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Introduction: Latent inhibition is diminished associative memory because of

pre-exposure to the conditioned stimulus without any consequences. Latent

inhibition likely plays a significant role in the ontogeny of anxiety disorders,

contributing to why anxiety disorders are particularly prevalent in adolescence.

Therefore, the present study examined latent inhibition of conditioned fear in

adolescent and adult rats of each sex. Given that adolescence is associated with

deficits in fear extinction, we hypothesized that latent inhibition will be impaired

in adolescents compared to adults and expected females to show age-specific

estrous cycle effects.

Methods: On day 1, male (Experiment 1) and female (Experiment 2) rats were

placed in fear conditioning chambers. Half of the rats received pre-exposure to

the tone cue while the other half received nothing. On day 2, all rats were placed

back in the same chambers and exposed to three cue-footshock pairings. Latent

inhibition was tested on day 3 with 20 presentations of the cue by itself in the

same chamber.

Results: We unexpectedly observed enhanced latent inhibition in adolescents

compared to adults in both male and female rats, indicated by lower levels of

freezing due to pre-exposure to the cue. Estrous cycle did not affect latent

inhibition at any age.

Discussion: These results suggest that benign experience to a cue reduces

subsequent conditioning to the cue more potently in adolescence compared to

adulthood, which suggests a potential resilience mechanism naturally occurring

in adolescence.
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1 Introduction 

Latent inhibition is when prior benign experience with a 
cue can impede or inhibit subsequent emotional learning to the 
cue (Lubow, 1973; Mineka and Zinbarg, 2006). In Pavlovian 
conditioning, latent inhibition is observed when the pre-exposure 
to the conditioned stimulus (CS) interferes with acquisition 
(George et al., 2010; Shalev et al., 1998; Lubow and Moore, 
1959) or retrieval (Leung et al., 2013; Lingawi et al., 2016) 
of CS association with the unconditioned stimulus, measured 
by decreased conditioned responding in pre-exposed compared 
to non-pre-exposed subjects. Latent inhibition is proposed to 
explain how prior benign experiences prevent the development of 
experience-based anxiety disorders (Mineka and Zinbarg, 2006). 
For example, children who did not initially experience stress with 
dentists are much less likely to develop dental phobias following 
a subsequent traumatic experience (Davey, 1989). Similarly, 
monkeys who have observed models playing with snakes in 
seemingly safe circumstances do not develop fearful behaviors 
when directly exposed to snakes (Mineka and Cook, 1986). 

Adolescence is a period of elevated risk to anxiety disorders 
(Polanczyk et al., 2015), which may be associated with latent 
inhibition. Indeed, anxiety symptoms in humans are related to 
deficits in inhibitory learning and memory measured by extinction 
of conditioned fear (Ganella et al., 2018a; Marin et al., 2017). 
Like latent inhibition, extinction involves benign exposures to a 
cue, except that such exposure occurs after the emotional learning 
(Bouton, 1993). Adolescents have been shown to display extinction 
impairments compared to adults in rats and humans (Ganella 
et al., 2017a, 2018a; Ganella and Kim, 2014; Pattwell et al., 2012, 
2013; Zbukvic et al., 2017). One study has shown that postnatal 
day 35 (P35) adolescent male rats indeed show latent inhibition, 
as measured by conditioned suppression of licking behavior in 
response to a tone CS that was paired with shocks (Zuckerman 
et al., 2003). However, latent inhibition has not yet been directly 
compared between adolescents and adults, which is the first aim of 
the present study. We hypothesize that the behavior of adolescents 
and adults will be dierentially aected by latent inhibition because 
vulnerability towards anxiety disorders in adolescence (McGrath 
et al., 2023) has long been associated with the reduced function 
of medial prefrontal cortex (mPFC), which undergoes dramatic 
changes in structure and neurochemistry across adolescence (Casey 
et al., 2008; Kim et al., 2017; Perry et al., 2021; Gold et al., 
2020). Notably, previous literature in rats gives rise to opposing 
predictions. On the one hand, temporary inactivation of the 
infralimbic cortex (IL) of mPFC led to deficits in latent inhibition 
(Lingawi et al., 2016, 2018), which suggests that latent inhibition 
would be impaired in adolescence. On the other, IL lesions 
facilitated latent inhibition (George et al., 2010), which suggests 
that latent inhibition would be facilitated in adolescents. Moreover, 
mPFC lesions did not aect latent inhibition in other studies (Joel 
et al., 1997; Lacroix et al., 1998) suggesting that latent inhibition 
may be comparable in adolescent and adult rats. 

