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Nanjing, China, 3The Fourth Affliated Hospital of Nanjing Medical University, Nanjing, China, 4Nanjing
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Introduction: Perfluorooctane sulfonic acid (PFOS), a persistent perfluoroalkyl

substance with ubiquitous environmental distribution and bioaccumulative

potential, has raised significant public health concerns due to its association

with neurodevelopmental disorders. This study investigates vitamin A’s

neuroprotective capacity against PFOS-induced toxicity, particularly focusing on

social behavior deficits—a core phenotype of autism spectrum disorder (ASD).

Methods: Zebrafish larvae were exposed to 1 µM or 5 µM PFOS (with/without

5 nM vitamin A co-treatment) from 24–144 hours post-fertilization (hpf). Control

groups received 0.01% DMSO (vehicle) or 5 nM vitamin A alone. Developmental

parameters (body length, heart rate), locomotor activity (total distance moved),

and neurobehavioral endpoints (conspecific interaction) were quantified using

automated tracking systems (ViewPoint ZebraLab). Neurochemical alterations

were assessed through qPCR (dopaminergic genes) and AO staining (apoptosis).

Results: PFOS exposure (5 µM) significantly increased inter-individual distance

(IID) and reduced physical contact frequency during social interaction

tests. Neurochemical analyses revealed concurrent dopamine transporter

downregulation and apoptosis-related gene activation . Vitamin A co-treatment

attenuated these effects.

Discussion: Our findings demonstrate that PFOS disrupts early social

neurodevelopment through dopaminergic dysregulation and apoptotic

signaling, while vitamin A exhibits counteractive potential. this study elucidates

the impact of PFOS exposure on zebrafish social behavior and brain

development. while highlighting the neuroprotective potential of vitamin A

against PFOS exposure, These findings have significant guiding implications for

the development of public health policy and provide a scientific foundation for

comprehending the neurotoxicity of PFOS and developing effective intervention

measures.
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1 Introduction

Perfluorooctane sulfonic acid (PFOS), a type of fluoride
persistent organic pollutant (Domingo and Nadal, 2019), has
been widely used in both industrial and consumer products
(Ochoa-Herrera et al., 2016; Post, 2021). It is highly valued for
its unique physical and chemical characteristics and is often
used in the manufacture of food packaging (Zhang Y. et al.,
2023), non-stick cookware (Kang et al., 2018), cosmetics (Jane
et al., 2022), and waterproofing/lubricants (Arrieta-Cortes et al.,
2017). Despite its utility, PFOS has raised significant health
and environmental concerns due to its persistence and capacity
for bioaccumulation. Research indicates that PFOS may pass
through the blood-brain barrier and enter the brain (Hong et al.,
2024; Xie et al., 2024). It may additionally influence nerve cell
differentiation and proliferation, as well as disrupt the production
and distribution of neurotransmitters (Sun et al., 2018; Yang et al.,
2024). Environmental exposure to PFOS is therefore associated
with a range of potential health risks (Holder et al., 2023; Oulhote
et al., 2016; Ritscher et al., 2018). In response, governments
have implemented measures to reduce its use and limit pollution
caused by its disposal. Despite governmental efforts to limit PFOS
emissions, they remain persistent in the environment and poses a
long-term threat to human health (Fiedler et al., 2022; Southerland
and Birnbaum, 2023; van der Veen et al., 2023).

Dopamine (DA), a monoamine neurotransmitter (Costa
and Schoenbaum, 2022), plays a crucial role in maintaining
neurotransmitter balance, regulating neuronal excitability and
signaling, and supporting overall brain function (Hou et al., 2024;
Li et al., 2022; Speranza et al., 2021). DA transmission influences
behavior, cognition, and motor functions (Akiti et al., 2022;
Kalyn et al., 2023; Ning et al., 2016). DA deficiencies have been
linked to various conditions, including depression and attention
deficit/hyperactivity disorder (Dong et al., 2023; Regan et al.,
2022; Wu et al., 2023). The essential role and distinctiveness of
dopaminergic neurons in the control of brain function have been
elucidated by resent investigations into the regulatory function of
midbrain dopaminergic neurons in the nervous system. Ju Wang
et al. discovered that DA levels may influence social interactions
through the gut microbiota of zebrafish (Wang J. et al., 2022). A
Study conducted by Solie et al. on social behavioral representations
in mice further demonstrated that different subsets of midbrain
DA neurons modulate emotional cognition and motor function
by targeting the striatum and cortex (Solié et al., 2022). In a
study conducted by Wang et al. at Zhejiang University, they
discovered that the neural mechanisms underlying social behavior
are significantly influenced by dopaminergic activities (Wang et al.,
2021). A study on the effects of cerebellar DA receptors on
social behavior further demonstrated that DA receptors influence
social abilities in mice by regulating synaptic plasticity (Cutando
et al., 2022). This research underscores the importance of DA
in cognitive and social functions, suggesting that targeting its
pathways could be beneficial in mitigating social and neurological
disorders.

