While its overall pharmacology is complex
(Gereau et al., 2023), the net effect of neurotensin stimulation in
DRN is to increase the excitability of serotonin neurons (Jolas
and Aghajanian, 1996), particularly in the ventromedial portion
of DRN. Functionally, neurotensin stimulation increases passive
avoidance (Shugalev et al., 2005; Shugalev et al., 2007) and
is decreased after adolescent ethanol intake (McClintick et al.,
2015). However, intracerebroventricular neurotensin blunts stress
evoked increases in serotonin biomarkers, leaving unresolved
whether neurotensin primarily increases or decreases raphe
activity.

3.5.3 Somatostatin
Like neurotensin, descriptions of somatostatin expression

in DRN of multiple species can be traced back to the 1980s
(Araneda et al., 1999; Cooper et al., 1981; Cotter and Laemle, 1987;
Fu et al., 2010; Smith et al., 1994; Spangler and Morley, 1987;
Taber-Pierce et al., 1985; Weindl et al., 1984). While somatostatin

Frontiers in Behavioral Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnbeh.2025.1553470
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/


fnbeh-19-1553470 April 5, 2025 Time: 18:27 # 7

Braden and Castro 10.3389/fnbeh.2025.1553470

TABLE 1 Summary of effects of DRN neuropeptides on rewarding or
aversive behaviors and 5-HT signaling.

Symbols indicate that either peptide infusion or receptor activation in the DRN has been
found to increase (↑) or decrease (↓) the corresponding behavior type or serotonin neuron
excitability or release. Dashes (–) indicate that there is no published data on the peptide’s
action on behavior or 5-HT flux in the DRN.

likely has direct functional effects in DRN, to date very few
studies have examined specific roles for the different receptor
subtypes. This largely forces us to speculate about potential
functions. For example, systemic administration of a somatostatin
receptor 4 (SSTR4) agonist leads to an anxiolytic phenotype
and increases c-fos in DRN (Scheich et al., 2016), perhaps
indicating that somatostatin may promote serotonin activity.
In cortex, hippocampus, and hypothalamus slices somatostatin
induces the release of 5-HT (Tanaka and Tsujimoto, 1981),
suggesting it would do the same in DRN cell bodies, but this
remains to be tested. Similarly, ventrolateral PAG/lateral DRN
infusions of SST reduces thermal nociception, again reducing
aversive responses (Helmchen et al., 1995). In line with the
concept that DRN somatostatin may reduce aversive processing,
somatostatin, SSTR1, and SSTR2 gene expression is reduced after
adolescent ethanol intake (McClintick et al., 2015). Excessive
ethanol intake is highly correlated with increased pain and
anxiety-like behaviors, but whether there is a causal role for
somatostatin in DRN on these psychological phenotypes remains
untested.

3.5.4 Substance P
Substance P is a Gq-coupled receptor that has broad expression

throughout the brain. While the peptide is predominantly
confined to the ventrolateral PAG, it does infiltrate the DRN
(Figure 1) (Baker et al., 1991; Magoul et al., 1988; Smith
et al., 1994). The neurokinin receptors (NK1, NK2, NK3) are
also expressed in DRN, with NK1 being particularly enriched
in DRN (Lacoste et al., 2006; Léger et al., 2002; Maeno
et al., 1993). Curiously, both agonism and antagonism of
NK1 receptors have been shown to increase serotonin neuron
excitability (Conley et al., 2002; Haddjeri and Blier, 2001;
Liu et al., 2002; Santarelli et al., 2001), perhaps suggesting
that different receptors or cell types may dramatically shift
ultimate physiology (Commons and Valentino, 2002; Valentino
et al., 2003). Broadly, the Substance P system has been
associated with various disease states, including depression
and chronic pain (Adell, 2004). It is therefore somewhat
surprising that comparatively little has been done to assess how

Substance P/NK receptors functionally contribute to behavioral
phenotypes. While general antagonism or knockout of NK1
receptors increases serotonin transmission and reduces aversive
behavioral profiles, causally linking these phenomena have yet
to be tested (Santarelli et al., 2001; Santarelli et al., 2002;
Schank et al., 2015).

4 Conclusion

The dorsal raphe nucleus is an extraordinarily complex
structure that has been implicated in mood, affect and motivation
for decades. Though initially described in terms of its serotonergic
architecture, further anatomical analyses now include the
lateral wings and non-serotonergic neuropeptidergic circuits.
Unfortunately, despite conscientious descriptions of dorsal
raphe neuropeptide anatomy and convincing evidence that
neuropeptides can profoundly shape behavioral phenotypes
in other limbic brain circuits, comparatively little has been
done to study dorsal raphe neuropeptides. By far the most
extensive literature relates to the role of CRF, yet even these
studies are predominantly framed from a serotonin-centric
perspective. We have illustrated this point in Table 1, where
we have summarized the currently known effects of each of the
discussed neuropeptides in the DRN on either rewarding or
aversive behaviors as well as their known effects on serotonin
neuron excitability or release. It should be appreciated that all
of the peptides have been at least studied in relation to their
effect on serotonin, but not on their DRN-specific roles in
behavior. This myopic approach could potentially limit our
appreciation for how neuropeptides systems may contribute to
behavioral phenotypes independent of, or perhaps in parallel with,
serotonin.

