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Translational implications of 
circadian activity alterations in an 
experimental model of late-onset 
depression induced by prenatal 
excess of glucocorticoids 
Stefan Spulber, Raj Bose, Frederik Elberling, Mirko Conti and 
Sandra Ceccatelli* 

Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden 

Most neuropsychiatric conditions, including neurodevelopmental disorders, can 

have different etiology depending on genetic influences, environmental factors, 

and gene-environment interactions. Consistent evidence points to low birth 

weight, commonly associated with prenatal exposure to excess glucocorticoids 

(GC), as risk factor for neuropsychiatric disorders including depression, ADHD 

and schizophrenia. In this review we give an overview of our behavioral 

and mechanistic studies linking prenatal exposure to GC to depression. The 

behavioral analyses in our mouse model revealed that prenatal exposure 

to synthetic GC dexamethasone (DEX) alters hippocampal neurogenesis and 

induces depression-like behavior that responds differently to antidepressive 

therapies. Using neural progenitor cells as an in vitro experimental model, we 

could show changes in the methylation state of genes regulating proliferation, 

differentiation, and migration suggesting that epigenetic modifications are 

involved in neurogenesis alterations induced by GC. A particularly interesting 

observation was the alteration in circadian patterns of activity accompanied by 

weaker coupling between the central clock and peripheral oscillators preceding 

the late onset of depression in mice exposed to DEX in utero. The results 

suggest that alterations in patterns of circadian spontaneous activity may predict 

the onset of depression and the response to therapy in depressed patients. 

Our collaborative clinical investigations provide evidence for the prognostic 

value of circadian activity analysis in predicting the response to antidepressant 

treatments in patients affected by major depressive disorder. 

KEYWORDS 

depression, glucocorticoids, fetal origin of adult disease, circadian activity pattern, 
neurogenesis 

Etiology of depression 

Major depressive disorder (MDD) is a common neuropsychiatric disorder, often 
chronic or recurrent, with a significant negative impact on the overall health, social, 
and professional functioning of aected individuals. The variety of symptoms across 
depressed persons includes emotional, cognitive and behavioral aspects making depression 
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a multifaced disorder. According to the Diagnostic and Statistical 
Manual of Mental Disorders (DSM-5), the requirement for 5 
or more criteria to be fulfilled yields almost 1500 possible 
combinations leading to a diagnosis of MDD (Østergaard et al., 
2011). The etiology of MDD is complex and includes genetic 
and environmental components. In contrast with other psychiatric 
disorders (e.g., schizophrenia or bipolar disorder, where genetic 
contribution accounts for 60%–90% of the cases), heritability 
has been estimated between 30 and 40% (Franklin et al., 2025). 
A recent meta-analysis identified 102 genetic variants associated 
with MDD (Howard et al., 2019) and highlighted potential 
links with neurodevelopmental disorders such as attention deficit 
hyperactivity disorder (ADHD) and schizophrenia, via shared risk 
genes. The impact of environmental factors, including childhood 
adversity and other stressful conditions, have been shown to be 
mediated by epigenetic changes (Yuan et al., 2023) in genes related 
to the hypothalamic-pituitary-adrenal (HPA) axis, also relevant for 
depression and anxiety (Alahmad et al., 2025). 

Developmental origins of depression 

The hypothesis of developmental origins of health and 
disease (DOHaD) posits that an adverse intrauterine environment 
alters the developmental trajectory, resulting in structural and 
functional changes in target tissues/organs (Cao-Lei et al., 2020). 
The concept is based on Barker’s early investigations indicating 
that cardiovascular diseases in adult life may have their origin 
during development (Barker, 1994). Factors aecting the maternal 
wellbeing throughout gestation (i.e., placenta dysfunctions, stress, 
malnutrition, metabolic syndrome, infections, and exposure to 
toxic insults) may have a negative impact on fetal growth 
and neurodevelopment with long-term consequences. Intrauterine 
growth restriction (IUGR) has been defined as abnormal adaptation 
of fetal development to an adverse prenatal environment 
(Armengaud et al., 2021), and mounting evidence link IUGR 
to higher risk of psychiatric disorders (Räikkönen et al., 2008; 
Strang-Karlsson et al., 2008; Anacker et al., 2014). An adverse 
perinatal environment appears to have detrimental eects not only 
on HPA axis regulation, but also on the programming of the 
suprachiasmatic nucleus (SCN), leading to alterations in circadian 
rhythms often associated with depression in humans [reviewed in 
Kennaway (2002)]. 

The HPA-axis and glucocorticoid 
signaling 

Glucocorticoids (GC) are a class of steroid hormones secreted 
by the adrenal glands that have a critical role in mediating the 
stress response. GC are released in pulses of varying amplitude, 
with several peaks and troughs within a 24-h cycle. They support 
the organogenesis of the central nervous system by initiating 
terminal maturation of neural progenitors, remodeling of axons 
and dendrites, and promoting cell survival (Meyer, 1983; Yehuda 
et al., 1989; Cameron and Gould, 1994). In the human fetus, 
endogenous secretion of GC has a first peak between 7 and 
14 weeks postcoitum; continues at very low levels before it 

begins to increase by the end of the second trimester; and a 
surge in serum cortisol can be observed during the last weeks 
before birth [reviewed in Busada and Cidlowski (2017)]. Essential 
for immediate postnatal survival, GC promote lung maturation 
and initiates surfactant production (Ward, 1984; Harris and 
Seckl, 2011; Khulan and Drake, 2012), which led to the use 
of synthetic GC administration to expecting women at risk of 
preterm delivery in order to reduce the risk of infant mortality 
(Liggins and Howie, 1972). Despite this short-term benefit of 
exogenous GC agonists, epidemiological studies have revealed 
long-term risks of chronically altered HPA-axis response to stress 
(Waarn and Davis, 2012). Animal models of prenatal exposure 
to excess GC have shown decreased GR in the hippocampus 
(Levitt et al., 1996) which results in HPA-axis hypo-responsiveness 
(Sloboda et al., 2007), and increased susceptibility of neuronal 
cells to oxidative stress associated with altered antioxidant defenses 
(Ahlbom et al., 2000). The long-term eects of exposure to 
excess GC depend on the timing of exposure and involve 
epigenetic modifications which can be passed to the ospring 
(Drake et al., 2005, 2011). 