The second aim of the present study is to assess latent 
inhibition in males and females. Biological sex is a significant 
factor for anxiety disorders, with greater prevalence reported within 
the female population (Kessler et al., 2005). Sex dierences in 
inhibitory learning and memory have been observed (Milad et al., 

2009), although this eect is strongly mediated by hormonal 
eects/estrous cycle in female rodents and humans (Lebron-Milad 
et al., 2012; Graham and Milad, 2013). Interestingly, these estrous 
cycle eects are age dependent. Stages where there are high levels of 
estradiol are associated with improved extinction in adult females 
(Lebron-Milad et al., 2012; Graham and Milad, 2013), and impaired 
extinction in adolescent females (Perry et al., 2020). In addition, sex 
eects in extinction have been associated with dierences in mPFC 
function (Day et al., 2020). Hence, latent inhibition may also be sex-
specific. To our knowledge, there have been no studies that have 
examined latent inhibition of conditioned fear in female rodents. 
We hypothesize females will show age-specific eects of estrous 
cycle on latent inhibition. Specifically, latent inhibition would be 
greater when adult rats are in proestrous (i.e., when estradiol levels 
are high), while the opposite may be true in adolescent rats. 

2 Materials and methods 

2.1 Subjects 

Male (26 adults and 22 adolescents) and female (44 adults 
and 37 adolescents) Sprague Dawley rats were bred in-house 
at the Florey Institute of Neuroscience and Mental Health. 
All rats were weaned at P21 and housed for the remainder 
of experimental procedures in groups of 3–6, with same-sex 
littermates in individually ventilated cages under a 12/12 h cycle 
(lights on at 7 a.m.) with food and water available ad libitum. All 
behavioral testing occurred during the light phase. On the first day 
of behavioral experimentation, rats in the adolescent groups were 
P35 (± 1), while rats in the adult groups were P70–P98. All rats 
were handled three times prior to commencement of behavioral 
experimentation. All procedures were approved by the Animal 
Care and Ethics Committee at the Florey Institute of Neuroscience 
and Mental Health in accordance with the guidelines for animal 
use set out in the Australian Code of Practice for the Care and Use of 
Animals for Scientific Purposes (8th edition, 2013). 

2.2 Apparatus 

All behavior occurred in Contextual Near Infra-Red Fear 
Conditioning and Video Freeze system (Med Associates, 
VT, United States), which provides scrambled direct current 
footshocks. The dimensions of the chambers and the grid floor 
were as described previously (Zbukvic et al., 2017). A white house 
light was on during all sessions, and chambers were cleaned with 
80% v/v ethanol and dried thoroughly between tests with rats being 
placed 5 min after drying. 

2.3 Procedure 

2.3.1 Pre-exposure 
On day 1, all rats were placed in the novel chambers. 

Following a 2-min baseline period, rats in group “pre-exposure” 
were presented with 45 tones (5,000 Hz, 80 dB), which served as 
the conditioned stimulus (CS). Each CS presentation was 10 s, 
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with an inter-trial interval (ITI) of 10 s with 2-min post-tone 
period followed by the rats being returned to their home cages, 
which is standard in our laboratory for the first day of behavior 
in developing rats (Park et al., 2020; Luikinga et al., 2019). Such 
protocol was developed to allow some time to adjust at the end 
of the first behavioral session. Rats in group “No pre-exposure” 
were placed in the chambers for the same length of time (19 min), 
however, no tones were delivered. 

2.3.2 Conditioning 
On day 2, all rats were placed in the same chamber as the 

previous day. We used a fear conditioning protocol that produces 
robust freezing to the tone that persists to subsequent sessions in 
developing and adult rats (Ganella et al., 2017b, 2018b; Park et al., 
2017). Following a 2 min baseline period the CS was presented 
for 10 s, co-terminating with a 1 s footshock (the unconditioned 
stimulus, US). This CS-US pairing was repeated three times with 
an ITI averaging 110 s, with 2-min post-shock period followed by 
the rats being returned to their home cages, which is standard in our 
laboratory to allow some time to adjust after the shock (Park et al., 
2020; Luikinga et al., 2019). The intensity of the shock was dierent 
between Experiment 1 (males) and Experiment 2 (females). For 
males, the US was a 0.45 mA shock. Pilot data from the laboratory 
showed that this intensity produced robust freezing and reliable 
latent inhibition. However, for female rats, the US was 0.6 mA 
because pilot data showed that a 0.45 mA shock failed to produce 
robust freezing across conditioning and at test. 