In recent years, there has increased state focus on vitamin A
levels in children and pregnant women due to growing awareness
of health issues affecting these vulnerable populations. According
to UNICEF approximately 140 million children worldwide are

deficient in vitamin A, underscoring a significant global public
health challenge (Chen et al., 2021). As a lipophilic vitamin,
Vitamin A plays a crucial role in neural patterning and
in promoting neurogenesis within the central nervous system
(Shearer et al., 2012; Vo et al., 2023). Research indicates that
insufficient levels of vitamin A impact the production and release
of DA (Marie et al., 2022), a neurotransmitter that can lead
to movement abnormalities (Carta et al., 2006). Retinoic acid,
derived from Vitamin A, has been effective in halting DA
neuron degeneration in rodent models of Parkinson’s disease
(Esteves et al., 2015; Friling et al., 2009; Spathis et al., 2017;
Yin et al., 2012). Furthermore, our previous research has
demonstrated that vitamin A can reduce autism-like symptoms
in zebrafish larvae exposed to VPA, an anticonvulsant and
mood-stabilizing drug (Wang et al., 2024) Other studies have
also reported that vitamin A relieves autism-like symptoms
in rats and exerts a protective effect on neurodevelopment
(Liu et al., 2022; Zhu et al., 2024). This findings suggest
that Vitamin A may have therapeutic potential in mitigating
neurodevelopmental issues and social impairments associated with
PFOS exposure.

Based on the reviewed research, we hypothesize that PFOS
exposure elevates DA levels and induces apoptosis, thereby
potentially disrupting neurodevelopment and impairing social
behaviors. This study aims to explore the impact of PFOS on
zebrafish neurodevelopment, specifically assessing its effects
on the DA system and apoptosis. We propose that vitamin
A supplementation may mitigate these adverse effects by
reducing elevated DA and apoptosis levels caused by PFOS,
potentially decreasing neurological damage. Our findings
are expected to enhance the understanding of PFOS-related
neurotoxicity and support the development of evidence-based
public health policies.

2 Materials and methods

2.1 Chemicals

Dimethyl sulfoxide (DMSO, ST038) was obtained from
Biyotime. PFOS (CAS Number: 1763-23-1, purity 92.5%) was
purchased from Dr. EhrenstorferTM Company, Germany. Acridine
Orange (AO) Stain (CA1143, 1 mg/mL) was available at
Solarbio, Vitamin A palmitate (CAS No: 79-81-2, purity ≥ 98%),
N-Phenylthiourea (PTU) (CAS No: 103-85-5, purity ≥ 98%), and
tricaine methanesulfonate (MS-222, purity ≥ 98%) were purchased
from Sigma Aldrich.

Using DMSO as a solvent, PFOS was prepared at a
concentration of 1 M. The undiluted PFOS was stored in a dark
place at −20◦C. The concentration of PFOS in the environment
ranges from 0.14 nM to 5 µM (Calafat et al., 2019; Cordner et al.,
2019; Yu et al., 2020; Zeng et al., 2019), so we chose 1 µM (low
concentration group) and 5 µM (high concentration group) as our
exposure doses. while the DMSO content in the control group was
maintained at 0.01%. In this study, vitamin A at a concentration
of 5 nM was selected for intervention based on the findings from
previous studies (Wang et al., 2017).
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2.2 Zebrafish compound exposure and
toxicity

2.2.1 Zebrafish and Husbandry
Adult zebrafish (3-month-old, TU) were obtained from

Nanjing Yaoshunyu Biological Company. During the breeding
phase, the zebrafish were housed in semi-recirculated water
maintained at a pH of 6.5–7.5, hardness of 6–7, and a temperature
of 25–26◦C. Periodic cleaning of the fish tank was conducted as
necessary. The fish were fed shrimp shells once in the morning and
evening, and their feeding light was maintained at a 14-h light/10-h
dark cycle. The breeding density was 6 fish/L. To generate embryos
for the experiment, adult fish were propagated a couple of times
a week, For each propagation Each time, adult fish were placed in
a breeding tank equipped with an inner tank, using a 2:1 female-
to-male fish ratio. Additionally, two-thirds of the system’s water
was supplied. The following morning, at 8:00 a.m., the divider
was taken down, allowing the zebrafish to engage in courtship and
spawning behavior. The first 120 h post-fertilization (hpf) embryos
were raised in incubators at 28◦C. After 120 hpf, the embryos
were transferred to a natural aquatic environment and fed three
times daily with systematic water. All zebrafish experiments were
approved by the Institutional Animal Care and Use Committee of
Nanjing Medical University (IACUC-2309013).

2.2.2 Zebrafish embryo exposure
According to OECD Test No. 236: Fish Embryo Acute

Toxicity (FET) Test (Organisation for Economic Co-operation and
Development. 2013)., the early development stage of zebrafish
embryos is particularly sensitive to toxic substances (Kimmel et al.,
1995), Therefore this study began to infect the embryos at 0 hpf.
Healthy embryos were randomly selected and placed into 60-
mmpetri dishes with 30 embryos in each dish. PFOS solution of
1 and 5 µM with or without 5 nM VA were added, respectively, for
toxic exposure. The exposure duration was 0–144 hpf.

2.2.3 Assessment of general developmental
toxicity of zebrafish

Randomly divide healthy embryos into three groups, with 30
embryos in each group. Add 0.01% DMSO, 1 and 5 µM PFOS to the
embryos in the three groups respectively. Mortality and hatching
status were recorded every 24 h. Dead juvenile fish or embryos
were promptly removed. To observe spontaneous tail-wagging
movement, zebrafish embryos were incubated for 24 h. Each
embryo was gently placed into a 24-well plate containing embryo
culture medium. At 25◦C, the spontaneous tail-wagging movement
of each embryo was recorded for 1 min using a stereomicroscope.
Tail-wagging was defined as a complete lateral bend of more
than 30◦ along the body axis. Eight embryos from each group
were analyzed, and the recorded videos were reviewed by two
blind observers to ensure consistency. The embryo heartbeats
were assessed after 48 hours. The embryos were placed under a
stereomicroscope with their back facing upward. Heart rates were
recorded over a 20-s interval, with 6 embryos analyzed per group.
All embryos were independently evaluated by two researchers
during the observation.

