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Introduction: The “instance theory of automatization” suggests that

automaticity relies on acquiring specific instances that enhance performance,

preventing the slower application of procedures. It has been proposed that a

low ability in instance acquisition may be the key cause of the comorbidity

among learning disorders. We investigated performance on a learning task to

test the hypothesis that difficulties in acquiring and consolidating instances

would be linked with comorbid learning disorders.

Methods: We examined the individual rate of learning of 143 young adults with

typical development (32M, 111F, mean age: 20.3) and 59 with specific learning

disorders (SLD; 12M and 47F, mean age: 20.9).

Results: Both groups significantly reduced their response times across

learning trials (following a power trend) without generalization to untrained

items, indicating that learning occurred through instance acquisition. Initially,

participants with SLD performed worse than the controls. However, they

reduced their times by about 96 sec with practice, even though their “endpoint”

(asymptote) remained slower than controls. Group differences were related

to these two scaling values, not the power curve coefficient. Subsequently,

we reclassified the sample into three groups based on the type of deficit:

one without procedural/instance deficits (“Control” group), one with selective

deficits in “procedural” tasks (“Poor procedural” group), and one with deficits in

instance-based tasks (“Poor instance” group). The poor instance group not only

showed deficits across all tasks requiring instance retrieval (i.e., arithmetical facts

and lexical representation retrieval) but was also slower (86 s) in the learning task

compared to the other groups (58 and 70 s, respectively; at least p < 0.01). The

“Poor procedural” group behaved similarly to the “Control” group.

Conclusion: Results support with the notion that a low ability to acquire and

consolidate instances may contribute to the comorbidity of learning disorders.
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1 Introduction

Developmental disorders in reading, writing, and mathematics
tend to occur in association, a phenomenon known as comorbidity
(Pennington, 2006; Landerl and Moll, 2010). About 40% of children
with dyslexia, characterized by significant and persistent difficulties
in reading accuracy and/or speed, also have low spelling skills,
while 11-70% of children with dyscalculia show comorbidity with
dyslexia (Moll et al., 2014). Similar results were obtained in
Italian, the language assessed in the present study (Savelli et al.,
2009; Trenta et al., 2009). Furthermore, it is well-known that
specific learning disorders (SLD) are also associated with other
developmental disorders, such as ADHD (e.g., Willcutt et al., 2019;
for data on Italian: Gagliano et al., 2007; Trenta and Zoccolotti,
2012).

It has been proposed that the etiology of developmental
disorders is multifactorial and that these multiple factors partly
overlap (Pennington, 2006). This approach is considerably different
from traditional cognitive modeling in which different learning
deficits have typically been examined separately. The “multiple
deficit model” (Pennington, 2006) proposes that there are shared
processes among the disorders from the etiological, neural, and
cognitive levels. Accordingly, the etiology of SLDs is multifactorial
and involves the interaction between numerous risk and protective
factors (genetic and/or environmental). These factors cause
impairment in the normal development of neuropsychological
functions, resulting in the various behavioral manifestations typical
of SLDs.

The proposal by Pennington (2006) gave rise to a considerable
amount of research focused on isolating the factors which
may contribute to the overlap among learning and other
developmental disorders (e.g., Cheng et al., 2018; Moll et al.,
2019; Raddatz et al., 2017). Our research tackled this problem by
examining which cognitive factors predict reading, spelling, and
math performance (Zoccolotti et al., 2020a, 2021b). We found
some factors to selectively predict only one behavior (reading,
spelling, or mathematics). By contrast, some predictors (including
tests of arithmetic facts and orthographic judgment) predicted
performance across all these behaviors. Considering that both tests
rely on retrieving memory traces (i.e., instances) from memory, we
proposed that the ability to acquire/recover instances explain the
comorbidity among learning disorders.

Based on these findings, we have proposed the “Multilevel
model of learning” (Zoccolotti et al., 2020b). According to
the model (Figure 1), different skills account for the partial
independence of reading, spelling, and mathematical behaviors.
Instead, comorbidity among learning disorders would be largely
due to a common difficulty in acquiring and consolidating single
events or “instances.”

It should be noted that the poor ability to acquire “instances”
does not make reading, spelling, and making computations
impossible but rather impairs the ability to do so smoothly
and efficiently through automatic processing. Indeed, learning
disabilities do not refer to a child’s inability to learn to read
or do calculations as much as to the failure to do so fluidly
and efficiently (Zoccolotti et al., 2020b). In other words, children
with dyslexia can read, but their reading is stunted, labored,
and not automatic due to controlled and voluntary sublexical

processing (Zoccolotti et al., 2021a). Similarly, a deficit in retrieving
instances in computation does not prevent the ability to perform
calculations by applying computational procedures. However, it
is much slower, time-consuming, and more error-prone than
automatically retrieving the result from memory by direct access
to arithmetic facts.

A formalization of how reference to instance learning may
contribute to the development of automatization has been put
forward by Logan (1988, 1992). According to his “Instance theory
of automatization” (Logan, 1988, 1992), one initially performs
a new task by learning and applying rules or an algorithm.
Then, as one proceeds with extended practice (associated with
formal and explicit instructions received during the school
experience), through systematic repetition of the same task, the
student moves from serial, slow and controlled processing by
applying rules (or algorithms) to automatic processing by acquiring
specific instances. Instance learning is well described by a power
function (as originally proposed by Newell and Rosenbloom,
1981). This function describes a process in which performance
improvements are progressively smaller with time and practice.
This means that after a relatively rapid performance improvement,
further improvements become progressively smaller, making the
overall acquisition process relatively long (and without a defined
endpoint). Note that automatization would occur at the point of
the nearly flat function obtained after prolonged practice (not in
the initial fast acquisition). Instance acquisition speeds up behavior
and makes performance automatic (Schneider and Chein, 2003), as
it leads to the gradual creation of memory traces that allow for the
rapid retrieval of the solution (Logan, 1988, 1992; Compton and
Logan, 1991).

This mechanism may underlie the consolidation of knowledge
in reading, spelling, as well as mathematics and, if compromised,
would contribute to the partial overlap between the different forms
of learning difficulties. Learning to read (spell or make calculations)
involves the acquisition of specific procedures. However, with
extended practice, the child learns individual targets (e.g., regular,
frequent words, but also irregular words such as “heart,” or the
output of simple mathematical operations, such as 3 × 8 = 24),
which help optimize performance.