Experimental data indicate a bidirectional connection between 
depression on one side, and stress and GC secretion on the 
other side. Chronic stress leads to depression in animal models 
(Antoniuk et al., 2019) and humans (Ding and Dai, 2019) 
alike. In addition, both baseline GC secretion and the stress 
response are altered in depression patients (Powers et al., 2016) 
with distinct sex-dierences in HPA-axis reactivity and stress 
generation (Slavich and Sacher, 2019). Adverse perinatal events 
have long-lasting eects on HPA programming and function at 
adult age. Experimental and epidemiological studies have shown 
that developmental exposure to excess GC alters the function 
of the HPA-axis and increases the risk for mental disorders, 
including depression (Cottrell and Seckl, 2009; Moisiadis and 
Matthews, 2014; Spulber et al., 2015; Laugesen et al., 2025). 
Recent studies report higher risk for mental health disorders in 
children exposed to GC during pregnancy (Räikkönen et al., 2020), 
with adjusted relative risk for mood, anxiety and stress-related 
disorders of 1.5 (Laugesen et al., 2025). In populations where 
data from longer follow-up times were available, epidemiological 
studies show that IUGR increases the risk of developing 
depression in adulthood (Räikkönen et al., 2008; Strang-Karlsson 
et al., 2008; Pesonen et al., 2009; Grissom and Reyes, 2013; 
Longo et al., 2013). 

Depression and circadian rhythms 

Regulation of homeostasis in anticipation of relevant changes 
in environment is of paramount importance for any organism, 
not only for adjusting the biological rhythms to the time of day, 
but also for predicting the coming changes such as approaching 
the transition between light and dark period. The core molecular 
clock consists of transcription-translation feedback loops (TTFL), 
that is specific transcription factors encoded by clock genes. 
While most mammalian cells express functional molecular clocks, 
only the neurons in the suprachiasmatic nucleus (SCN) – the 
central clock, located in the anterior hypothalamus - possess 
mechanisms to synchronize oscillations at population level (Ko 
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FIGURE 1 

Hierarchical organization of circadian oscillators. The central clock 
is located in the suprachiasmatic nucleus (SCN). Photic entrainment 
(blue arrows) starts with information about environmental light from 
retinal ganglion cells conveyed to the SCN via the 
retinohypothalamic tract (RHT). Arginin-vasopressin (AVP) from SCN 
shell area is released in the hypothalamic paraventricular nucleus 
(PVN) to regulate the secretion of corticotropin-releasing hormone 
(CRH). CRH triggers the release of adrenocorticotropic hormone 
(ACTH), which drives the pulsatile secretion of glucocorticoids (GC) 
from adrenal cortex. Circulating GC provide negative feedback at 
several levels in the HPA axis (red arrows) and entrain peripheral 
oscillators (green arrows). Circulating GC reaching the 
hippocampus (Hcp) maintain the pool of neural stem cells and drive 
hippocampal neurogenesis. In addition, the Hcp provides negative 
feedback to PVN. 

and Takahashi, 2006). Outside the SCN, external signals from 
a master clock are required for synchronizing the molecular 
clocks across organs and systems, and this is achieved primarily 
by GC signaling (Balsalobre et al., 2000; Son et al., 2011; 
Albrecht, 2012; Figure 1). Circadian rhythms in the HPA axis 
are entrained by arginine-vasopressin (AVP) released from the 
SCN into the paraventricular hypothalamic nucleus (PVN) to 
regulate the release of corticotropin-releasing hormone (CRH) 
(Kalsbeek et al., 2010, 2012). 

Depression is associated with disruption of sleep and alterations 
of circadian rhythms (Vadnie and McClung, 2017; Lyall et al., 2018; 
Mendoza, 2019). Notably, insomnia and hypersomnia are both 
listed among diagnostic criteria for MDD (American Psychiatric 
Association [APA], 2013) and either symptom have a significant 
impact on patients’ quality of life. Several theories aiming to explain 
the occurrence of sleep problems in MDD patients have been 
developed based on the two-process model of sleep regulation 
(Borbely, 1982) and the neurotransmitter imbalance hypothesis 
[reviewed in Wang et al. (2015), Riemann et al. (2025)]. The 
association between depression and circadian dysregulation is 
supported by several lines of evidence. First, genetic association 
studies have identified association between depression and clock 
gene variants for core clock genes (Lavebratt et al., 2010; Sjoholm 
et al., 2010; Gyorik et al., 2021). Similarly, seasonal aective 
disorder has been associated with combinations in core clock 
gene variants (Partonen et al., 2007). Post-mortem studies have 
identified disruption of clock genes expression in the brains of 
people suering from depression (Sequeira et al., 2007, 2012), 
and the severity of depression symptoms is associated with the 
degree of misalignment of circadian rhythms (Courtet and Olié, 
2012). In rodents, Bmal1 knock-down in the SCN (Landgraf et al., 
2016), or manipulation of the light-dark cycle (Ben-Hamo et al., 