At 72 hpf, zebrafish larvae from the various infected groups
were randomly selected. A Leica microscope was used to capture

images and measure both the body length and head area of
zebrafish. 10 larvae were recorded in each group.

2.3 Zebrafish behavior

The motor behavior of zebrafish was assessed at 144 hpf. At this
time, the motor behavior of zebrafish was relatively stable, and their
responsiveness to environmental changes and external stimuli was
elevated, which could better reflect the influence of poisoning on
movement (Correia et al., 2024; Leite et al., 2025; Santos et al., 2024;
Xu et al., 2024).

2.3.1 Open field test
Open field experiment was employed to assess the motor

ability and novelty-induced responses response of larvae. In this
experiment, fish are placed in a novel habitat (5 cm × 5 cm × 3 cm).
A nested square, measuring 2.5 cm per side—50% of the original
square’s side length—was constructed at the geometric center. The
nested square defines the central area of the open field, whereas the
remaining part constitutes the edge area. Curious larvae explored
and acclimatized to their surroundings, whereas anxious and
nervous fish will stayed or migrated closer to the edge of the
module. In this experiment, we used zebrafish larvae that were
144 hpf and were housed in two specially designed modules. Each
module was filled with 2 mL of system water, and then inserted into
the track tracker (Viewpoint Zebralab, French). The apparatus was
maintained at 28◦C under standard lighting conditions while using
a juvenile fish tracking software for monitoring. Subsequently,
two regularly developing larvae were randomly selected, and one
larva per acrylic module was transferred to the culture tank
Following a 30-min environmental adaption period, larval behavior
was observed for an additional 30 min. During this observation
period, the duration and distance of the larvae movement within
the module were recorded every 10 min. Movement patterns of
the larvae were compared across groups, with 10 zebrafish larvae
tested in each group.

2.3.2 Assessment of larval proximity patterns
We examined the social behavior of zebrafish larvae at 144

hpf. Twelve typically developed larvae were randomly selected and
placed on a six-well plate with two fish and 2 mm of system water
per hole. Following a 30-min adaption period, a 30-min test of
behavior was conducted. The average social distance was defined
as the average distance (in mm) between the body centers of two
fish during a 30-min observation period. The contact time ratio
was calculated as the proportion of time during which the distance
between the body centers of the two fish was less than or equal to the
average body length of one fish. The proportion of contact time is
equal to the contact time divided by the total time. Twelve zebrafish
larvae were tested in each group.

2.3.3 Group behavior
A total of 10 larvae, each 6 days old, were selected from the

culture tank. 5 mL of system water was added to the circular
module (10 cm in diameter), which was then carefully inserted
into the track tracker. Following a 10-min period of environmental
adjustment, larval behavior was observed for 30 min, during which
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fish behavior norms were examined. Among the recorded metrics
were the minimal distance (NND, mm) and inter-individual
distance (IID, mm) between two fish. The NND was defined as the
minimum distance (in mm) between any two fish in a group. The
IID was defined as the average paired distance (in mm) between all
fish in the area, reflecting the cohesion of the group. To ensure the
absence of chemicals in the water, the water in the container was
replaced after recording each group of fish during the behavioral
experiment. Each group consisted of 10 zebrafish larvae.

2.4 AO staining

Zebrafish embryos were cultured with 0.003% PTU embryo
culture water, there are 10 larvae in each group treated with
inhibition of pigment for at least 72 h, as described in our
previous study where we performed an AO staining experiment
at 96 hpf (Zhu et al., 2021). A total of 10 juvenile zebrafish
were randomly selected from each group, treated with 0.01%
tricaine methanesulfonate, and transferred into an EP tube
containing 1.5 mL AO Stain (5 µg/mL). The zebrafish were
stained at room temperature for 20 min in the dark. Following
three washes with double-distilled water, apoptotic cells in the
zebrafish brain tissue were observed and recorded using a body
fluorescence microscope with an excitation light wavelength of
488 nm.

2.5 Dopamine content measurement

Zebrafish larvae at 168 hpf were collected, and 30 individuals
from each exposure group were randomly selected for the
quantification of DA levels. Whole zebrafish larvae were
homogenized in ice-cold PBS, and DA was extracted from
the whole-body lysate following a previously described method
(Huang et al., 2022). DA levels were then measured using a
zebrafish DA ELISA kit manufactured by Enzyme Free Company,
in accordance with the manufacturer’s instructions. The DA
content is reported in µg/mgprot.

2.6 Gene expression analysis

Total RNA was extracted from whole zebrafish larvae
(n = 30 per group) using Trizol reagent (Vazyme, R411-
01) following homogenization with a mechanical homogenizer
(15,000 rpm, 30 s). RNA was purified via chloroform–isopropanol
precipitation, and RNA purity was measured using a NanoDrop
2000 spectrophotometer (A260/A280 ratio: 1.8–2.0). cDNA was
synthesized from 1 µg of RNA using HiScript III RT SuperMix
(Vazyme, R223) in a 20 µL reaction volume. qPCR was performed
on a Bio-Rad CFX96 system with ChamQ Universal SYBR qPCR
Master Mix (Vazyme Biotech, Q711-02) under the following
conditions: 95◦C for 30 s, followed by 40 cycles of 95◦C for
10 s, and 60◦C for 30 s. Each 20 µL reaction contained 10 µL
SYBR mix, 0.4 µM primers, and 1 µL cDNA template (technical
triplicates per sample). Relative gene expression was calculated
using the 2−MMCt method, with gapdh as the internal control

gene validated for stable expression across experimental groups
[one-way analysis of variance (ANOVA), P > 0.05] and consistent
with previous zebrafish studies (Liu et al., 2018). Primer sequences
are listed in Table 1. The 2−MMCt method was used to assess
the target gene’s relative expression using gapdh as the internal
parameter.