It should be noted that there are alternative views of how
the automatization of behavior is achieved. Ullman (2004) has
proposed and developed (Ullman et al., 2020) the “Procedural
deficit hypothesis.” Accordingly, failure to automatize performance
occurs because of an inability or reduced capacity to acquire new
procedures. This proposal heavily draws on the neurophysiological
literature pointing to distinct neural circuits for procedural and
declarative processes (Ullman, 2004). Children with dyslexia
would be impaired in acquiring new procedures, and this basic
impairment would inhibit their reading acquisition. Ullman et al.
(2020) propose that a procedural deficit may underlie various
developmental disorders (including developmental language
disorder, motor-speech disorders, and dyslexia), thus contributing
to understanding their comorbidity.

Overall, the “Multilevel model of learning” (Zoccolotti et al.,
2020b) and the “Procedural deficit hypothesis” (Ullman, 2004;
Ullman et al., 2020) make different predictions on the factors
producing learning disorders and their frequency of association.
Below, we briefly summarize the studies aimed at testing the
different predictions.
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FIGURE 1

Multilevel model of learning by Zoccolotti et al. (2020b).

The Procedural deficit hypothesis has given rise to a wealth
of empirical research. Several studies have reported children with
dyslexia to be impaired in tasks such as the serial reaction time
task (e.g., Vicari et al., 2003, 2005; Howard et al., 2006; Menghini
et al., 2006, 2008) or artificial grammar learning (e.g., Kahta and
Schiff, 2016; Pothos and Kirk, 2004). However, several failures to
replicate these findings have also been reported (e.g., Kelly et al.,
2002; Rüsseler et al., 2006). Accordingly, a series of recent reviews
and meta-analyses have examined this literature but reached quite
discrepant conclusions (Lee et al., 2022; Lum et al., 2013; Schmalz
et al., 2017; van Witteloostuijn et al., 2017; West et al., 2021). Note
also that Ullman (2004) and Ullman et al. (2020) proposed a deficit
in procedural learning as the likely source of comorbidity among
learning and other developmental disorders; however, most studies
only examined children with dyslexia, thus providing a limited test
of this prediction.

The “Multilevel model of learning” (Zoccolotti et al., 2020b)
has also been submitted to an empirical test. Based on a
network study, Zoccolotti et al. (2021b) demonstrated that reading,
spelling, and calculation are supported by distinct yet partially
overlapping networks while still being interrelated. The abilities
to retrieve arithmetic facts, spell ambiguous words, and judge
the orthographic correctness of irregular fakes were the points of
contact connecting reading, spelling, and calculation performances.
These skills are attributable to the ability to retrieve mnestic units
(i.e., instances) from memory, in keeping with the idea that the
association between these three skills may be explained by the
ability to acquire instances. Evidence consistent with the “Multilevel

model of learning” (Zoccolotti et al., 2020b) also comes from
studies of children with dyslexia and orthographic dysgraphia,
which found that they have an orthographic lexicon consistently
reduced in reading and writing (Marinelli et al., 2017, 2021).
Through a “multiple single case” study examining the words
known by each child, we observed specularity of performance:
if the orthographic representation of a word was present in the
lexicon, it was identically used in reading and spelling while, if not
possessed, it was not used in either task (Angelelli et al., 2010).
This finding is in keeping with the idea that comorbidity between
reading and spelling is associated with reduced knowledge of lexical
information, i.e., individual instances.

In a sample of typically developing children, Marinelli et al.
(2021) studied the ability to acquire instances through an
alphanumeric learning test and evaluated whether this ability
underlies performance on the reading, writing, and computation
tests based on instance retrieval. Parameters indicating the ability to
acquire instances were extrapolated for each participant. A reduced
ability to form and consolidate instances in the experimental test
accounted for the difficulties in orthographic representations (in
tests of dictation and spelling judgment with ambiguous words)
and arithmetic facts (recalling from memory tables and simple
calculations). The ability to acquire instances was not associated
with any sublexical skills in reading or writing, with any tests based
on numerical skills or with logical reasoning and working memory
skills.

Overall, both the “Procedural deficit hypothesis” (Ullman, 2004;
Ullman et al., 2020) and the “Multilevel model of learning”
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(Zoccolotti et al., 2020b) have been subjected to experimental
tests. The former has generated a considerable amount of research,
although with mixed results and largely confined to dyslexia;
the latter has generated fewer studies but with somewhat more
consistent results. Interestingly, the two hypotheses make opposite
predictions as to which factors contribute to the co-occurrence
among learning disorders. For the former, co-occurrence would be
due to an inefficiency in procedural acquisition, for the latter, it
would be due to a low ability to acquire and consolidate individual
instances. We have observed that the availability of opposite
predictions might help make a more stringent test on the sources of
comorbidities (Marinelli et al., 2024). Such a test has not yet been
carried out and is the main goal of the present research.

The present study draws on research by Marinelli et al. (2021),
aiming to test the ability to acquire instances by examining a sample
of college students with various SLDs. The performance of young
adults with SLDs was compared to that of typically developing
adults, with the hypothesis that the former would perform worse
in acquiring instances. First, we compared individuals with SLDs
(independent of the type of deficit) with control observers.
Subsequently, we contrasted more directly the predictions derived
from the “Multilevel model of learning” (Zoccolotti et al., 2020b)
and the “Procedural deficit hypothesis” (Ullman, 2004; Ullman et al.,
2020). The performance of young adults with selective drops in
either instance-based skills (across reading, spelling, and math) or
procedural skills (across reading, spelling, and math) was compared
with that of young adults with no selective difficulties in either
instance or procedural processing.

Note that this is a somewhat different approach to classical
comorbidity studies that compare samples with one or more
diagnostic categories, such as children with dyslexia vs. children
with dyslexia and dyscalculia (e.g., Cheng et al., 2018; Raddatz
et al., 2017). It has been observed that clinical diagnoses refer to
“complex behavioral disorders” (Pennington, 2006) and are based
on standardized tests that call on both rule-based and item-
based processing (typically difficult to distinguish in this type
of test) (Marinelli et al., 2024). Here, we define grouping based
on consistent patterns of performance (i.e., either procedural or
instance-based processing deficit) independent of the behavior
domain to assess whether these components may capture comorbid
differences in the learning process of a novel task.