2.3.3 Test 
On day 3, all rats were placed in the same chamber as the 

previous day. As for the previous sessions, there was a 2-min 
baseline period after which the 10 s CS was presented 20 times in 
the absence of any footshock. ITI was 10 s. 

2.3.4 Estrous phase monitoring 
For Experiment 2, vaginal lavages were taken from female rats 

1 h after each behavioral session as described previously (Perry 
et al., 2020). Briefly, a pipette tip containing 20 µL of saline was 
used to flush the vagina two or three times if the vagina was 
opened. The fluid collected was dried on a microscope slide then 
stained with a 4% (v/v) methylene blue solution. Slides were then 
rinsed twice with distilled water, air dried, and observed under 
a light microscope (10 × magnification, Olympus BH-2). Slides 
were cross-checked by two independent researchers in a double-
blind manner. They were categorized according to the proestrus, 
estrus, metestrus, and diestrus cycle using the morphology of cells 
and their relative cellular proportions (Cora et al., 2015). Rats in 
diestrus and metestrus were pooled together for statistical analyses 
as reported previously (Perry et al., 2020; Hecht et al., 1999), due to 
their similarities in rising levels of estrogen and the relatively short 
length of metestrus (Westwood, 2008). 

2.4 Data analysis 

All analyses were carried out using SPSS (IBM Corp., NY, 
United States). Percent freezing from all behavioral sessions was 
subjected to analysis of variance (ANOVA) or repeated-measures 
(RM) ANOVA. Post hoc analyses of simple eects using the 

Bonferroni correction were used to explain significant interactions 
wherever appropriate (Drummond et al., 2021). For analysis of 
CS-elicited freezing during pre-exposure, percent freezing across 
CS trials were averaged. For group No pre-exposure that did not 
receive any CS trials during the pre-exposure session, freezing was 
calculated for the matching periods as the group Pre-exposure. For 
analysis of CS-elicited freezing during conditioning, the first 9 s 
of each CS-US trial was used to discount the eects of shock on 
movement during the last second of each CS-US trial. Freezing 
during test was blocked into five CS presentations to result in four 
blocks. For all analyses in females, estrous phase at each behavioral 
session was included as a factor to account for potential hormonal 
eects. Metestrus and diestrus were pooled into a single group due 
to the shortness of metestrus phase as reportedly previously (Perry 
et al., 2020). Speed measurements of the rat center of mass were 
used to determine shock responsivity to the US and occurrences 
of darting to the CS (Carroll et al., 2025; Mitchell et al., 2024). 
Using DeepLabCut [version 3.0.0rc10; (Mathis et al., 2018; Nath 
et al., 2019)], 200 frames from ∼90% randomly selected videos 
from conditioning and test were assigned a tracking point to the 
rat center of mass. Using these annotated frames, the DeepLabCut 
markerless tracking model was generated using the ResNet50 
neural network for 200 epochs using the PyTorch engine. All 
videos from conditioning and test were analyzed with this model 
then fed into the Simple Behavioral Analysis software [SimBA; 
(Goodwin et al., 2024)] to calculate speed (cm/s). Shock sensitivity 
was calculated as speed of movement during 1 s shock averaged 
across trials. Darting was defined as movement across the chamber 
at or exceeding 20 cm/s during the CS as previously described 
(Mitchell et al., 2024). 

3 Results 

3.1 Baseline freezing 

Freezing was recorded during the 2-min baseline periods for all 
sessions, which was clearly low during each session (Figures 1, 2 and 
Table 1). However, 2-way ANOVAs (Age × Pre-exposure) revealed 
significant main eects of Age during the conditioning baseline 
period for Experiment 1 [F(1,77) = 4.85, p = 0.03] and Experiment 
2 [F(1,77) = 6.58, p = 0.01], with adolescents freezing more than 
adults in both experiments. Neither the Pre-exposure main eect 
nor the Age × Pre-exposure interaction were significant in any 
of the three sessions in any experiment (p’s > 0.05). In fact, prior 
to experiencing the first shock (i.e., across Pre-exposure session 
and Conditioning baseline), freezing in both sexes was very rarely 
observed (Table 1). During baseline, most rats showed 0% freezing. 
As such, the significant main eect of Age appears to be driven by 
the lack of variability and are unlikely to be meaningful. 