2016) can result in depression-like behavior. Second, circadian 
disruption by shiftwork was associated with an increased risk to 
develop depression (Logan and McClung, 2019). A recent large 
population study indicates that blunted circadian rhythms of 
activity are associated with an increased lifetime risk for depression 
and mood instability (however not satisfying the diagnostic criteria 
for unipolar or bipolar depression) (Lyall et al., 2018). Lastly, 
several antidepressants produce changes in circadian features and 
some therapeutic approaches involving chronotherapy and wake 
and light therapy have proven eective in certain cases (Wang et al., 
2015; Wichniak et al., 2017; Humpston et al., 2020; Silva et al., 
2021). Antidepressant pharmacotherapy includes drugs targeting 
serotonin (5-HT), dopamine (DA), and norepinephrine (NE) 
signaling, and have a direct impact on circadian rhythms [reviewed 
in Lee et al. (2022), Sato et al. (2022)]. This can be explained 
by the input to the SCN from various neurotransmitter systems. 
Thus, serotoninergic input from the median raphe tonically inhibits 
the glutamate release from the retinohypothalamic tract (RHT) 
via activation of both presynaptic and postsynaptic receptors 
(Selim et al., 1993; Quintero and McMahon, 1999; Sanggaard 
et al., 2003), thereby weakening photic entrainment of the SCN. 
In addition, 5-HT can shift the phase of neuronal activity in 
the SCN by regulating clock gene expression (Horikawa et al., 
2000). Dopaminergic input from the ventral tegmental area (VTA) 
facilitates re-entrainment of circadian rhythms of activity via tonic 
activation of D1 (Drd1) receptors (Grippo et al., 2017; Grippo and 
Güler, 2019). DA and 5-HT are also the main neurotransmitters 
involved in non-photic entrainment of circadian rhythms (e.g., 
entrainment by physical activity or restricted feeding or by 
social interactions). Noradrenergic input to the SCN has been 
suggested early on (Cagampang et al., 1994), and noradrenaline 
reuptake inhibitors shift the phase of the circadian clock (Vacher 
et al., 2003; O’Keee et al., 2012). Suppressing the molecular 
clock function by enhancing the negative arm of the TTFL in 
the prefrontal cortex of mice not only induced depression-like 
behavior, but also mitigated the antidepressant eects of ketamine 
(Sarrazin et al., 2024). 

Modeling depression in 
experimental animals 

Given the heterogeneity of depression presentation (reliance 
on subjective reporting of feelings and mood), it is not surprising 
that the development of experimental models of depression 
and relevant behavioral tests has been a challenging task. In 
addition, the complex interplay between genetics, environmental 
and psychosocial aspects exclude the possibility to envisage a 
model that replicates what is observed in patients. However, 
proxy measures for the core symptoms have been developed 
in rodents, namely learned anhedonia and learned helplessness. 
Anhedonia is evaluated by measuring the bias toward consumption 
of sweetened vs. regular water (sucrose preference). These tests 
assess essentially the response to reward, depend heavily on the 
experimental setting, and carry limited information out-of-context 
(Sahin, 2023). Learned helplessness is assessed by exposing the 
animal to an unescapable aversive situation, such as suspension 
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by the tail (tail suspension test, TST), or immersion in a water-
filled cylinder (forced swimming test, FST), then measuring the 
total time spent not trying to escape (immobility time). The 
tests, originally developed in the 1970’s and 1980’s (Porsolt et al., 
1977; Steru et al., 1985) have been extensively used for drug 
discovery, but their validity for assessing depression in animal 
models remains debatable (Borsini and Meli, 1988). Recent studies 
have shown dierences between acute and chronic treatment for 
the same feature, as well as dierences between drugs acting 
depending on the neurotransmitter signaling involved (Holmes 
et al., 2002; Cryan et al., 2005). It is therefore recommendable to 
be interpreted as “depression-like behavior” or “depression-related 
behavior” (Sahin, 2023). 