2 Materials and methods

2.1 Participants

A total of 251 Italian college students with performance within
limits on the Raven’s SPM test (Raven et al., 1998) participated
in the study. Of these, data of 33 participants whose power curve
fit on the Logan test had an R2 < 0.30 (N = 28 participants;
see Data analysis) or an extreme beta value as > of 4 (N = 5
participants) were eliminated, resulting in a final sample of 218
participants. We relied on strict criteria to select the experimental
sample. Thus, we did not consider the 16 cases with subclinical,
borderline performance (i.e., failing only in one of the tests for
the cognitive components assessed, e.g., one of the reading tests),

resulting in a final sample of 202 participants. We did not include
foreign students.

The criterion for inclusion of the group of participants with
specific learning disorders was the presence of at least one reading,
writing, or computation disorder on a standardized clinical test
(LCS-SUA; Montesano et al., 2020). The diagnosis of dyslexia was
made to participants who had pathological performance (at least
z < −1.65) in accuracy and/or speed in reading one passage and
in accuracy and/or speed in reading at least one other test (word
and nonword reading). The diagnosis of orthographic dysgraphia
was made to participants who had pathological performance (at
least z < −1.65) in a passage dictation and at least one subtest
of the Single Word and Nonword Dictation test. The diagnosis
of dyscalculia was made to participants who had pathological
performance (at least z < −1.65) in more than 50 per cent
of the math tests and a deficit in more than one domain
(calculus, arithmetic facts, and number system). See section 2.2
and Supplementary Appendix A for a description of the tests and
instruments used.

The demographic characteristics and performance in reading,
writing and math tasks of the resulting sample of adults with
learning disorders and controls are presented in paragraph 3.1.

The study was conducted according to the principles of the
Helsinki Declaration and approved by the Ethics Committee of
Psychological Research of the Humanities Department of the
University of Foggia (Prot. 011/CEpsi of 2/5/23). Participants were
tested for about 2 h (two sessions of 1 h each) in the Cognitive and
Affective Laboratory of the University of Foggia.

2.1.2 Re-classification of participants as a
function of the procedural vs. instance-based
type of deficit

The whole sample of 218 participants (including the 16 sub-
clinical participants, all with R2 > 0.30) was re-classified according
to the type of deficit shown on the screening tests. Specifically,
participants with (1) no deficit in both procedures and instances
(referred to as “Control” group); (2) a selective deficit in procedures
(referred to as “Poor procedural” group); (3) a deficit in instances
(referred to as “Poor instance” group) were identified.1

To estimate difficulties in instance-based processing, we
averaged performance in tests assessing the use of instances in
computation (Arithmetic facts, Montesano et al., 2020; Simple
Arithmetic Facts, Tables; Marinelli et al., in preparation), reading
(all conditions with irregular words of the Orthographic Judgment
test, Nardacchione et al., submitted) and spelling (Irregular word
subsets of the Word and nonword dictation test, Marinelli
et al., in preparation; Lexical spelling, Nardacchione et al.,
submitted). To estimate difficulties in procedural processing,
we averaged scores at numerical tests (Numbers Transcription,

1 It should be considered that some typically developing adults may be
classified in the “Poor instance” and/or “Poor procedural” group since the
use of the other unimpaired strategies would allow them to compensate
sufficiently for difficulties that they would not lead to a clinical diagnosis. For
example, in a very consistent orthography such as Italian the compensative
used of the unimpaired sublexical procedure might allow to reach an
adequate reading and spelling performance also in presence of a lexical
deficit. Similarly, some cases with a subclinical deficit in clinical trials
and, therefore, not examined in SLD vs. typically developing participants
comparison, may have fallen into one of three groups.
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Reading Numbers, Number Dictation; LCS-SUA, Montesano et al.,
2020; Transcription of Numbers, Find the Major (Letters), Find the
Major (Digits), Marinelli et al. (2020)), sublexical reading (Non-
word subset of the Word and nonword reading tests of Montesano
et al., 2020 and Marinelli et al., in preparation tests; Same/different
Judgment test, Marinelli et al., in preparation) and sublexical
spelling (Nonwords subsets of the Word and Nonwords Dictation
Test; Marinelli et al., in preparation). Tasks that might be solved
with both procedures were not considered for the identification of
subgroups.2

For inclusion in the “Poor procedural” group, participants had
to have a deficit in at least one procedural skill and performance in
the normal range (within one standard deviation) on the average
of the instance-based tests. For inclusion in the “Poor instance”
deficit group, participants had to have a performance of less than
1.5 standard deviations in the mean of all instance-based tests.
Note that the participants in the “Poor instance” group may also
suffer from a procedural deficit because this group included all
participants with a deficit in instances present either in isolation
or in association with a procedural deficit. For inclusion in the
control group, participants had to have a performance within one
standard deviation in both the mean of instance-based tests and in
all procedural skill-based tests. Cases that did not fit into any of the
above categories and had borderline performance between the two
categories were not analyzed in this part of the study (N = 40).

The characteristics of the resulting “Poor instance,” “Poor
Procedural” and Control groups are described in paragraph 3.3.1.

2.2 Instruments and procedures

2.2.1 Reading assessment
Reading ability was examined with: Reading Comprehension

(LCS-SUA Battery, Montesano et al., 2020), Text Reading
(LCS-SUA Battery, Montesano et al., 2020), Word and Non-
word Reading Test (LCS-SUA Battery, Montesano et al.,
2020), Word and Non-word Reading with time pressure
(Marinelli et al., in preparation), Lexical Decision in Articulatory
Suppression Condition (LCS-SUA Battery, Montesano et al., 2020),
Same/different Judgment (Marinelli et al., in preparation), and
Orthographic Judgment (Nardacchione et al., submitted). Test
procedures are described in detail in Supplementary Appendix A.

2.2.2 Spelling assessment
Writing ability was examined with Text Dictation Tests

(Montesano et al., 2020), Word Dictation Tests in Normal and
Articulatory Suppression Conditions of the LCS-SUA (Montesano
et al., 2020), the Word and Non-Word Dictation Test (Marinelli
et al., in preparation) and the Lexical Spelling test (Nardacchione
et al., submitted). Test procedures are described in Supplementary
Appendix A.