2.7 Statistical analysis

In this study, GraphPad Prism version 9 (GraphPad Software)
was used to analyze the obtained data. Sample sizes (n values)
for each experiment are presented in the figure legends. The final
calculated value was expressed as the mean ± standard error (SEM).
The control and exposure groups were assessed using one-way
ANOVA and Tukey post-hoc test. ANOVA was used to obtain
P-values, which were analyzed to determine their significance.
The P-values and were considered statistically significant when
P < 0.05.

TABLE 1 Primers used in qPCR validation.

Primers Forward sequence
(5′–3′)

Reverse
sequence (5′–3′)

gapdh GATACACGGA
GCACCAGGTT

CAGGTCACATA
CACGGTTGC

th1 GACGGAAGATGAT
CGGAGACA

CCGCCATGTTCC
GATTTCT

th2 CTCCAGAAGAGAA
TGCCACATG

ACGTTCACTCT
CCAGCTGAGTG

dat AGACATCTGGGAA
GGTGGTG

ACCTGAGCATCAT
ACAGGCG

drd1 ACGCTGTCCATC
CTTATCTC

TGTCCGATTAAG
GCTGGAG

drd2a TGGTACTCCGGA
AAAGACG

ATCGGGATGGGT
GCATTTC

drd3 ATCAGTATCGACA
GGTATACAGC

CCAAACAGT
AGAGGGCAGG

drd4a GCCTCTTTCCCA
TCTCACAG

CTCAGACACAC
CAGCACGTT

bax GGCTATTTCAACCAG
GGTTCC

TGCGAATCACCA
ATGCTGT

caspase-3 CCGCTGCCCA TCACTA ATCCTTTCACG
ACCATCT

caspase-8 CCAGACAAT
CTGGATGAACTTTAC

TGCAAACTGCTTT
ATCTCATCT

caspase-9 CTGAGGCAA
GCCATAATCG

AGAGGACATGGGA
ATAGCGT

gfap AGCTACATCGAG
AAGGTGCG

TTTGAGAGTGCCG
AGGTCTG

mbpa TGGCTTGGATTG
TATGCCCT

GCTCCCACTGACT
CTTTGTCC

bdnf CTCACGGACACT
TTCGAGCA

TCAACGTCCTTCG
AGTCTGC

elavl3 AGAAGTGTGA
GGCGGGAATG

CTGGGGCAAGA
TTTCGGGAT
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3 Results

3.1 Effects of PFOS exposure on survival
and general development of zebrafish
embryos/larvae

We evaluated the impact of PFOS on the survival rate and
hatching success of zebrafish, as well as its effect on spontaneous
movement and heart rate. Additionally, we assessed potential
morphological changes by measuring the body length and head
area of exposed embryos in comparison to the control group.
We initially monitored the survival and hatching rates, starting
from 0 hpf. We observed that PFOS exposure did not affect either
the survival (S. 1A) or hatching rates (S. 1D) of the zebrafish
when compared to the control group. Under a microscope, we
then documented the natural movements and heartbeat frequencies
of the embryos. We applied this concentration to track the
stimulation of zebrafish embryos and observed no difference in the
stimulation of the embryos’ heartbeat (Supplementary Figure S1C)
or spontaneous movement (S. 1B) compared to the control
group. Simultaneously, we measured the head area (Supplementary
Figure S1E) and body length (Supplementary Figure S1F) of the
zebrafish and individually compared these metrics with those of
the control group. We discovered no discernible difference between
the head area (Supplementary Figure S1G) and body length
(Supplementary Figure S1H) when compared with the control
group. After accounting for abnormalities in mobility and other
factors, we conclude that the PFOS concentrations used did not
significantly impact the gross development of the zebrafish.

3.2 PFOS exposure induces anxiety-like
behavior and alterations of larval
proximity patterns

When zebrafish migrate to a new habitat, they typically
exhibit exploratory behaviors, such as migrating toward the center
of the new habitat. To explore the anxiety-like behavior of
zebrafish, an open-field experiment was conducted, examining
parameters including movement track, time, and distance. Results
The movement trajectory of zebrafish exposed to PFOS exhibited
significantly altered patterns (Figure 1A), along with a considerable
reduction in both total movement distance (Figure 1B) and the
average speed (Figure 1C). Furthermore, we observed a significant
decrease in movement within the center of the new habitat
in zebrafish exposed to PFOS, with a noticeable increase in
peripheral locomotion (Figure 1D). The findings demonstrated that
PFOS impaired the exercise intensity and efficiency of zebrafish,
with less time spent in the central zone indicating a decreased
ability of infected zebrafish to adapt to the new environment
and an increased anxiety-like behavior. Next, we assessed the
social interaction capacity of zebrafish (Figure 1E). PFOS-exposed
larvae exhibited reduced proximity duration and increased IID
(Figure 1G), fewer conspecific contacts (Figure 1F), and significant
alterations when exposed to 5 µM PFOS in comparison to the
control group. Upon comparing the preferences of infected and
control zebrafish groups, we determined that zebrafish in the

control group were more likely to remain in close proximity to
conspecifics, whereas both NND (minimum proximity distance)
(Figure 1H) and IID (average distance between two fish) (Figure 1I)
of zebrafish in the infected group increased. This suggests that
exposure to PFOS altered fish cohesion and preference, as well as
increased the distance between individual fish. Thus, we deduced
that zebrafish exposure to PFOS resulted in mobility impairment,
which most likely affected their social interaction behavior.