Experimental models of depression build on validated 
risk factors identified in patients and are typically based on 
manipulating (1) the environment (e.g., developmental insults, 
or exposure to chronic stress at adult ages); or (2) biological 
underpinnings, at gene expression (e.g., mutations, deletions, 
or overexpression), or neuronal circuit level (e.g., optogenetic 
control of specific neuronal populations, or targeted lesions) 
(Planchez et al., 2019). In experimental models where depression-
like behavior is induced in adult animals, such as chronic 
stress or social defeat, the validity of behavioral endpoints 
has been questioned as to whether they are physiological (i.e., 
adaptive) or pathological, particularly because they are most often 
transient (Krishnan and Nestler, 2011). In contrast, experimental 
models based on perinatal adversity induce persistent behavioral 
alterations associated with reprograming of HPA axis function 
which leads to maladaptive response to stress. This provides 
“biologically plausible” support for causal relationship and 
mechanistic investigations (Fitzgerald et al., 2021). Our research 
has been focusing on the developmental origin of neuropsychiatric 
disorders with special focus on the impact of prenatal exposure to 
excess GC. Prenatal stress or exposure to exogenous GC has been 
shown to lead to low birth weight in rodents [see meta-analysis 
in Burgueño et al. (2020)]. In our model, timed-pregnant C57Bl/6 
dams were injected daily with 0.05 mg/kg/day dexamethasone 
(DEX, a synthetic GC analog) from gestational day (GD) 14 until 
delivery (Figure 2). This dose was chosen to induce moderate 
fetal growth retardation without aecting litter size, gestational 
length or maternal behavior (Spulber et al., 2015; Conti et al., 
2017). Endogenous synthesis of GC in mice starts around GD14 
(Michelsohn and Anderson, 1992) and feedback control of HPA 
axis is detected around GD16 (Reichardt and Schütz, 1996), 
which means that the exposure window covers the embryonic 
development of the HPA axis. During the first weeks after birth, 
the phenotype of DEX-exposed ospring was rather mild, without 
significant dierences between males and females. A decrease in 
bodyweight of about 5% was present from birth until 3 weeks of 
age (Spulber et al., 2015), and increased frequency of ultrasonic 
vocalizations (USV) on PND12 (unpublished observations). Sex-
related dierences emerged during adolescence, when only male 
exposed ospring displayed increased spontaneous exploration 
and impaired social recognition. At adult stages, DEX-exposed 
males display progressively weaker circadian entrainment of 
spontaneous activity and develop depression-like behavior around 
12 months (mo) of age. In contrast, DEX-exposed females display 
stronger circadian entrainment of spontaneous activity and are 
spontaneously hyperactive as compared to controls. 

FIGURE 2 

Timeline of behavioral alterations and associated mechanisms 
leading to onset of depression-like behavior in male mice exposed 
to DEX in utero. The axis of age is logarithmic, and starts at 
gestational day (GD) 10, when the cortical sublate is defined and 
cortical neurogenesis begins. Endogenous secretion of GC starts at 
GD14. IUGR induced by exposure to DEX in utero is confirmed by 
the decrease in bodyweight over the first 3 weeks (w) after birth. 
The core alterations associated with the depression-like behavior 
(i.e., altered circadian entrainment and decreased GR-signaling) are 
observed by 5–6 months (mo) of age. The mechanisms investigated 
are listed in the right column. *Alterations reversed by DMI 
treatment at respective age. #Depression-like behavior was not 
reversed by Fluoxetine (SSRI class antidepressant), but DMI (SNRI 
class antidepressant) reduced immobility time in FST. Remarkably, 
DMI treatment at 6 mo also prevented the onset of depression-like 
behavior at 12 mo. 

Heritable effects in neuronal progenitors 

The timeline of development of behavioral alterations following 
in utero exposure raises the question whether the eects of DEX 
on neuronal progenitors are persistent. Low-level DEX exposure 
(1microM) decreases the proliferation rate without altering survival 
or dierentiation of embryonic neural stem cells and was associated 
with upregulation of senescence-related markers, such as cell-cycle 
regulators p16 and p21. The alterations were long-lasting, and were 
detectable also in daughter cells, i.e., cells which were not directly 
exposed to DEX (Bose et al., 2010). Persistently increased sensitivity 
to oxidative stress was also observed in daughter cells (Raciti et al., 
2016). The persistent phenotype suggested epigenetic alterations. 
Indeed, we found global DNA demethylation associated with 
downregulation of DNA-methyl transferases (Dmnts) responsible 
for both maintenance of DNA methylation patterns across mitosis 
cycles (Dnmt1), and de novo methylation (Dnmt3a, Dnmt3b) 
(Bose et al., 2010). In addition, the upregulation of ten-eleven 
translocation oxygenase 3 (Tet3), an enzyme initiating the chain 
of reactions leading to removal of methyl groups from cytosine, 
mediates the epigenetic eects of GC exposure in embryonic 
neuronal stem cells (NSCs) (Bose et al., 2015). We found similar 
alterations in gene expression regulation in tissue samples collected 
from pups exposed to DEX in utero. Briefly, the expression of 
Dnmt3a was downregulated, Tet3 was upregulated, and global 
DNA methylation was decreased in PND3 pups as compared to 
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controls (Bose et al., 2015). An in-depth analysis of dierentially 
methylated regions (DMRs) identified altered methylation in the 
promoter region of genes relevant for the phenotype, including 
Dkk1, which mediates the acute eects of DEX in neuronal 
progenitors (Moors et al., 2012), and Txnip and Cyba, which are 
relevant for the increased susceptibility to oxidative stress (Bose 
et al., 2010). Notably, Txnip and Cyba expression was upregulated 
also in the cortex of PND3 pups exposed to DEX in utero (Bose 
et al., 2015). Taken together, these data indicate that exposure to GC 
during early developmental stages has persistent eects on neural 
stem cells, which are mediated by epigenetic changes. 

Neuroplasticity and hippocampal 
neurogenesis 

Neuroimaging studies found consistent hippocampal atrophy 
in patients with depression. In addition, experimental models 
and post-mortem investigations have shown significant synaptic 
atrophy, as well as decreased hippocampal neurogenesis and 
altered dendritic arborization, which are consistent with cognitive 
impairment associated with chronic depression (Rock et al., 2014). 
It is worth noting that hippocampal atrophy is also found in 
patients experiencing the first episode of depression (i.e., it is not 
limited to chronic or recurrent cases) (Cole et al., 2011), which is 
consistent with a neurodevelopmental origin of depression. The 
functional outcome of altered neuroplasticity has been suggested 
to be a negativity bias accompanied by cognitive and emotional 
inflexibility (Page et al., 2024). Down-regulation of neurotrophins, 
such as brain-derived neurotrophic factor (BDNF) and nerve 
growth factor (NGF), has been suggested to play a role in decreased 
neurogenesis and onset of depression-like behavior. 