2 For example, the text and word reading and spelling tasks and the lexical
decision might be solved through reliance on either lexical (i.e., instance
retrieval) or sublexical procedure (i.e., application of the sublexical mapping
procedure) and for this reason were not considered. Similarly, mental and
written calculation tasks were not examined, as these tasks might be solved
using either counting or computational procedures, as well as through the
retrieval of arithmetic facts.

FIGURE 2

Example of a completed matrix of the experimental test.

2.2.3 Assessment of numerical and
computational skills

Numeracy and computation skills were examined with the tests
of Number dictation, Reading numbers, Arithmetic facts, Mental
calculation, Approximate Computation, Number Transcription of
the LCS-SUA tests (Montesano et al., 2020) and with the tests
of Written Calculations, Calculations in Mind, Transcription of
Numbers, Find the Major (Letters), Find the Major (Digits), Tables
and Simple Arithmetic Facts (Marinelli et al., in preparation). Test
procedures are described in Supplementary Appendix A.

2.2.4 Experimental test
The “Experimental Test” (Marinelli et al., 2021), a paper-and-

pencil test of 22 matrices (9 x 4) of 36 exercises each, was used to
test the automatization deficit. In each exercise, the participant sees
a target letter and must produce the letter which is two letters ahead
in the alphabet (e.g., A + 2 = C; D + 2 = ?). The target letters were
always the same so that participants could switch from a slower
performance due to the application of the counting algorithm (A
+ 2 = C) to a more automated one based on retrieving the solution
(C) from memory from observation of the target letter (A). Figure 2
shows an example of a completed Experimental test matrix.

In the A1 to A20 matrices, the letters tended to repeat to allow
for testing learning, while the matrices B1 and B2 included different
target letters from those in the A matrices to allow for testing
generalization. The test was preceded by a pre-test matrix of 8 items
(2 ×4) based on different letters. The test was given on a single
day but with a brief pause between the matrices A10 and A11.
Every time the participant finished performing the exercises within
a matrix, the execution time was recorded. The number of errors
and the execution times were recorded for each matrix.

2.3 Data analysis

First, we compared adults with SLD and controls on the
reading, spelling, and math tests by t tests for independent samples.
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Due to the presence of multiple comparisons (N = 21), the p < 0.05
value was adjusted to a α value based on the Bonferroni correction
(yielding a reference value of p = 0.002).

The instance theory of automatization of Logan (1988, 1992)
predicts that learning follows a power function and that the shape of
the learning curve is determined by practice, and it is closely related
to the shape of the response time distribution. The power function
is:

T = a ∗ xb
+ c

where T indicates time, a and b are scaling parameters (a is the
asymptote reflecting an irreducible limit on performance, and b is
the difference between initial and asymptotic performance), x is the
amount of practice and c, the exponent, is the rate of learning (with
higher values indicating steeper slopes). The shape of the curve
varies as the exponent varies.

Initially, we employed Equation 1 to model individual data
using a least-squares approach. This allowed us to assess whether
performance improved with practice, following a power function
consistent with the model. The asymptote, a, was constrained to
be no lower than the minimum time each observer spent on the
matrices, regardless of session number. Successively, we estimated
the three main parameters of the individual “by using Matlab
2020a (the MathWorks Inc., Natick, MA, USA)”: a, b, and c.
Moreover, for each fit, we considered the R2, a measure of the
variance explained, with higher R2-values indicating better fits.
While individual power fits were generally good, some children
exhibited irregular learning curves, leading to low individual R2

values. We applied an R2 threshold of 0.30 (Marinelli et al., 2021).
As reported in the participant section, 33 participants showed
somewhat irregular learning curves and low individual R2 values
or abnormal exponents and were eliminated from the sample. The
final median R2-values were 0.74 (ranging from 0.30 to 0.97) for the
group with SLD (N = 59) and 0.74 (ranging from 0.31 to 0.95) for
the control sample (N = 143).

One-way ANOVAs were conducted with the group (SLD
vs. controls) as the between-subjects factor and the following
parameters of the power curves at the Experimental test as the
dependent variable: scaling value a, exponential b, asymptote c,
and R2. Significant interactions were explored with Bonferroni’s
post-hoc test. These statistical analyses (and the following) were
conducted employing the software Statistica 8.0.550 (StatSoft. Inc.,
Tulsa, United States).

Then, a series of repeated measures ANOVAs were separately
carried out using matrix execution times (total number of sec to
perform each matrix) and accuracy (number of errors per matrix)
as dependent variables. To investigate the effect of learning across
experimental trials, a repeated-measures ANOVA using learning
trial (from A1 to A20 matrix) as a within-subjects factor and group
(participants with SLD vs. controls) as a between-subjects factor.
To investigate the generalization of learning, performance at the
first matrix (A1), the last one (A20) and the first matrix with new
stimuli (B1) were compared through an ANOVA with condition
(A1, A20, B1) as within-subjects factor and group (adults with SLD
vs. controls) as between-subjects factor. Note that power fits are
expected for the time measures, while no explicit prediction of
the curve of learning is made in the case of accuracy, which was
analyzed only as a control measure (these analyses are presented in

Supplementary Appendix B). Sixteen participants with subclinical
learning disorders were excluded from these analyses.

The same analyses described above were replicated with the
type of deficit (“Poor procedural”, “Poor instance”, and “Control”
groups) as a between-subjects factor. On these groups, we run
a set of analyses like those carried out on the overall sample of
participants. First, we tested the power fits on the individual and
group data; furthermore, one-way ANOVAs were conducted on
the power curve parameters of the three groups. Secondly, we
examined the learning trial effect (A1–A20) separately on response
times and accuracy. Finally, the generalization effect (A1 vs. A20 vs.
B1) was examined separately on response times and accuracy. The
analyses for the accuracy measures are presented in Supplementary
Appendix B.

3 Results

3.1 Characteristics of the sample

The control sample consisted of 143 young adults with typical
development (M: N = 32 and F: N = 111, mean age: 20.79 years,
SD: 3.11; schooling in mean years = 16.3; SD = 1.9; Raven SPM
mean score = 45.48, SD = 9.08). The experimental sample consisted
of 59 young adults with specific learning disorders (M: N = 12
and F: N = 47, mean age: 20.98 years, SD: 3.04; schooling in mean
years = 16.8; SD = 1.3; Raven score mean = 43.21, SD = 5.55).
Experimental and control groups did not differ in sex (X2 = 0.10),
age (t = 0.32, p = 0.75), and Raven’s SPM score (t = 1.53, p = 0.13).
Table 1 presents the socio-demographic variables of the SLD and
control groups.