3.2 Adolescent males show greater 
propensity for latent inhibition compared 
to adult males 

Freezing during pre-exposure session was low, regardless of 
whether rats were presented with the CS or not (Figure 1A). 
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FIGURE 1 

Baseline and CS-elicited freezing across (A) pre-exposure, (B) conditioning and (C) test sessions and (D) shock sensitivity in males. During 
conditioning, pre-exposed rats showed lower freezing compared to non-pre-exposed rats (main effect of Pre-exposure **p < 0.001), however, 
there were no differences between adults and adolescents. At test, both adults and adolescents in the pre-exposed condition showed lower 
freezing compared to non-pre-exposed counterparts, however, this effect was greater for adolescents (significant Age × Pre-exposure interaction, 
post-hoc tests *p < 0.05, ***p < 0.0001). Pre-exposed adolescent rats showed greater shock sensitivity than non-pre-exposed adolescents 
(significant Age × Pre-exposure interaction, post-hoc tests *p < 0.05], whereas this effect was not evident in adult rats. BL, baseline. 

FIGURE 2 

Baseline and CS-elicited freezing across (A) pre-exposure, (B) conditioning and (C) test sessions and (D) shock sensitivity in females. During 
conditioning, pre-exposed rats showed lower freezing compared to non-pre-exposed rats (main effect of Pre-exposure *p < 0.05), however, there 
were no differences between adults and adolescents. At test, only adolescents in the pre-exposed condition showed lower freezing compared to 
Non pre-exposed counterparts (significant Age × Pre-exposure interaction, post-hoc tests, **p < 0.05). There were no group differences in shock 
sensitivity. BL, baseline. 

Two-way ANOVA (Age × Pre-exposure) of freezing during pre-
exposure confirmed no main eect of Pre-exposure and no 
Age × Pre-exposure interaction (p’s > 0.05) indicating that the pre-
exposure to the CS does not trigger freezing in adolescent and adult 
male rats. There was also no main eect of Age (p > 0.05). 

Conditioned stimulus-elicited freezing during conditioning 
(Figure 1B) was analyzed using repeated measures ANOVA 
(Age × Pre-exposure x Conditioning trial). Mauchley’s Test 
of Sphericity indicated that the assumption of sphericity had 
been violated (p < 0.001), and therefore a Greenhouse-Geisser 
correction was applied to all repeated measures analyses. There 
were significant main eects of Conditioning trial [F(2, 44) = 37.33, 
p < 0.001] and Pre-exposure [F(1, 44) = 16.80, p < 0.001]. The 
main eect of Age was not significant [F(1,44) = 3.18, p = 0.08]. 
None of the two-way interactions, nor the three-way interactions 
were significant (p’s > 0.05). Thus, all rats significantly increased 
CS-elicited freezing across the conditioning trials, with pre-exposed 
groups overall freezing less than no pre-exposure groups regardless 
of age. 

Figure 1C shows freezing during the 20 CS presentations at test, 
binned into blocks of five CS presentations. Three-way ANOVA 
(Age × Pre-exposure x Block) revealed significant main eects of 
Age [F(1,44) = 4.865, p < 0.05], Pre-exposure [F(1,44) = 38.983, 
p < 0.001] and Block [F(3,44) = 69.25, p < 0.001]. There was 
a significant Age × Pre-exposure interaction [F(1,44) = 11.87, 
p = 0.001], and although Block × Pre-exposure interaction was 
significant [F(3,44) = 3.23, p < 0.05], Age × Block × Pre-exposure 
was not (p > 0.05). The post hoc analysis revealed that although 
latent inhibition was expressed for both adults and adolescents (i.e., 
there was a significant dierence between pre-exposed and non-
pre-exposed rats), this eect was greater for adolescents compared 
to adults [Adults: 95% CI (0.40, 30.76); Adolescents; 95% CI (37.42, 
70.47)]. Furthermore, freezing for the pre-exposed rats was greater 
than non-pre-exposed rats at all four blocks (all p’s < 0.001). Taken 
together, adolescent male rats showed greater latent inhibition 
following a protocol than adult males, and reduced freezing at 
test was due reduced retrieval of fear in pre-exposed rats that was 
apparent from the first block of CS presentations. 
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TABLE 1 Mean (SEM) baseline freezing expressed as a percentage of 
total baseline period each behavioral session. 