Hippocampal neurogenesis was impaired in DEX-exposed 
male mice (Spulber et al., 2015; Conti et al., 2017). More 
specifically, both proliferation of neuronal progenitor, and 
neuronal dierentiation were reduced as compared to controls. 
We performed a detailed analysis of morphology of newborn 
neurons expressing green fluorescent protein (GFP) delivered 
by retroviral infection (Conti et al., 2017). The morphological 
alterations in DEX-exposed males consisted mainly of reduced 
complexity of dendritic arborization and decreased density of 
dendritic spines. In addition, we observed a conspicuous increase 
in frequency of a particular neuronal morphology characterized by 
very early branching of the main dendrite, which gives a V-shaped 
aspect instead of the most common Y-shape morphology. The 
V-shaped morphology of granule neurons in the dentate gyrus 
has previously described to be associated with neuroinflammation 
(Einstein et al., 1994; Lee et al., 2015; Llorens-Martín et al., 2016), 
and may have profound functional consequences (Fitzsimons 
et al., 2013). The alterations in neurogenesis and neuronal 
morphology were corroborated by alterations in mRNA expression 
for cell cycle inhibitors (upregulated p16 and Cdkn1c) and 
proteins regulating neuronal dierentiation and the maturation of 
granule cells (downregulated TrkB, GAP-43, DISC1, and Reln). 
Hippocampal neurogenesis is dependent on pulsations in GC 
secretion (Fitzsimons et al., 2016; Schouten et al., 2020; Eachus 
and Ryu, 2024). DEX-exposed mice display lower levels of GC 
metabolites in feces, and smaller diurnal variations as compared to 

controls (Spulber et al., 2015), which suggests dampened circadian 
oscillations in GC secretion. The investigation of GR expression 
in the hippocampus also showed significant downregulation 
(Spulber et al., 2015). This suggests an overall decrease in GC 
signaling which could explain the alteration in hippocampal 
neurogenesis. In experimental models, eective selective serotonin 
reuptake inhibitors (SSRI) antidepressants restore hippocampal 
neurogenesis, and blocking hippocampal neurogenesis prevents 
the antidepressant eects (Duman et al., 2001; David et al., 2009; 
Nollet et al., 2012). Notably, antidepressant eects have been 
suggested to be linked to eective restoration of hippocampal 
neurogenesis (Fitzsimons et al., 2016; Schouten et al., 2020). The 
observed dampened circadian oscillations in GC secretion may 
be part of the mechanisms behind the lack of eect of FLX 
treatment (Huang and Herbert, 2006). DMI, instead, which has 
been shown to enhance GR signaling (Pariante et al., 1997), 
reversed the depression-like phenotype and restored hippocampal 
neurogenesis and the morphology of newly generated granule 
neurons (Conti et al., 2017). 

Spontaneous activity and circadian 
rhythms 

Monitoring spontaneous activity (by tracking locomotor 
activity inside the cage) of group-housed mice in homecage 
environment provides insight complementary to classical testing 
(e.g., exploration in open field). In addition, the information is 
readily translatable to clinical research. The analysis of circadian 
rhythms in constant 12:12 h light-dark cycle showed slightly 
increased amplitude in 12 mo-old mice exposed to DEX in utero, 
and a shorter duration of active phase as compared to controls. 
This can be due to spontaneous activity being restricted to the 
dark phase only, which may suggest that activity is suppressed 
outside the dark (active) phase. To further characterize the 
alterations, we analyzed in detail the patterns of activity around 
the transitions between light and dark. Animals with intact internal 
clock regulating activity display anticipatory behavior, which is 
visualized as gradual increase in activity before the onset of dark 
phase, or any other events with circadian regularity (e.g., in 
time-restricted feeding experiments) (Luby et al., 2012). Similarly, 
spontaneous activity tapers toward the anticipated end of the 
active phase and continues to low levels for a short time into 
the beginning of the light (inactive) phase. The mice exposed to 
DEX in utero showed slightly delayed onset, and earlier oset 
of activity as compared to controls, which eectively restricted 
their spontaneous activity to the duration of the dark phase. This 
indicates alterations in circadian entrainment and suggests that the 
regularity of light-dark cycle is not embedded in the regulation of 
activity. Instead, the mice exposed to DEX in utero merely react to 
phase change and display limited, if any, prediction of timing of 
transition between light and dark (Spulber et al., 2015). To address 
the suspected alterations in photic entrainment, we expanded 
the testing conditions to include free running (i.e., continuous 
darkness). In free-running conditions, the internal clock, located 
in the suprachiasmatic nucleus in the anterior hypothalamus, is 
the main driver of fluctuations in activity (Inagaki et al., 2007). 
Interestingly, DEX-exposed mice were undistinguishable from 
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controls in free-running conditions regarding internal circadian 
period or complexity of activity patterns. Resuming the light-
dark cycle after a period of free-running poses the challenge 
of re-entraining circadian rhythms, and in controls the internal 
period increased to 24 h after ∼3 cycles and circadian patterns 
of activity aligned to the light-dark cycle (Spulber et al., 2015). In 
contrast, DEX-exposed mice re-entrained virtually instantaneously, 
suggesting that the light-dark cycle was the main driver of circadian 
fluctuations in spontaneous activity, with minimal contribution 
from the suprachiasmatic nucleus (Spulber et al., 2015, 2019). 
This phenotype was detectable already from 1.5 months of 
age (i.e., the earliest age when it was technically possible to 
assess circadian rhythms in spontaneous activity), is established 
around the age of 6 mo, and by the age of 12 mo spontaneous 
activity appears to follow passively the light-dark cycle (Spulber 
et al., 2015). These findings suggest a weaker control of the 
suprachiasmatic nucleus on regulation of spontaneous activity. 
Therefore, we designed a test to capture the sensitivity to photic 
re-entrainment, namely the analysis of response to a 6-h advance 
in onset of dark phase (phaseshift). Advancing the onset of dark 
phase would allow but not trigger behavioral activation, and 
the onset of activity changes progressively to match the shifted 
light-dark cycle, a process regulated by dopaminergic input to 
the SCN in control mice (Grippo et al., 2017). Starting from 
about 5 months of age, photic re-entrainment took 3-5 light-
dark cycles in controls, while mice expose to DEX in utero 
shift the onset of activity without delay (Spulber et al., 2015; 
Conti et al., 2017). To assess the coupling between SCN and 
downstream oscillators, we compared the oscillations in clock 
gene expression in hippocampus (peripheral oscillator) vs. the 
SCN (central clock). Photic entrainment of the SCN was found 
to be intact, while downstream coupling between SCN and the 
hippocampus was abolished (Spulber et al., 2019). Remarkably, 
the uncoupling of peripheral oscillators from the SCN was 
present in males, but not in females exposed to DEX in utero 
(Elberling et al., 2023). 