We compared adults with SLD and controls on the reading,
spelling, and math tests by t tests for independent samples. The
performance of the experimental and control group in standardized
tests is presented in Table 2 in terms of z-score values.

As reported in Table 2, participants with SLD performed less
well than typically developing adults in all tests, except in Mental
calculation (speed). Also, group differences in Text comprehension,
and Long HF word and Long LF word writing fell short of
significance after correction for multiple comparisons. Z-scores
highlighted most impaired performance in Text, Words and
Pseudowords Reading, Lexical decisions, Arithmetic fact, Number
transcription and Number reading tests.

3.2 Learning acquisition on the
experimental test

3.2.1 Power fits
The individual fits of the data of participants with SLD and

control participants are presented in Figure 3. An inspection of the
figure indicates that the power law of learning is well represented
by these data.

Figure 4 report the power fits obtained by the two groups
of participants (median of individual data of SLD and control
participants) for response times across the 20A matrices, along
with the 95% confidence intervals. Execution times reduced with
practice according to the power law in both groups (R2 = 0.74)
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TABLE 1 Socio-demographic variables of the sample in study 1.

Adults with SLD Controls

Mean SD Mean SD t-test p

Age (years) 20.98
(range: 19-25)

3.04 20.79
(range: 18-41)

3.11 t = 0.32 0.75

Raven SPMs 43.21 5.55 45.48 9.08 t = 1.53 0.135

Gender 47 F, 12 M 111 F, 32 M x2 = 0.75 0.10

TABLE 2 Means and SDs at the LCS-SUA battery of the adults with learning disorders and controls.

Adults with SLD Controls

Mean SD Mean SD t-test p d Cohen

Reading comprehension −1.55 1.11 −0.93 1.09 2.95 0.004 0.56

Text reading (errors) −4.02 3.09 −0.74 1.08 7.54 0.000* 1.73

Text reading (syll/sec) −1.14 1.14 −0.21 0.86 4.83 0.000* 0.97

Word reading (errors) −1.78 2.14 0.00 0.72 5.97 0.000* 1.37

Word reading (speed) −1.10 1.01 −0.06 0.89 5.61 0.000* 1.11

Non-word reading (errors) −1.80 1.90 −0.17 0.81 5.95 0.000* 1.32

Non-word reading (syll/sec) −0.97 0.81 −0.11 0.97 4.90 0.000* 0.93

Lexical decision (ASC) −1.47 1.89 −0.24 1.08 4.28 0.000* 0.90

Text dictation (errors) −1.00 1.66 0.04 0.89 4.22 0.000* 0.89

Long HF word dictation −0.97 3.22 0.18 0.71 2.76 0.006 0.63

Long LF word dictation −1.41 2.17 −0.52 −0.52 2.90 0.004 0.63

Long HF word dictation (ASC) −0.99 2.02 0.26 0.58 4.61 0.000* 1.05

Long LF word dictation (ASC) −0.72 1.71 0.26 0.60 4.15 0.000* 0.93

Number dictation (tot. err.) −0.18 1.06 0.48 0.54 4.24 0.000* 0.90

Reading numbers (errors) −1.79 2.85 0.12 0.85 4.99 0.000* 0.82

Reading numbers (tot sec) −1.73 2.31 −0.40 1.22 3.90 0.000* 1.13

Arithmetic facts −2.13 1.37 −1.06 1.12 4.49 0.000* 0.90

Mental calculation (corr. resp.) −1.34 0.88 −0.82 0.82 3.19 0.002◦ 0.34

Mental calculation (tot sec) −0.53 1.42 −0.11 1.14 1.75 0.081 0.62

Approximate computation (corr. resp.) −0.85 0.83 −0.11 1.38 3.28 0.001* 0.59

Number transcription (in numbers) −2.09 1.48 −0.43 1.90 4.96 0.000* 0.93

The data are z-scores, with negative scores indicating pathological performance. Group comparisons were carried out by t test for independent samples with an α adjusted for multiple
comparisons of 0.002 by Bonferroni correction. NC, normal condition; ASC, articulatory suppression condition; HF, high frequency, LF, low frequency. *p < 0.002; ◦p = 0.002.

with the following mean global parameters: a = 106.70, b = −0.85,
c = 56.55 for the group with SLD and a = 58.38, b =−0.78, c = 42.41
for the control group.

Figure 4 also shows the performance of the two groups
of participants in the novel (B) matrices (and the standard
errors). Note that performance on the B1 matrices is considerably
worse than that on the last learning trial (A20), indicating little
generalization of performance, as expected. Again, participants
show an improvement already by a second presentation of these
B matrices (B2). The comparison with the B matrices indicates
little generalization of performance as expected based on instance
learning.

The one-way ANOVAs between the two groups on the
parameters of the power fits are presented in Table 3. The group
effect for the scaling value “a” (initial performance) was significant
[F(1, 200) = 22.76, MSE = 97,519, p < 0.001, ηp

2 = 0.10]: adults

with SLD (106.70 ± 8.52 s) showed higher “a” values than controls
(58.38 ± 5.47 s). The analysis on parameter “c” (asymptote)
revealed that adults with SLD (56.55± 1.63 s) showed higher values
for this parameter compared to the control group [42.41 ± 1.04 s;
F(1, 202) = 52.99, MSE = 8,351.1, p < 0.001, ηp

2 = 0.21]. In contrast,
no differences emerged concerning the “b” exponent and R2, which
were similar in the two groups.

3.2.2 Effect of learning repetition (execution
times)

The ANOVA on matrix execution times highlighted the
significance of the main effect of group [F(1, 200) = 70.03,
MSE = 413,805, p < 0.001, ηp

2 = 0.26]: the control participants
(58.11 ± 1.43 s) were faster to solve the task compared to
the adults with SLD (80.37 ± 2.23 s). The main effect of the
learning trial was significant [F(19, 3800) = 143.15, MSE = 54,678,
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FIGURE 3

Power fits applied to the median performance of young adults with SLD and controls in study 1.

TABLE 3 One-way ANOVAs on the power curve parameters of the experimental test in study 1.