3.3 Effects of PFOS exposure on
neurodevelopment and expression of
dopamine-related genes

Our earlier research suggest that exposure to PFOS might
alter zebrafish proximity-based interactions. To further investigate
whether PFOS exposure affects the neurological system of zebrafish
and assess its impact on the dopaminergic system, we selected
relevant genes using real-time quantitative fluorescence PCR (qRT-
PCR) technology. We examined early neurodevelopment-related
genes (bdnf, elval3, gfap, and mbpa) (Figures 2A–D), DA receptors
(drd1, drd2a, drd3, and drd4a) (Figures 2G–J), the DA signaling
pathway (th1, th2) (Figures 2E,F), and the DA transporter (dat)
(Figure 2K). All of these genes exhibited increased expression
following PFOS exposure. Notably, there was a dose-dependent up-
regulation of the expressions of the genes bdnf, elavl3, mbpa, dat,
drd3, drd4a, th2, and drd1. Additionally, DA content measurement
revealed that PFOS exposure altered the zebrafish dopaminergic
system, with increased DA levels observed (Figure 2L).

3.4 Changes in dopamine system
induced by PFOS exposure may also
affect apoptosis

Toxic byproducts of DA metabolism have the potential to cause
cell damage and trigger programmed cell death. Therefore, after
observing the PFOS-induced changes in the dopaminergic system,
we investigated whether PFOS exposure could lead to apoptosis.
We stained zebrafish larvae with AO (Figure 3A) and photographed
them with fluorescence microscopy. An increase in granular green
plaques (indicative of apoptotic cells) was observed in the head
of juvenile zebrafish, Additionally, expression levels of apoptosis-
related genes bax, caspase3, caspase8 and caspase9 were also up-
regulated (Figures 3B–E), suggesting that PFOS exposure induced
apoptosis in juvenile zebrafish. These findings suggest that PFOS
may cause apoptosis of zebrafish.

3.5 Vitamin A alleviates PFOS-induced
neurotoxicity by improving the
dopaminergic system

We demonstrated that vitamin A might somewhat lower the
expression levels of genes linked to neurodevelopment (bdnf, elval3,
gfap, and mbpa) to alleviate PFOS-induced abnormalities in the
dopaminergic system abnormalities (Figures 4A–D). The effects of
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FIGURE 1

PFOS exposure causes anxiety-like behavior and social disturbance in zebrafish. (A) Open field path map of zebrafish. (B) Total distance of zebrafish
open field movement (n = 10). (C) Average speed of zebrafish open field (n = 10). (D) The proportion of distance between central and marginal areas
of zebrafish (Edge area distance ratio = outer distance/total distance, central area distance ratio = inner distance/total distance) (n = 10). (E) Diagram
of a zebrafish social interaction experiment. (F) Zebrafish contacts per min (n = 12). (G) Zebrafish contact duration ratio (n = 12). (H) Zebrafish
Minimum distance between two fish (n = 10). (I) Average distance between two zebrafish (n = 10). These data are expressed as mean ± SEM.
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 versus DMSO group.
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FIGURE 2

Neurodevelopment and relative expression of dopamine-related genes. RNA was extracted from at least 30 fish each time. (A–D) Expression of
neurodevelopment-related genes (four genes, bdnf, elavl3, gfap and mbpa were detected). (E–K) The relative expression of genes related to
dopamine pathway (th1, th2, drd1, drd2a, drd3, drd4a, and dat were detected). (L) Dopamine content (test and calculate according to ELISA kit).
These data are expressed as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 versus DMSO group.

PFOS exposure on zebrafish cerebral development were mitigated,
as was the up-regulation of genes associated with the dopaminergic
system (Figures 4E–K) and DA content (Figure 4L).

3.6 Vitamin A alleviates apoptosis
induced by PFOS

When zebrafish exposed to varying concentrations of PFOS
were treated with vitamin A, the grainy green patches on the
fish noticeably reduced (Figure 5A). The identification of genes
associated with apoptosis (Figures 5B–E) further suggests that
vitamin A may prevent PFOS-induced alterations in zebrafish
apoptosis-related genes.

3.7 Vitamin A alleviates anxiety-like
behavior and social abnormalities in
juvenile zebrafish caused by PFOS

We investigated the neurobehavioral effects of PFOS and
vitamin A co-exposure in zebrafish to explore the potential role of
vitamin A in reducing the neurotoxicity caused by PFOS exposure.

We figured out that in the open field experiment (Figure 6A),
zebrafish larvae showed significant improvements in both average
speed (Figure 6C) and total movement distance (Figure 6B)
following Vitamin A treatment. However, no significant changes
were observed in the inner layer travel distance (Figure 6D). The
social interaction assay (Figure 6E) revealed that vitamin A co-
exposure partially restored the contact number (Figure 6F) and
contact time (Figure 6G) compared to the PFOS-only group,
though these parameters did not reach statistical significance.
In the group behavior experiment, while the nearest neighbor
distance (NND) showed a significant reduction (Figure 6H),
the inter-individual distance (IID) exhibited a non-significant
decreasing trend (Figure 6I), with values remaining comparable
across experimental groups. According to the aforementioned
research, Vitamin A may partially alleviate specific PFOS-induced
behavioral and social challenges in zebrafish.