Depression-like behavior and the 
response to different antidepressants 

We assessed learned helplessness using FST in control and 
DEX-exposed mice starting from 1.5 mo and observed a significant 
increase in immobility time in DEX-exposed only at the age of 
12 months (roughly equivalent to middle age in humans). Of 
note, immobility time increased only in male ospring, while 
female littermates exhibited shorter floating time as compared to 
controls, consistent with spontaneous hyperactivity (Spulber et al., 
2015; Elberling et al., 2023). To reverse depression-like behavior in 
male mice exposed to DEX were treated with Fluoxetine (FLX, an 
SSRI-class antidepressant) or Desipramine, a specific noradrenaline 
reuptake inhibitor (SNRI) class antidepressant) in drinking water 
for at least 3 weeks before testing. Interestingly, only DMI was 
eective in reducing immobility time in FST. 

There is evidence in the human population that circadian 
disruption increases the risk for developing depression, and 
changes in circadian rhythms precede the onset of depression 
(Edgar and McClung, 2013; Lyall et al., 2018). In our model, 

the alterations in circadian entrainment in male mice were well-
established at the age of 6 mo, but depression-like behavior was not 
detected. Therefore, we set out to investigate (1) the mechanisms 
behind the alteration in circadian entrainment; and (2) whether 
treating the mice with DMI reverses the alterations and prevents the 
onset of depression-like behavior. The investigation of GR signaling 
at the age of 6 mo showed downregulated GR expression, as well 
as lower density of nuclear GR-GR homodimers (active receptors) 
(Spulber et al., 2019). A decrease in GR-mediated signaling 
may account for the uncoupling between SCN and hippocampal 
molecular clocks. At this age, DMI treatment enhanced GR 
signaling, as shown by upregulated GR expression, and increased 
density of cytosolic GR-Hsp90 heterodimers (inactive GR) as well 
as nuclear GR-GR homodimers (active GR) (Spulber et al., 2019). 
The restoration of coupling between SCN and peripheral oscillators 
by DMI is illustrated by the coupling of oscillations in clock gene 
expression between SCN and hippocampus; the photic entrainment 
of spontaneous activity; and the increased amplitude of oscillations 
in clock gene expression in skin fibroblasts in culture (Spulber et al., 
2019). Remarkably, male mice exposed to DEX in utero and treated 
with DMI at 6 mo did not develop depression-like behavior at 
12 mo. Furthermore, the alterations in hippocampal neurogenesis 
and morphology were considerably reduced by the age of 12 mo 
(Spulber et al., 2019). One can speculate that enhancing GR 
signaling and restoring GC-driven circadian entrainment has a 
protective role against late-onset depression-like behavior in DEX-
exposed male mice. Notably, hippocampal neurons express GR, 
and the hypothalamic secretion of CRH is suppressed by inhibitory 
projections from the hippocampus (Mastorakos and Ilias, 2003). 
Taken together, our data indicates that altered GR signaling has an 
important contribution to the phenotype we observed in male mice 
exposed to DEX in utero. 

We hypothesized there may be a correlation between specific 
alterations in activity patterns (particularly circadian entrainment) 
and response to antidepressants. To this end we re-analyzed our 
data acquired in other experimental models of depression based 
either on prenatal insults in wildtype mice, or genetically modified 
animals, in which the eectiveness of dierent antidepressant 
classes has already been established. This investigation included (1) 
wildtype mice exposed to methylmercury (MeHg), an established 
environmental developmental neurotoxicant (Onishchenko and 
Ceccatelli, 2010; Onishchenko et al., 2012), in which we have shown 
that depression-like behavior is reversed by FLX (Onishchenko 
et al., 2007, 2008; Onishchenko and Ceccatelli, 2010); (2) “helpless“ 
mice, a line selectively bred overexpressing 5-HT1A receptor, in 
which depression-like behavior is reversed by FLX (El Yacoubi et al., 
2003); and (3) serotonin transporter knock-out (5-HTT KO), in 
which depression-like behavior is reversed by DMI, but not by 
FLX (Holmes et al., 2002). The analysis of spontaneous activity 
in the homecage yielded remarkable dierences and similarities 
in alterations across models (Figure 3). First, activity during the 
active phase is reduced in all models. This is compatible with 
the decrease in relative amplitude in circadian rhythms associated 
with depression symptoms (Lyall et al., 2018). When we analyzed 
circadian entrainment specifically, we found that activity onset was 
delayed only in experimental models which would not respond 
to FLX, namely 5-HTT KO and DEX exposure. This suggests 
that anticipatory behavior, i.e., activation anticipating the onset 
of dark/active phase, is impaired in these models. Moreover, the 
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FIGURE 3 