Pre-exposure Conditioning Test 

Males 

Adult: no pre-exposure 0.3 (0.2) 1.6 (0.6) 20.3 (7.4) 

Adult: pre-exposure 0.3 (0.1) 1.3 (0.5) 27.8 (8.8) 

Adolescent: no 

pre-exposure 

1.2 (0.5) 1.7 (0.5) 31.4 (10.9) 

Adolescent: pre-exposure 0.5 (0.3) 0.6 (0.3) 17.2 (5.7) 

Females 

Adult: no pre-exposure 1.5 (0.3) 1.0 (0.5) 17.1 (6.3) 

Adult: pre-exposure 0.8 (0.2) 0.5 (2.7) 12.2 (3.9) 

Adolescent: no 

pre-exposure 

4.3 (1.1) 2.2 (0.7) 22.2 (7.5) 

Adolescent: pre-exposure 2.4 (0.4) 1.8 (0.5) 13.7 (4.3) 

Note that there was a significant dierence between adolescents and adults (averaged across 
pre-exposure condition i.e., main eect of Age) on the Conditioning day only (p < 0.5). 
However, this constitutes a dierence of 0.3% freezing for males and 1.2% freezing for 
females, which is negligible compared to freezing levels once shock has been experienced, 
and is unlikely to constitute a biologically meaningful dierence. 

Shock sensitivity averaged across three shock exposures 
(Figure 1D) was analyzed using two way ANOVA (Age × Pre-
exposure). There were no main eects for Age nor Pre-exposure 
[F(1,44) = 0.35 and 1.13, respectively, p’s > 0.05], however, there 
was a significant Age × Pre-exposure interaction [F(1,44) = 5.38, 
p < 0.05]. Bonferroni-corrected simple eects revealed greater 
sensitivity to shock in pre-exposed compared to non-pre-exposed 
adolescent (p < 0.05), but not adult (p = 0.353). This indicates that 
the interaction was driven by increased shock sensitivity in pre-
exposed group for adolescents only. Darting was negligible across 
both conditioning and test (only a single dart of moving across the 
chamber in all the groups was recorded during conditioning and 
test). Therefore, this behavior could not be analyzed. 

3.3 Adolescent females show propensity 
for latent inhibition compared to adult 
females 

Three-way ANOVA of freezing during pre-exposure showed no 
significant main eects nor interactions of Age, Pre-exposure, and 
Estrous (p’s > 0.05). These results suggest that the pre-exposure 
to the CS and dierent estrous phases do not elicit freezing in 
adolescent and adult female rats (Figure 2A). 

Conditioned stimulus-elicited freezing during conditioning 
(Figure 2B) was analyzed using repeated measures ANOVA 
(Age × Pre-exposure × Estrous × Conditioning Trial). Mauchley’s 
Test of Sphericity indicated that the assumption of sphericity 
had been violated (p < 0.001), and therefore a Greenhouse-
Geisser correction was applied to all repeated measures analyses. 
Similarly, to males, there was a main eect of Conditioning trial 
[F(2,136) = 73.23, p < 0.001], indicating freezing increased across 
repeated trials. There also was a main eect of Pre-exposure 
[F(1,68) = 8.28, p = 0.005], showing that freezing across the 
three CS presentations was overall lower following pre-exposure 

to the stimulus. Main eects of Age and Estrous phase were non-
significant [F(1,68) = 1.34, p = 0.25; F(3,67) = 0.24, p = 0.87, 
respectively]. There were no two, three nor four-way significant 
interactions (p’s > 0.05). 

Figure 3C shows freezing during the 20 CS presentations 
at test, binned into blocks of five CS presentations. Four-way 
(Age × Pre-exposure × Block × Estrous) ANOVA revealed a 
main eect of Pre-exposure [F(1,68) = 12.052, p < 0.001] and Pre-
exposure × Age interaction [F(1,68) = 5.00, p < 0.05]. Main eects 
of Age and Estrous were not significant [F(1,68) = 3.94, p = 0.051; 
F(3,68) = 1.15, p = 0.33, respectively]. Main eect of Block was 
significant [F(3,68) = 27.87, p < 0.001], however, there were no 
significant interactions involving Block (two, three, and four-way 
Block interaction p’s > 0.05). There were no significant interactions 
involving Estrous (p’s > 0.05). Since there were no interactions 
with Estrous, we determined the simple eects averaging across 
Estrous phase. These showed that there was no significant eect of 
Pre-exposure for adults [p = 0.86, 95% CI (−21.55, 17.99)], where 
there was for adolescent female rats [p < 0.001, 95% CI (17.77, 
59.69)]. Therefore, as with male rats, the latent inhibition eect 
was greater in adolescent female rats when compared with adults. 
Lack of interaction with Block showed that this was due to reduced 
retrieval of fear in Adolescent pre-exposed rats from the first CS 
presentation. 