4 Discussion

Our attention has been drawn to PFOS, a perfluorinated
compound characterized by its high content and considerable
influence. A large number of studies have examined the
bioaccumulation and refractory degradation of PFOS in the
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FIGURE 3

Effect of apoptosis pathway in zebrafish. (A) AO staining apoptotic corpuscles of zebrafish. (B–E) Relative expression of genes related to apoptosis
pathway in zebrafishbdnf (bax, caspase-3, caspase8 and caspase-9 were detected) (n = 10). These data are expressed as mean ± SEM. *P < 0.05,
**P < 0.01, ***P < 0.001 versus DMSO group.

environment, and in recent years, its potential impact on
neurodevelopment has become an important area of research.
Findings from the Shanghai mother-and-baby cohort study
indicate that fetal neurodevelopment was impacted following
exposure to PFOS (Zhou et al., 2023). Additionally, Ayane
Ninomiya et al. discovered that mice exposed to PFOS exhibit
social dysfunction and decreased motor coordination—two
important characteristics frequently linked to developmental
disorders like autism spectrum disorder (ASD) (Ninomiya
et al., 2022). These finding highlight the potential link
between PFOS exposure and social behavior deficits, a critical
component of neurodevelopmental conditions such as ASD.
Non-placental animals like zebrafish provide an excellent
platform for examining the neurotoxic consequences of PFOS
in a more regulated and visible setting, particularly given
the primarily exogenous nature of exposure. Moreover, the
zebrafish model is especially useful for comprehending the
wider effect of environmental pollutants on brain development
and social function since it may be used to research social
behavior abnormalities that are comparable to those seen in
ASD.

Zebrafish are widely regarded as an ideal non-placental animal
model, sharing approximately 70% genetic homology with humans
(Howe et al., 2013). Direct observation of the negative effects
of exposure to contaminants from the environment is possible
due to the morphological and behavioral alterations of zebrafish
models that are liable to such pollutants (Tao et al., 2022). This

animal model is particularly useful for studying a range of brain
functions, including novelty-induced responses, social behavior,
and both spatial and social learning, which may be modeled by
this animal model (Kirsten et al., 2018). The consequences of
early-life exposure to PFAS have been increasingly studied using
zebrafish models in recent years (Kim et al., 2021). Environmental
concentrations of PFOS have been reported to range from 0.14 nM
to 5 µM (Calafat et al., 2019; Cordner et al., 2019; Yu et al., 2020;
Zeng et al., 2019). It has been previously documented that a PFOS
concentration of 7.5 µM can be very harmful to zebrafish growth
(Gaballah et al., 2020). Studies have shown that the EC50 of PFOS is
6.15 µM (Gui et al., 2023),Therefore, guided by toxicological design
principles, we intended to investigate the neurodevelopmental
alterations in zebrafish by selecting exposure doses of 1 µM (low)
and 5 µM (high), in accordance with the toxicological design
principles.

First, we evaluated the effects of PFOS exposure on zebrafish
growth in general or the developmental toxicity of PFOS exposure.
We assessed the zebrafish’s spontaneous movement at 24 hpf, and
heartbeat at 48 hpf, measured their body length and head area at
72 hpf, and monitored the mortality and hatching of the infected
fish. The results of our experiment clearly indicate that this dose
did not significantly impair zebrafish growth in general. These
findings align with previous reports on developmental toxicity,
which identified a POD value of 11.42 µM (Christou et al., 2021;
Min et al., 2023; Sant et al., 2021).
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FIGURE 4

Vitamin A improves neurodevelopment and the relative expression of dopamine-related genes. DMSO was used as the control group in this
experiment. The 1 µM group represented the exposure group with a PFOS concentration of 1 µM, and the 5 µM group represented the exposure
group with a PFOS concentration of 5 µM. “VA” refers to the vitamin A group; 1 µM + VA denotes the vitamin A intervention group with a PFOS
concentration of 1 µM, and 5 µM + VA denotes the vitamin A intervention group with a PFOS concentration of 5 µM. (A–D) Expression of
neurodevelopment-related genes (four genes, bdnf, elavl3, gfap and mbpa were detected). (E–K) The relative expression of genes related to
dopamine pathway (th1, th2, drd1, drd2a, drd3, drd4a and dat were detected). (L) Dopamine content (n = 30 per group). These data are expressed as
mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 versus DMSO group.

The impacts of developmental toxicity and motility remain key
areas of research on PFOS toxicity in zebrafish. In this study, we
investigate whether PFOS-induced neurodevelopmental toxicity
impacts social interaction. To assess this, we examined the social
and anxiety-related behaviors of the fish. Open field tests revealed
that PFOS-exposed zebrafish displayed increased activity along
the periphery compared to central areas. This suggests that the
infected zebrafish were more likely to adhere to wall movement.
Additionally, the decreased time spent in the central area relative to
the marginal area indicates an increase in the tactile behavior of the
zebrafish. Silvia Fuentes et al. observed that mice exposed to PFOS
spent less time in the central area of the athletic field (Fuentes et al.,
2007). In line with these findings, a study on anxiety-like behavior
in Oryzias latipes demonstrated that anxious Oryzias latipes were

more likely to remain in the periphery, avoiding the more brightly
lit central area, thereby supporting our findings (Lucon-Xiccato
et al., 2022).Although thigmotaxis in larval zebrafish is commonly
used as a proxy for anxiety-like behavior (Schnörr et al., 2012),
we acknowledge that developmental differences may influence
behavioral interpretations. Our interpretation of thigmotaxis
as indicative of anxiety-like behavior is based on observed
locomotor patterns; however, future studies should integrate
pharmacological challenges (anxiolytics) and neuroendocrine
markers to confirm affective states. In the open-field test, both
the total movement distance and movement speed of zebrafish
were reduced, and the zebrafish exhibited a preference for edge
zones, behaviors typically associated with anxiety-like responses.
Zebrafish displaying Anxiety-like behavior were prone to increased
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FIGURE 5