Alterations in circadian patterns of activity in experimental models 
of depression. Decreased overall activity is a common feature for all 
models. Altered circadian entrainment, as illustrated by delayed 
onset of active phase and delayed acrophase (i.e., the time of day 
when the circadian peak of activity is expected to occur) is found 
only in experimental models of depression which do not respond to 
fluoxetine [FLX(-)], an antidepressant drug in the SSRI class. Activity 
recordings in “helpless” and 5-HTT KO mice courtesy of Dr. Daniela 
Popa, Institut de Biologie de l’École Normale Supérieure, Paris, 
France). ZT – circadian (zeitgeber) time; light on between ZT0 and 
ZT12, light off between ZT12 and ZT24/ZT0. Asterisks indicate 
significant differences from controls (white symbols or reference 
dashed line). 

acrophase, i.e., the time of day when the circadian peak of activity 
is expected as predicted by cosinor analysis, was delayed also only 
in 5-HTT KO and DEX-exposed mice. This suggests that the 
active phase is delayed as compared to controls and confirms the 
impairment in anticipatory behavior. In DEX-exposed mice, we 
have shown that uncoupling between the SCN – where photic 
entrainment is not altered – and downstream clocks is due to 
reduced GR signaling. In 5-HTT KO mice, considered to be a 
reliable SSRI-resistant depression model, the lack of functional 5-
HTT increases the availability of 5-HT at synaptic level. In the 
SCN, 5-HT eectively blocks photic entrainment by inhibiting 
glutamatergic signaling from the RHT (Reghunandanan and 
Reghunandanan, 2006; Pontes et al., 2010). Therefore, downstream 
photic entrainment of spontaneous activity is not possible, leading 
to initiation of active phase passively following the light-dark cycle 
instead of anticipating the transitions between light and dark. 

In contrast, in depression models which respond to FLX, 
circadian entrainment of spontaneous activity appears not to be 
altered. In “helpless” mice, the 5-HT1A autoreceptor upregulation 
decreases 5-HT availability at synaptic level by inhibiting synaptic 
release, which explains the depression-like behavior documented 
in this mouse line. 5-HT signaling in the SCN weakens photic 
entrainment, and reducing 5-HT availability is not expected to 
have a significant impact on circadian entrainment. Lastly, in the 
MeHg-exposure model of depression, there is limited information 
on mechanisms linked to circadian entrainment. We have shown 
that mercuration of GR at Cys736 distorts the conformation of 
the ligand binding site and reduces its activation upon ligand 
binding (Spulber et al., 2018), which may impact the regulation of 
HPA axis. This mechanism may be relevant during early stages of 
development only, since the concentration of MeHg in the brain 
dropped to control levels within 4 weeks after birth, while persistent 
changes lasting into adulthood may be accounted for altered 
BDNF expression due to epigenetic changes (Onishchenko et al., 
2008). Conversely, we can speculate that altered BNDF signaling 
may contribute to the phenotype observed in DEX-exposed mice. 
Recent reports indicate that maternal leads to epigenetic changes in 

BNDF promoter region (Braithwaite et al., 2015; Uwaya et al., 2016; 
Niknazar et al., 2017; Park et al., 2018; Pallarés et al., 2021; 
Fransquet et al., 2022). However, there is limited data available on 
BNDF signaling in mice exposed to DEX in utero. 

Sex-related differences 

Historically neuroscience research has favored a bias against 
female subjects. While in recent years this trend has decreased, 
many studies that include both sexes do not consider sex as 
an experimental variable and this concerns both animal and 
human research. In addition, sex is rarely considered in research 
based on in vitro cultures of primary cells or immortalized cell 
lines. Not including sex in the experimental design and analyses 
may undermine the relevance of studies aiming at clarifying 
mechanisms of disease. Furthermore, the lack of inclusion of 
females leads to an underrepresentation of an entire segment of the 
population, which in turn, can negatively aect our understanding 
of the impact of specific diseases and the development of 
new treatment strategies (Mamlouk et al., 2020). The biological 
underpinnings of sex-related dierences in response to prenatal 
exposure to excess GC include dierences between male and female 
placenta function; dierences in reprograming of the HPA axis; and 
epigenetic changes [reviewed in Carpenter et al. (2017)]. 