Shock sensitivity averaged across three shock exposures 
(Figure 2D) was analyzed using two-way ANOVA (Age × Pre-
exposure). There were no main eects for Age nor Pre-exposure 
[F(1,68) = 0.01 and 2.55, respectively, p’s > 0.05], nor was there 
a significant Age × Pre-exposure interaction [F(1,68) = 1.17, 
p > 0.05]. Darting was not observed and could not be analyzed. 

In order to verify that rats were cycling, we analyzed changes 
in proportion of rats in each phase across behavioral days as 
previously reported (Perry et al., 2020). As expected, adult females 
showed significant [χ2(4,44) = 11.07, p < 0.05] changes in the 
proportion of estrus phases (Figure 3A) whereas adolescent females 
did not [χ2(6,37) = 5.60, p = 0.47] (Figure 3C). Examination of 
individual rats revealed that many adolescent rats have not begun 
estrus cycling (Figure 3D). Interestingly, the adolescents that have 
begun cycling and adults largely showed similar expected pattern 
of 2–3 days met/diestrus, ∼1 day of proestrus and ∼1 day of estrus 
(Figures 3B, D), unlike the previous study in which adolescents 
showed much more erratic cycling (Perry et al., 2020). Average 
freezing levels were graphed for each phase (Figure 3D). We 
could not analyze the data (even with excluding unopened groups) 
because there were 0–1 rats for some phases in each session. There 
appears to be very little impact of estrous phase within groups. 

4 Discussion 

The aim of this study was to examine age dierences 
(adolescent vs. adult) in latent inhibition in male and female rats. 
We found that adolescents were more likely to display evidence 
of latent inhibition when compared to adults, with lower levels 
of freezing shown in adolescents compared to adults in the pre-
exposed rats. These findings do not exclude that latent inhibition 
occurs for adults as well, since there is evidence of delayed 
conditioning in the pre-exposed rats on day 2 regardless of age and 
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FIGURE 3 

Estrous cycle information for adult and adolescent females. The number of (A) adult and (C) adolescent rats in each estrous phase on pre-exposure, 
conditioning and test days. Progression of individual (B) adult and (D) adolescent rats in estrous phase across experimental days. Each row represents 
one rat. (E) Average freezing on each day with respect to group and estrous phase on that day. Pre, pre-exposure, No pre, no pre-exposure. 

sex (Figures 1, 3). This delayed learning was not due to decreased 
sensitivity to the shock as a result of pre-exposure to the CS. If 
anything, pre-exposed animals showed greater sensitivity, although 
this eect was only evident in adolescent males. Thus, during pre-
exposure both adults and adolescents had learned that the CS has 
no aversive consequence, and this learning delays acquisition of 
the CS-shock association similarly across age groups. However, 
the eect of the initial experience is clearly more enduring for 
adolescents, since pre-exposure was more likely to reduce fear 
expression on day 3 in that age group. Surprisingly, despite previous 
studies that fear learning is aected by sex hormones (Graham and 
Milad, 2013, 2014; Perry et al., 2020), we found no eect of estrous 
in our female rats. 

The enhanced latent inhibition observed here in adolescents 
is similar to eects seen following experimental lesion of the 
IL (George et al., 2010). Compared to other brain regions, the 
mPFC is last to reach maturity in rodents and humans (Casey 
et al., 2008; Kim et al., 2017; Gogtay et al., 2004; Giedd, 2004; 
Bjerke et al., 2025). It is therefore possible that the enhanced 
latent inhibition eect observed here in adolescents may be due to 
reduced functionality in the IL mPFC, which led to stronger eects 
of pre-exposure. When IL lesions facilitated latent inhibition, 
George et al. (2010) argued that the role of IL is to allow the 
learning of a second, conflicting information about a cue. As 
such, IL hypofunction during adolescence results in enhanced 
latent inhibition because the second association (cue-shock) is not 
encoded properly. Such a role for IL is also consistent with previous 
studies showing impaired extinction and reduced IL function in 
adolescents (Ganella et al., 2018a; Kim et al., 2011). In contrast, 
others have shown that temporary inactivation of the IL inhibited 
retrieval of latent inhibition (Lingawi et al., 2016, 2018). The 
dierences in findings may be explained by specific methodology. 
In George et al. (2010), IL lesions occurred prior to any behavioral 
training. Thus, function was impaired across pre-exposure and 