Vitamin A improves apoptosis of zebrafish. (A) AO staining apoptotic corpuscles of zebrafish. (B–E) Relative expression of genes related to apoptosis
pathway in zebrafish (bax, caspase-3, caspase8 and caspase-9 were detected) (n = 10). These data are expressed as mean ± SEM. *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001 versus DMSO group.

freezing time (Mu et al., 2023), and freezing events were mostly
concentrated in the central sensitive area of the open field.
In the future, integrating the detection of cortisol content,
histopathological analyses, and inflammatory factors to analyze
the stress-related neural circuits and explore the specific links
leading to social disorders becomes necessary. However, although
some literature suggests that the aggregation behavior of zebrafish
typically matures after 14 dpf (Dreosti et al., 2015; Martins et al.,
2024), our findings indicate that PFOS exerts a preliminary impact
on the approach pattern of zebrafish as early as 144 hpf. In social
interaction and flock experiments, the social distance between
zebrafish and other members of the same species increased, which
was manifested as a decrease in total motor distance, a decrease in
contact time and frequency, and an increase in adjacent distance
between two fish, indicating social impairments. Similarly, Mu et al.
evaluated the behavioral characteristics of zebrafish infected with
bisphenol A and observed that zebrafish treated with bisphenol
A exhibited significant social behavioral deficits and increased
social distance from conspecifics (Nunes et al., 2021). A study
by Bai et al. also supports the hypothesis that environmental
endocrine disruptors can cause symptoms of ASD-like social
disorder in zebrafish (Bai et al., 2023). Although the research results
indicated potential social barriers, the observed differences might
also be influenced by non-social factors, such as sensorimotor or
environmental cues. It can be detected through motion tracking
analysis. Larvae are based on adjacent interaction patterns, and
these early patterns may serve as precursors of social behavior,
although further research is needed to confirm this.

We examined the genes involved in the development of
the nervous system to better understand the altered behavioral
activities. Our findings revealed that PFOS had an impact
on early neurogenesis (elval3) and the central nervous system

(bdnf, gfap, and mbpa). DA system alteration in zebrafish may
occur due to PFOS exposure (Wang J. et al., 2022; Wu et al.,
2022; Zhang Y. et al., 2023). To investigate this alteration, we
searched for DA-related genes and DA content. We discovered
that DA production (th1, th2), transport (dat), and related
receptors (drd2a, drd3, drd4a, and drd1) were all altered, albeit
to different degrees. TH serves as the rate-limiting enzyme in
DA biosynthesis. The elevated mRNA levels of its isoforms
(th1 and th2) may indicate augmented synthetic capacity. Some
studies have also shown that PFOS may disrupt DA homeostasis
through multiple pathways, inhibiting VMAT2-mediated vesicle
storage, leading to abnormal accumulation of cytoplasmic DA, and
accelerating oxidative metabolism (Patel et al., 2016). In a study
by Foguth et al., they found that PFOS exposure increases the
DA turnover rate, reflecting enhanced compensatory metabolic
clearance. Therefore, the coupling imbalance of synthesis-storage-
metabolism may represent the core mechanism underlying the
abnormal DA pathway caused by PFOS exposure. To precisely
delineate PFOS’s impact on dopaminergic pathways, future studies
should incorporate pharmacological interventions (α-methyl-p-
tyrosine for TH inhibition) combined with advanced neuroimaging
techniques like positron emission tomography (PET). Such
approaches will enable quantitative assessment of DA turnover
kinetics and spatiotemporal neurotransmitter dynamics. This study
reveals the time-dependent characteristics of PFOS neurotoxicity.
The difference between the subthreshold changes of Drd1/Drd3
expressions observed in zebrafish exposed to high concentrations
of PFOS at 144 hpf (Figure 2) versus 168 hpf (Figure 4) indicates
that the effect of PFOS on DA receptors may be related to the
prolonged exposure time. This dynamic response may be related
to the bioaccumulation of PFOS and its progressive interference
with transcription factors. Previous studies have indicated that DA
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FIGURE 6

Zebrafish anxiety-like behavior and social interaction improved after vitamin A intervention. (A) Open field path map of zebrafish. (B) Total distance
of zebrafish open field movement (n = 10). (C) Average speed of zebrafish open field (n = 10). (D) The proportion of distance between central and
marginal areas of zebrafish (Edge area distance ratio = outer distance/total distance, central area distance ratio = inner distance/total distance)
(n = 10). (E) Diagram of a zebrafish social interaction experiment. (F) Zebrafish contacts per min (Contact is defined as the distance between two
fish ≤ one body length) (n = 12). (G) Zebrafish contact duration ratio (n = 12). (H) Zebrafish Minimum distance between two fish (n = 10). (I) Average
distance between two zebrafish (n = 10). These data are expressed as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 versus
DMSO group.

receptor expression is more sensitive to environmental stress in

the later stages of neurodevelopment (Barreto-Valer et al., 2012;