Adults with SLD Controls

Mean SD Mean SD df F p η2

a scaling value 106.70 8.53 58.38 5.47 1,200 22.76 <0.001 0.102

b exponential −0.84 0.05 −0.77 0.03 1,200 1.42 0.23 0.007

c asymptote 56.54 1.63 42.40 1.04 1,200 52.99 <0.001 0.209

R2 0.68 0.02 0.71 0.01 1,200 1.34 0.25 0.006

p < 0.001, ηp
2 = 0.42], indicating a learning effect across the 20

repetitions. With practice, matrix execution times decreased from
A1 (126.50 ± 5.06 s) to A20 (53.87 ± 1.06 s.), i.e., by about 73 s
(p < 0.043). The group by learning interaction trial was significant
[F19, 3800) = 13.72, MSE = 5,242, p < 0.001, ηp

2 = 0.06]. Results
showed a larger decrease in matrix execution times with practice
in adults with SLD (about 96 s from A1 to A20, with an average
reduction per trial of 5.03) than in controls (about 50 s from A1 to
A20, average reduction per trial = 2.61 s). Moreover, results showed
a difference between groups: SLD participants were slower than
control participants in all trials (at least p < 0.05) except for A13,
A18 and A20, in which comparisons between groups did not reach
statistical significance.

The ANOVAs on accuracy scores are reported in
Supplementary Appendix B1.1.

3.2.3 Testing generalization to new target stimuli
(execution times)

The “instance theory of automatization” by Logan (1988, 1992)
predicts that there will be no (or little) generalization when new
target stimuli different from the ones subjected to practice are
used. Figure 5 shows the generalization to new stimuli in the
two groups. The main effect of the group factor was significant
[F(1, 200) = 65.51, MSE = 191,295 p < 0.001, ηp

2 = 0.24]: adults with

SLD (113.80± 4.06 sec) were slower than controls (74.72± 2.60 s).
The effect of the condition factor was significant [F(2, 40) = 147.76,
MSE = 228,640, p < 0.001, ηp

2 = 0.42]: performance in the
B1 presentation (102.42 ± 3.04 s) was much slower than the
performance at the A20 matrix (53.87 ± 1.06 s) but faster than the
performance in the A1 (126.50 ± 5.05 s) presentation (about 24
s, p < 0.001). The group by condition interaction was significant
[F(2, 400) = 14.574, MSE = 22,552, p < 0.001, ηp

2 = 0.06]. The group
difference was significant for A1 (p < 0.001) and B1 conditions
(p < 0.001), with slower performance in adults with SLD compared
to controls but not in A20, in which the two groups showed similar
response times (p = 0.63).

The ANOVAs on accuracy scores are reported in
Supplementary Appendix B1.2.

3.3 Learning "instances" according to the
type of deficit

3.3.1 Characteristics of the “Poor instance,” “Poor
procedural,” and control groups

Overall, we obtained a “Poor instance” group of 24 participants,
a “Poor Procedural” group of 22 participants, and a “Control”
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FIGURE 4

Power fits for the group of adults with SLD (solid red line) and controls (solid blue line) in the 20A sessions with 95% confidence intervals (dashed
lines). Data are fit with a power function (see section 2). The parameter fits were a = 107, b = −85, and c = 57 for the group with SLD; a = 58,
b = −78, and c = 42 for the control group. The histograms indicate the execution times for the novel (B) matrices (with standard errors).

group of 132 participants (for characteristics of these groups see the
Results section).

The “Poor instance” group consisted of 24 participants (F = 18,
M = 6; mean age = 21.70 years, SD = 5.51; schooling in years:
Mean = 17.0, SD = 1.4; Raven Score: Mean = 41.47, SD = 6.06);
the “Poor Procedural” group consisted of 22 participants (F = 21,
M = 1; mean age Mean = 21.33 years, SD = 5.43; schooling in
years M = 16.9, SD = 1.8; Raven Score Mean = 44.78, SD = 3.74);
the “Control” group of 132 participants (F = 100, M = 32; age
M = 19.96, SD = 2.30; schooling in years M = 16.2, SD = 1.9; Raven
Score Mean = 48.18, SD = 3.97). The groups did not differ in age
[F(2, 89) = 1.98, p = 0.11] or schooling [F(2, 89) = 0.56, p = 0.63].

3.3.2 Power fits
The fits applied to the median of the data of each group

are presented in Figure 6. Execution times reduced with practice
according to the power law in all groups (parameters are reported
in the legend of the figure).

The one-way ANOVAs on the power curve parameters are
presented in Table 4. The ANOVA on scaling parameter “a”
revealed a significant difference among groups [F(2,175) = 14.45,

MSE = 65817.1, p < 0.001, ηp
2 = 0.14]: the participants in

the Poor instance group (139.09 ± 13.77 s) showed higher
scores than the those in the Poor procedural (71.39 ± 14.38 s;
p = 0.002) and Control (58.58 ± 5.87 s; p < 0.001) groups.
Poor procedural and control group did not differ between them
(p = 1.00). The ANOVA on scaling parameter “c” (asymptote)
revealed a significant difference among groups [F(2, 175) = 22.21,
MSE = 2636.1, p < 0.001, ηp

2 = 0.20]: the participants in the Poor
instance (56.48 ± 2.22 s) group showed higher values compared
to those in the Control group (42.00 ± 0.94 s; p < 0.001); the
participants in the Control group showed lower scores compared to
those in the Poor procedural group (51.47± 2.32 s; p < 0.001). The
Poor instance group showed similar values of asymptote compared
to Poor procedural group (p = 0.326). The one-way on parameter
R2 revealed a significant difference among groups [F(2,175) = 3.493,
MSE = 0.097, p = 0.032, ηp

2 = 0.03]: the Poor instance (0.63± 0.03)
group showed lower determination coefficients compared to the
Control (0.72 ± 0.01, p = 0.065) group but similar to the Poor
procedural group (0.66± 0.03, p = 1.00); the Poor procedural group
showed similar values than the Control group (p = 0.33). For the
exponential “b,” the effect of the group was not significant.
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FIGURE 5

Generalization of learning in the Experimental Test in adults with SLD and controls in Study 1. Error bars indicate confidence intervals. A1: initial
learning test; A20: last learning matrix; B1: first matrix with different target letters.