at test. When IL inactivation only occurred immediately prior to 
retrieval test (Lingawi et al., 2016, 2018), IL function would have 
been intact during pre- exposure. From this, IL may be critical 
for remembering the latent inhibition memory once pre-exposure 
and conditioning have already occurred. In our study, assumed 
IL hypofrontality was due to developmental stage rather than 
experimental manipulation, hence would have been present during 
pre-exposure and conditioning as with George et al. (2010). 

Importantly, brain maturation is not restricted to the IL and 
the present results may be due to dopamine signaling in the 
nucleus accumbens (NAc). A recent study showed that cue-elicited 
dopamine release in the NAc core was directly linked to latent 
inhibition (Kutlu et al., 2022). Specifically, exposure to the cue 
evokes dopamine release, which declines with repeated exposures 
across the pre-exposure session. Therefore, during conditioning, 
the pre-exposed cue evokes a smaller dopamine release than the 
non-pre-exposed cue, meaning that it is less able to form an 
association with the US (Kutlu et al., 2022). At conditioning, intra-
nucleus accumbens (NAc) injections of amphetamine attenuated, 
while a dopamine receptor 2 (D2) antagonist (haloperidol) 
enhanced latent inhibition (Joseph et al., 2000). However, intra-
mPFC injection of amphetamine or apomorphine had no eects 
(Lacroix et al., 2000; Broersen et al., 1999). Furthermore, deficits 
in latent inhibition of conditioned fear due to adolescent social 
isolation were associated with increased D2 expression in the mPFC 
and NAc (Han et al., 2012). Conversely, a dopamine receptor 1 
(D1) agonist administered systemically prior to pre-exposure and 
conditioning sessions mildly inhibited latent inhibition of fear 
conditioning (Feldon et al., 1991). A D1 antagonist (SCH23390) 
administered alone had no eect, but did block amphetamine-
induced disruption of latent inhibition (Nelson et al., 2012). In 
summary, attenuated D1 or D2 signaling appears to promote 
latent inhibition, which can explain the present age dierences 
observed with D1 reduced in the ventral striatum but not mPFC 
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in adolescence compared to adulthood (Bjerke et al., 2025; Cullity 
et al., 2019). Future studies should look at dierential eects of D1 
and D2 receptor modulators in adults and adolescents in order to 
better understand these eects. 

Latent inhibition involves targeted redirection of attention 
following pre-exposure to the stimulus (Colagiuri et al., 2021; 
Lubow, 2005). In other words, there is decreased attention directed 
towards to the target stimulus following pre-exposure, making it 
less available for association to the US in subsequent conditioning 
sessions. Children with attention deficit hyperactivity disorder 
showed reduced latent inhibition compared to controls in a 
discrimination task (Lubow and Josman, 1993) and a visual search 
task (Lubow, 2005). Within this context, the current findings 
suggest that adolescents were more able to attend to non-predictive 
stimuli than adults. However, we also observed that both adults 
and adolescents acquired conditioned fear to the non-pre-exposed 
stimulus, meaning that both ages are equally able to attend to 
a stimulus when it is novel. Further, the age dierence in latent 
inhibition only emerged at test, which suggests a retrieval rather 
than an encoding eect. Nevertheless, this does not rule out that 
a weaker association was formed between the pre-exposed CS and 
the US due to increased attention in the adolescent group. 