As experimental neuroscience technology continues to
develop, it is imperative that we appreciate how neuropeptides
are directly impacting physiology and behavior. Recent advances
in biotechnology make it possible to study these neuropeptides
with unprecedented specificity in behavioral models. The advent of
CRISPR-Cas9 has allowed for the specific knockdown of precursor
mRNA for peptides in combination with genetic Cre mouse lines.
This technology provides the opportunity to investigate their role
in behavioral paradigms and physiological functions in specific
circuits or cell types. Previous interrogation of neuropeptidergic
circuits was accomplished through pharmacology. Though
receptor selective, the inability to target specific cell types pre- or
post-synaptically has always limited interpretability. Fortunately,
the recent development of DARTs (drugs acutely restricted by
tethering) directly address this major confound. Specifically,
DARTs use a bacterial enzyme to capture and tether drugs to
defined cell surfaces, allowing researchers to pharmacologically
target specific proteins on specific cells (Shields et al., 2017;
Shields et al., 2024). As this technology continues to be optimized
and used in more model systems, it will be interesting to see
how it shapes our understanding of neuropeptide signaling.
Anatomically, the last decade of in situ hybridization techniques
have advanced to allow for much higher resolution and throughput
of transcriptomic studies. Since many peptides can be difficult to
measure (due to fast degradation, small molecular size, or natural
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biochemical instability), approaches targeting the mRNA have
allowed for much more robust localization within neural circuits
with single-cell resolution (DeLaney et al., 2018). Most recently
the development of neuropeptide biosensors has invigorated
neuropeptide research (Dong et al., 2024; Zhou et al., 2024;
Wang et al., 2023). These fluorescent GPCR sensors allow for
the detection of neuropeptide binding on a precise sub-second
timescale with single cell resolution. Notably, a suite of sensors
based on opioid receptors have been developed and validated:
δLight, µLight, κLight (Dong et al., 2024) and NOPLight (Zhou
et al., 2024). The implementation of these tools is only in
its infancy, but they have already been used to confirm that
dynorphin is released in the NAc shell in response to aversive
stimuli such as a foot shock and revealed a shift in dynorphin
dynamics throughout fear learning, wherein the κLight signal
became stronger in response to the cue rather than the shock
over more trials (Dong et al., 2024). This insight into the release
dynamics of dynorphin during behavior can also be applied to
the DRN to elucidate the contribution neuropeptides have to
its roles in reward and aversion. These and other neuropeptide
biosensors are poised to push the field forward and as they are
optimized and implemented in various models, it will lead to a
deeper understanding of neuropeptide dynamics throughout the
brain (Dong et al., 2024; Siuda et al., 2015; Wang et al., 2023;
Zhou et al., 2024).

Collectively, the dorsal raphe neuropeptides described in
this review appear to converge on a similar functional role.
Specifically, they primarily seem to bias responding, rather
than generate phenotypes per se. For example, µ opioid or
galanin stimulation attenuates aversive responses, whereas CRF
promotes it in response to specific stimuli. Perhaps more
importantly, the mechanisms through which each of these
neuropeptides produces these effects are extraordinarily nuanced.
They often include both pre- and post-synaptic mechanisms,
as well as serotonergic and non-serotonergic targets. While
some of these effects can be explained by biased activity
on GABAergic cells or by the selective expression of one
receptor versus another, there is much to do to within each
neurochemical class to disentangle their respective mechanisms.
Further complicating these analyses, some of these neuropeptides
have a degree of promiscuity or cross-system interaction. In the
case of opioids, individual precursor peptides can be cleaved
into a myriad of products, leaving unresolved whether an
“enkephalinergic” neuron is behaving as mu opioid receptor
(i.e., met-enkephalin) or delta opioid receptor agonist (i.e., leu-
enkephalin). Similarly, neurotensin has fairly selective receptors
(NTSR1 and NTSR2), but is also known to act on sortilin, a
receptor canonically shown to be involved in sorting proteins
(Nykjaer and Willnow, 2012). CRF receptors can be activated
by both CRF or urocortin, the latter of which has one
isoform (urocortin 2) that preferentially binds to CRF2 over
CRF1 (Kovács et al., 2025). Such complicated relationships
between neuropeptides and their “target” receptors will likely
define the future of neuropsychiatric drug development. As

our molecular and signaling tools become more sophisticated,
we may be able to develop positive or negative allosteric
modulators that more efficiently target and bias receptor function
without needing to oversaturate unnecessary subsystems. Looking
forward, partnerships between medicinal chemists, behavioral
neuroscientists, and molecular tool developers will be essential
for continuing the advancement of neuropeptidergic research.
Ultimately, these collaborations may reveal novel mechanisms
or points of access for future therapeutic development and will
positively shape the next several decades of neuropsychiatric
research.
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