FIGURE 6

Learning effects in the Experimental Test in the “Poor instance,” “Poor procedural,” and “Control” groups of participants. Data are fit with a power
function (see section 2) with the following parameters: a = 139, b = −77, and c = 56 for the “Poor instance” group; a = 71, b = −79, and c = 51 for the
“Poor procedural” group; a = 59, b = −77, and c = 42 for the control group. The dashed lines represent the 95% confidence intervals. The histograms
indicate the execution times for the novel (B) matrices.

3.3.3 Effect of learning repetition (execution
times)

The ANOVAs on matrix execution times highlighted the
significance of the main effect of group [F(2, 175) = 34.30,
MSE = 178,582, p < 0.001, ηp

2 = 0.28]: the Control group
participants (57.68 ± 1.40 s) were faster compared to
both participants in the Poor procedural (70.26 ± 3.43;

p = 0.002 s) and Poor instance (86.25 ± 3.29; p < 0.001 s)
groups. Moreover, the Poor procedural group participants
were faster than those in the Poor instance group
(p = 0.002).

The main effect of the learning trial was significant
[F(19, 3325) = 93.67, MSE = 36,502, p < 0.001, ηp

2 = 0.34],
indicating a significant learning effect across the 20 trials:
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TABLE 4 One-way ANOVA on the power curve parameters of the experimental test in study 2.

Poor instance group Poor procedural group Control group

Mean SD Mean SD Mean SD df F p η2

a Scaling value 139.09 13.77 71.39 14.38 58.58 5.87 2,175 14.45 <0.001 0.142

b Exponential −0.76 0.07 −0.79 0.07 −0.77 0.03 2,175 0.94 0.95 0.000

c Asymptote 56.48 2.22 51.47 2.32 42.00 0.94 2,175 22.21 <0.001 0.202

R2 0.63 0.03 0.66 0.03 0.72 0.01 2,175 3.49 0.032 0.038

Comparison of “Poor procedural,” “Poor instance,” and “Control” groups.

execution times decreased with practice from A1 (133.50 ± 6.89 s)
to A20 (54.94± 1.33 s) by about 79 s (p < 0.030).

The group by learning trial interaction was significant
[F(38, 3325) = 8.87, MSE = 3,458, p < 0.001, ηp

2 = 0.09]. In particular,
results showed a significant decrease in response times with practice
in all groups, but larger in the Poor Instance group (about 123 s
from A1 to A20, average of reductions for each additional learning
trial = 6.48), compared to the Poor procedural group (about 62
s from A1 to A20, average decrease for each additional learning
trial = 3.29), and the Control (about 50 s from A1 to A20,
average decrease for each additional learning trial = 2.63) group.
Participants in the Control group reduced their times by 43 s from
A1 (Mean 96.29 s) to A11 (53.06 s) and 6.75 s from A11 to A20
(46.30). The participants in the Poor instance group reduced their
times by 98.87 s from A1 (Mean = 187.20 s) to A11 (88.33 s)
and by 6.75 s from A11 to A20 (64.08 s). The participants in the
Poor procedural group reduced their times by 52 s in solving the
matrices from A1 (Mean 117 s) to A11 (64.04 s) and 9.59 s from
A11 to A20 (54.45 s).

Moreover, results showed a difference among groups: the
participants in the Poor instance group were slower compared to
those in the Poor procedural group only in A1 and A2 presentation
(p < 0.001 for both comparisons) and compared to the Control
group in the first 10 trials (at least p < 0.008). The “Poor
procedural” and “Control” groups did not differ between them.

The ANOVAs on accuracy scores are reported in
Supplementary Appendix B2.1.

3.3.4 Testing generalization to new target items
(execution times)

The main effect of group was significant [F(2, 175) = 27.66,
MSE = 73,664, p < 0.001, ηp

2 = 0.24]: the “Poor instance” group
participants (123.22 ± 6.08 s) were slower to solve the task
compared to both those in the “Poor procedural” (89.84 ± 6.35
s; p < 0.001) and “Control” (74.62 ± 2.59 s; p < 0.001) groups.
The “Poor procedural” and “Control” groups did not differ between
them. The condition effect was significant [F(2, 350) = 97.96,
MSE = 147,418, p < 0.001, ηp

2 = 0.35]. There was a significant
decrease in execution times (about 78 s) between A1 and A20
(p < 0.001) and a significant increase in the condition with
new stimuli (B1) compared to the A20 presentation (about 44 s.,
p < 0.001). The performance in the B1 presentation (99.25 ± 3.22
s) was much slower than the performance at the A20 matrix
(54.94 ± 1.33 s) but faster than that in the A1 (133.50 ± 6.89 s)
condition (about 34 s, p < 0.001).

The group by condition interaction was significant
[F(4, 350) = 9.75, MSE = 14,670, p < 0.001, ηp

2 = 0.10; see

FIGURE 7

Generalization effect in the Logan Test in “procedural,” “instance,”
and control participants in Study 2. Error bars indicate confidence
intervals. A1: initial learning test; a20: last learning matrix; b1: first
matrix with different letters.

Figure 7]. Response times decreased with practice from A1 to A20
in all groups, but the difference was larger in the “Poor instance”
group (p < 0.001; about 123 s) compared to the “Poor procedural”
(p < 0.001; about 62 s) and “Control” (p < 0.001; about 50 s)
groups. The three groups showed a significant and similar increase
in times in the condition with new stimuli (B1) compared to
the A20 (“Poor instance” group: about 54 s, p < 0.001; “Poor
procedural” group: about 43 s, p = 0.008; and “Control” group:
about 35 s, p < 0.001). Finally, performance in the B1 presentation
was much faster than in the A1 only for the “Poor instance” group
(about 68 s, p < 0.001).

The ANOVAs on accuracy scores are reported in
Supplementary Appendix B2.2.

4 Discussion

The study examined the performance of college students in
a novel task in which the participant must learn to apply a new
rule to already acquired information (alphabet). With practice,
participants became progressively faster and, as expected, the
learning progress followed a power function curve. Execution times
substantially slowed down when the ability to respond was tested by
changing the target stimuli in matrix B1. This pattern indicates the
substantial absence of generalization of learning consistent with the
idea that this occurs through acquiring specific instances (Logan,
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1988, 1992). This pattern of results is generally consistent with what
Marinelli et al. (2021) observed with a developmental sample.