Paiva et al., 2020). The significant upregulation of PFOS observed

in the exposed group (168 hpf) in this study further validates this

rule, suggesting that the time window effect of the developmental

stage should be comprehensively considered when evaluating the
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neurotoxicity of PFOS. Simultaneously, a rise in the level of DA
was detected; this alteration in the dopaminergic system would
lead to apoptosis (Quintero-Espinosa et al., 2023), an essential
stage in normal neurodevelopment. This study revealed that
exposure to PFOS enhanced the formation of apoptotic bodies. The
experimental data revealed that PFOS exposure significantly up-
regulated the expression of pro-apoptotic gene bax and apoptotic
executive protein gene caspase 3/8/9 (p < 0.05). Additionally,
acridine orange (AO) staining revealed increased apoptosis. This
phenomenon suggests that PFOS exposure can cause changes in
apoptosis-related genes. However, whether these toxic effects are
specifically mediated through the activation of apoptotic signaling
networks rather than other programmed cell death (such as
necrosis or autophagy) or non-death-related pathways (such as
proliferation or differentiation) needs to be further verified. These
findings are consistent with those of earlier research (Chen et al.,
2012; Dong et al., 2015; Gao et al., 2024; Ge et al., 2016; Shi et al.,
2024; Tang et al., 2022).

We hypothesize that treating zebrafish with a readily
supplemented nutrient that may control DA may lessen the
neurotoxicity of PFOS exposure by reducing the modification of
DA, as this may be a significant mechanism for the neurotoxicity of
PFOS. Retinoic acid—a fat-soluble micronutrient (VanBuren and
Everts, 2022), and metabolite of vitamin A, is essential for brain
development (Hernández-Pedro et al., 2014; Zhong et al., 2013).
Inadequate consumption of vitamin A during pregnancy may
result in brain abnormalities, heightened vulnerability to deviant
behavior, neuropsychiatric diseases, and cognitive alterations.
Studies have shown that weekly administration of vitamin A
for 6 months can significantly improve social functioning in
children aged 3–8 years with vitamin A deficiency (Lai et al.,
2021). Our findings suggest that vitamin A was effective in
reducing both apoptosis and abnormal DA levels in PFOS-
exposed zebrafish, which may translate into changes in their
proximity-based interactions. Ultimately, vitamin A improved
the neurotoxicity and early homospecific behavioral changes
induced by perfluorooctane sulfonate (PFOS) in zebrafish larvae
by regulating dopaminergic signaling and apoptosis.

Studies have shown that PFOS exposure may disrupt the
normal nervous system development in zebrafish through multiple
pathways. Notably, the expressions of apoptosis-related proteins
Caspase and Bax were significantly up-regulated in the PFOS
treatment group, suggesting that the apoptosis or activation of
the programmed death process of nerve cells, which may directly
lead to the reduction of the number of nerve cells or functional
damage. Concurrently, the abnormal expression of key genes of the
DA pathway (such as DA receptors and transporters) suggests that
PFOS may affect the formation and regulation of neural circuits
by interfering with dopaminergic signaling. Further behavioral
analysis revealed that juvenile zebrafish in the exposed group
exhibited decreased motor activity and contact among conspecifics,
both of which are closely associated with neuromotor coordination
and cognitive function. Based on the above results, it can be inferred
that PFOS may induce nerve cell apoptosis, disrupt DA system
homeostasis and cause behavioral dysfunction, and eventually lead
to neurodevelopmental abnormalities in zebrafish. These findings
provide an important experimental basis for the study of the
neurotoxic mechanism of PFOS. Moreover, the intervention of
vitamin A mitigates the changes in apoptosis-related genes and

DA signaling pathways, suggesting that vitamin A can be used as
a protective agent against PFOS-induced neurodevelopment.

In this study, zebrafish were employed as the animal model.
Although zebrafish offer numerous advantages in developmental
biology and disease model research, inherent physiological and
metabolic differences exist compared to mammals, including
humans. Consequently, the applicability of the study’s findings
to humans may be somewhat limited. Future research could
benefit from utilizing mammalian models to better simulate the
protective effects of vitamin A on the nervous system, thereby
validating its efficacy under conditions more closely aligned with
human physiology. Additionally, the optimal protective dosage of
vitamin A warrants further investigation, particularly regarding
its long-term impact on the nervous system and its protective
effects in adulthood.

5 Conclusion

In conclusion, this study demonstrates that PFOS exposure
induces neurotoxicity in zebrafish, characterized by DA system
dysregulation, apoptosis, and behavioral alterations including
reduced proximity to conspecifics and increased anxiety-like
behavior. Vitamin A supplementation significantly attenuated
PFOS-induced neurochemical changes (e.g., DA elevation and
apoptosis-related gene upregulation) and partially restored
proximity maintenance deficits, particularly in the low-dose PFOS
group (1 µM PFOS + VA). However, in the high-dose PFOS group
(5 µM PFOS + VA), aggregation parameters (contact frequency
and IID) remained impaired despite VA treatment, suggesting
a dose-dependent limitation of VA’s protective efficacy. These
findings support the utility of the zebrafish model for studying
PFOS-induced neurotoxicity and highlight the DA system as
a critical target for intervention. Further research is needed
to optimize VA dosing strategies and explore combinatorial
therapies to fully reverse high-dose PFOS-induced aggregation
deficits. Although, these results position vitamin A as a protective
agent against PFOS-induced neurodevelopmental perturbations,
its efficacy in adult social/group behavior recovery requires
further investigation.
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