Our model of prenatal exposure to DEX in utero 
revealed strong sexual dimorphism in long-term outcomes of 
neurodevelopmental insults. In contrast to males, female ospring 
exposed to DEX displayed spontaneous hyperactivity in a familiar 
environment (compatible with ADHD-like phenotype). Similarly, 
female, but not male rat ospring exposed to chronic unpredictable 
mild stress between GD14 and birth have also been reported to be 
hyperactive (Possamai-Della et al., 2023). In addition, the ACTH 
secretion was higher in females as compared to male ospring 
(Possamai-Della et al., 2023), which is in line with the delayed 
photic re-entrainment of activity observed in DEX-exposed female 
ospring (Elberling et al., 2023). Of note, an increase in histone 
acetylation the hippocampus was reported in female ospring 
exposed to prenatal stress, but not in males (Possamai-Della et al., 
2023). The analysis of impact of phaseshift on the organization of 
behavior highlighted fundamental dierences between males and 
females. In males, the phaseshift had only minor and reversible 
eects on general organization of behavior of individual mice. In 
contrast, phaseshift was followed by widespread and persistent 
changes in the organization of behavior in females (Elberling et al., 
2023). Gene expression analyses have shown that the coupling 
between SCN and peripheral oscillators is preserved. We further 
found decreased dopaminergic signaling, which may delay the 
photic entrainment of the SCN (Grippo et al., 2017; Grippo and 
Güler, 2019) and account for the overall hyperactivity. Consistent 
upregulation of Gsk3b in both SCN and hippocampus indicates 
destabilization of molecular clocks in peripheral oscillators, as 
previously shown in psychiatric conditions associated with altered 
clock function (e.g., ADHD, bipolar disorder) (Hirota et al., 2008; 
Paul et al., 2012; Zhang et al., 2013; Yen et al., 2015). The patterns of 
behavioral alterations between males and females suggest that the 
organization of behavior in the homecage is largely independent 
from photic entrainment. In addition, they highlight sex-related 
dierences in the response to prenatal insults and susceptibility to 
multifactorial neurodevelopmental disorders. 
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Relevance of the findings 

Our data indicate that IUGR induced by prenatal exposure 
to DEX is an experimental model of late-onset depression 
characterized by altered circadian entrainment of activity, and 
selective response to antidepressants (no response to FLX, 
positive response to DMI). The association between circadian 
entrainment and response to antidepressant treatment in animal 
models of depression can be explained as outcomes of specific 
mechanisms, and it has been verified in specific cases. In 
the in utero exposure to DEX model, we found evidence 
of eective antidepressant treatment restoring the alterations 
in circadian entrainment (Spulber et al., 2019), but there is 
virtually no data available in other models. However, circadian 
entrainment is an endpoint which can be evaluated in patients 
using non-invasive, aordable technologies for monitoring activity, 
such as wrist actigraphy. A large biobank study has shown 
that decreased relative amplitude (RA) of circadian rhythms 
of activity correlates with increased susceptibility to mood 
disorders and poorer subjective wellbeing (Lyall et al., 2018). 
RA measures how distinct the levels of activity are during the 
least active interval from the most active interval, regardless 
of the time-of-day when they are detected (i.e., no assumption 
regarding intrinsic circadian periodicity). Therefore, decreased 
RA (due to either higher activity at night; lower diurnal 
activity; or a combination of both) reflects less distinct circadian 
modulation of activity, which is compatible with weaker circadian 
entrainment. We have developed a pipeline for detailed analysis 
of individual patterns of activity in MDD patients focusing 
on circadian entrainment and within-day variability of activity. 
Initial analyses identified correlations between patterns of activity 
and symptom severity (Spulber et al., 2022). We further 
explored the possibility to model the response to specific 
antidepressant interventions using individual patterns of activity 
during depressive episode but before treatment using Bayesian 
model averaging on independently trained multivariate linear 
regression models. These analyses revealed substantially dierent 
subsets of features to be most relevant for specific interventions 
(Spulber et al., 2023, 2025). These results highlight the possibility 
to introduce actigraphy recordings as objective measurements 
to assist mental healthcare. The predicted increase in remission 
rate using informed assignment to treatment was estimated 
to 35% (Spulber et al., 2025), which is similar to evidence-
based care and algorithm-guided therapy (Xiao et al., 2021). 
Given the limited information available, prospective clinical trials 
are required for validation of models before introduction in 
clinical practice. 

Perspectives 

It is relevant to point out that experimental models can 
resolve mechanisms which are suÿcient to yield symptoms listed 
among diagnostic criteria for MDD. For instance, genetically 
engineered models targeting genes associated with depression 
(e.g., related to 5-HT signaling, or clock genes), or models 
where the HPA axis functions is reprogrammed by prenatal 
interventions (e.g., prenatal stress, or exposure to synthetic 

GC) lead to depression-like behavior in mice. These models 
provide insight into phenotypes associated with the response 
to dierent antidepressant interventions. Since the alterations 
appear specific to an underlying mechanism, they may indicate 
which antidepressant treatments are eective and which are 
expected to not be eective. From a translational perspective, 
these results suggest that alterations in patterns of circadian 
spontaneous activity may predict the response to therapy 
in depressed patients. There are no objective measures or 
biomarkers to predict the response to specific antidepressant 
treatment, and to date eective therapies are identified by 
trial and error. A recent extensive review analyzing individual 
trajectories in response to treatment shows that the patterns 
of response to treatment are consistent across drugs (Stone 
et al., 2022). While successful antidepressant response can be 
predicted by clinical features, it is not possible to predict the 
specific antidepressant to which a patient will respond before 
treatment initiation. Therefore, it is meaningful to search for 
predictors of response to specific antidepressant interventions 
(Stone et al., 2022). Activity patterns in patients can be 
monitored using wrist actigraphy. Our collaborative clinical 
investigations provided evidence for the prognostic value of 
circadian patterns of activity for predicting the response to 
antidepressant treatments (Spulber et al., 2023, 2025). Despite 
limitations due to population size, the use of transparent machine 
learning algorithms which account for uncertainty around data-
generating model and support biological interpretations make 
possible the translation of model parameters into clinically relevant 
information. 
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