The results revealed substantial differences between
participants with SLD and controls. SLD participants started
their performance at a much lower level than the controls but
made appreciable improvements with exercise even though their
“endpoint” of training-related learning (i.e., asymptote) was
significantly slower than controls. The control participants started
with a more effective (i.e., faster) performance and increased
their performance by reaching a significantly lower asymptote. It
should be noted how the differences between the two groups are
related to these two scaling values, while there were no differences
in the learning trend; in other words, the trend of performance
improvement in the two groups of participants had the same power
curve coefficient. Consistent with the hypotheses, as a group,
participants with SLD had a higher asymptote (i.e., slower times)
at the end of learning, index of difficulty in efficiently forming
single representations of the solution of various target stimuli (or
instances). This finding is in keeping with the idea formulated
based on the “multilevel model of learning” by Zoccolotti et al.
(2020a,b) that difficulty or inefficiency in forming individual
memories may contribute to overall performance in school
learning tasks, such as reading, spelling, and computation.

However, as presented in the introduction, there are alternative
views to explain the deficit of automatization. According to the
“Procedural deficit hypothesis” (Ullman, 2004; Ullman et al., 2020),
automatization is achieved through procedural (not declarative)
processes. To test these alternative interpretations, participants
were divided into two sub-groups, one failing in instance-based
types of tests (“Poor instance” group) and one failing in procedural
tests (“Poor procedural” group) across the three domains tested
(reading, spelling, and mathematics). This allowed us to put this
contrast to an empirical test.

Results indicated marked differences among the three groups
of participants analyzed. The participants in the Poor instance
group had significantly slower initial performance (as indicated by
a significant difference in scaling value a) and a higher endpoint
(i.e., slower times at the end of the training period) than the
participants in the Control group but also of participants of the
Poor procedural group. These results are consistent with the
hypothesis that one of the relevant components in accounting
for performance in complex behavioral tasks is the ability to
acquire and consolidate single event memories (instances) and that
this component is domain-independent (i.e., it influences reading,
spelling, as well as math performance) (Zoccolotti et al., 2020b).
Thus, according to this interpretation, the observed results indicate
an association between the difficulty in constructing individual
memories (instances) in a (relatively) novel task and performance
in established behaviorally in different domains which rest upon the
knowledge of item-based information, such as writing or judging
(through reading) ambiguous words and recalling arithmetic facts
and lexical representation for spelling or performing orthographic
judgment tasks (i.e., reading) with irregular words.

Participants in the Poor procedural group were defined by
difficulties with at least one procedure in one of the target behaviors
(i.e., reading, writing, or computation). Although exhibiting this
difficulty, these participants showed a performance in the learning
task that was very similar (although not identical) to that of the
participants in the “Control” group; further, they also showed

similar performance in the expected failure to generalize to novel
stimuli. These results also appear consistent with the predictions of
the “Multilevel model of learning” (Zoccolotti et al., 2020a, 2021b).
Accordingly, a procedural-type deficit has a relevant specific effect
but does not impair the ability to perform tasks requiring item-
based information. Therefore, according to this interpretation,
these participants can use information related to “instances” to
partially compensate for their reading, spelling, or calculation
difficulties.

The presence of different learning endpoints is consistent
with the idea that participants with SLD (particularly those
with poor instance performance on clinical tests) have difficulty
efficiently forming single representations of the solution of various
target stimuli (or instances). By contrast, it is more complex
to understand why adults with SLD perform differently at the
beginning of training. An interesting theoretical interpretation has
been proposed by Speelman and Kirsner (2006). According to
these authors, even “hypothetically new” tasks nevertheless also
require recall of skills previously acquired by the participants,
and the performance observed is related to a mix of these two
components.3 Indeed, even the experimental task here requires
prior knowledge (related to knowing the alphabet). Thus, the
initial task slowness observed in adults with SLD as a whole and
in the participants of the Poor instance group can be thought
of as partially related to the inefficiency in recalling alphabet
information to integrate it with the demands of the new task. If this
interpretation were correct, the stronger initial slowness and the
higher asymptote would be two sides of the same difficulty in stably
acquiring information in memory. Of course, this interpretation
requires further investigation and should be considered, at present,
as a working hypothesis to be subject to further experimental
investigation.

Ideally, to contrast the impact of procedural- and instance-
based deficits, it would be optimal to subdivide each group
according to the type of learning disorder. Accordingly, one could
contrast groups of participants with procedural deficits in either
reading, spelling, or mathematics. However, in the present study,
there were not enough participants to make such subdivisions, and
this remains an object for future research. However, the participants
with poor procedural skills behaved very similarly to the control
participants independently of the learning domain. Thus, it seems
unlikely that a procedural deficit in a specific learning domain
would show a deviant result. Similarly, the group with poor
instance-based skills included participants with different patterns
of impairments across domains, and the potential role of domain
specificity may only be ascertained by further research. Another
limitation is the presence of participants who experience a co-
occurring procedural deficit among poor Instance groups. Further
studies with larger samples might be helpful to examine the impact
of this concomitant deficit. Another note of caution refers to the

3 In a careful examination of this issue, Speelman and Kirsner (2006)
conclude that “. . .in most cases, learning a new task involves continued
practice on old skills. These are skills that have been practiced in the context
of some other task. Learning a new task will also involve the development
of new skills. These are skills that are required to fill the gap between the
repertoire of old skills possessed by the trainee and the skills necessary to
perform the new task. These new skills will involve both task-related skills
and skills for integrating the functioning of old and new task-related skills”
(Speelman and Kirsner, 2006, p. 55).
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generalizability of results to populations speaking languages with
more inconsistent orthographies. Italian orthography, the object
of the present study, is very consistent, such that a lower reliance
on lexical procedure has been compared to more inconsistent
orthographies (Marinelli et al., 2015, 2016, 2020, 2023). This could
make the instance acquisition deficit in SLD participants less
evident compared to other languages.

Even with these limitations, the results of the present study
provide insights into the likely source of comorbidities across
different learning disorders. It appears that both rule-based
and instance-based processing contribute to the performance in
standardized tests of reading, spelling and math, which may lead to
the diagnosis of dyslexia, dysgraphia or dyscalculia. These learning
disorders are sometimes present in isolated form but are also
frequently associated. Thus, we need to understand both the source
of dissociations and associations across such learning disorders.
The present results indicate that a low ability to acquire and
consolidate instances may be at the base of the comorbidity of
learning disorders; by contrast, there was little indication that
procedural processing would contribute to such comorbidities.
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