We did not find any eects for estrous cycle during 
conditioning or at test. In contrast, extinction is impacted by the 
estrous phase (Milad et al., 2009; Perry et al., 2020), and by the 
experimental manipulation of gonadal hormones (Perry et al., 2020; 
Zeidan et al., 2011; Maeng et al., 2017). Interestingly, this eect on 
extinction is also apparently age-dependent, because in adults high 
levels of estrogen facilitate extinction (Milad et al., 2009; Maeng and 
Milad, 2015; Velasco et al., 2019), while in adolescents extinction is 
facilitated where estrogen is not present/present at low levels (Perry 
et al., 2020). In the current study there were no dierences in latent 
inhibition reported where rats were at dierent stages of estrous 
cycle, regardless of age. This suggests that interference between 
a benign memory and a traumatic experience is not dependent 
on cycling gonadal hormones and implies that there are distinct 
neural mechanisms underlying extinction and latent inhibition. 
Notably, the present study observed overall reduced variation 
in estrous cycling in adolescents due to many animals staying 
unopened throughout the behavioral days, which is dierent from 
the previous study in which the adolescent female rats of the same 
age were much more variable in their estrus phases (Perry et al., 
2020). It is possible that testing adults and adolescents together as 
in the present study aected estrous cycling, as previous studies 
have shown female rats in proximity can aect their estrous phase 
(Alekhina et al., 2015). Dierent outcomes may be observed if the 
adolescent and adult females are not concurrently tested. 

A limitation of this study is that male and female cohorts 
were run in separate experiments, meaning that direct statements 
regarding sex dierences cannot be made. We chose to treat the 
two cohorts as separate experiments due to dierences in shock 
sensitivity. Specifically, male rats showed robust freezing and latent 
inhibition eect (at least for adolescents) using a 0.45 mA shock, 
while for females freezing was unreliable using these parameters, 
and the shock needed to be increased to 0.6 mA in order to obtain 
reliable conditioning. Sex dierences in sensitivity to footshock 
and consequent conditioning have been observed previously (Stock 
et al., 2001; Gupta et al., 2001; Wiltgen et al., 2001; Baran 
et al., 2009), although this is not always the case (Orsini et al., 

2016). Sex dierences in latent inhibition have been reported for 
a conditioned taste aversion whereby adult female rats showed 
weaker latent inhibition than males (Angulo et al., 2020; Angulo 
and Arévalo-Romero, 2021). Interestingly, the same study saw 
delayed extinction in males compared with females (Angulo and 
Arévalo-Romero, 2021), which is dierent from what we (Perry 
et al., 2020) and others (Velasco et al., 2019) have observed. 
Furthermore, human participants did not show sex dierences in 
latent inhibition for a discrimination task (Lubow and Josman, 
1993). Indeed, it is possible that sex specificity of latent inhibition 
is task-dependent. 

Notably, all sessions occurred in the same context in the 
present study, which means that latent inhibition of context 
conditioning may have occurred (Killcross et al., 1998; Westbrook 
et al., 1994; Kiernan and Westbrook, 1993). That is, prolonged 
pre-exposure to a context can reduce subsequent conditioning 
in that context. However, typical latent inhibition of contextual 
conditioned fear involves extensive pre-exposure to the context, 
such as 20 min twice a day for 11 days (Killcross et al., 1998). 
Interestingly, shorter exposure to the context can lead to “context 
pre-exposure facilitation eect” (Heroux et al., 2018; Fanselow, 
1986; Robinson-Drummer and Stanton, 2015), which is increased 
context conditioned fear when there is a presentation of the 
footshock as soon as the rodent is placed into the context. Without 
context pre-exposure, such immediate shock in a context leads 
to a failure in context conditioning (“immediate shock deficit”) 
(Fanselow, 1986; Robinson-Drummer and Stanton, 2015). Such 
deficit is not so apparent with discrete cues, highlighting how 
forming a contextual representation requires longer time than 
forming a discrete cue representation (Rudy, 1993; Kim and 
Richardson, 2009). This may be due to the necessity of the 
dierent elements in the context to come together to form a 
spatial representation in contextual learning (Rudy and Sutherland, 
1995). In any case, with the inclusion of “No pre-exposure” group 
that received an identical amount of context exposure as the pre-
exposed group, it is unlikely that the present age eects are due to 
dierences in latent inhibition of contextual conditioned fear. 

In summary, the current findings show that adolescents show 
stronger latent inhibition than adults. Latent inhibition serves an 
adaptive purpose (Lubow, 2005). For example, it helps to focus 
attention away from stimuli less likely to be relevant in a new 
situation, thereby preserving cognitive load. It may also prevent 
too much predictive value being attributed to stimuli that are only 
salient in passing/in certain contexts. Thus, this facilitated latent 
inhibition in adolescents reflects experience-dependent resilience 
as they are able to form robust CS-no-event association that is more 
readily retrieved following conditioning when the rats are tested 
in extinction (i.e., safe) conditions (Mineka and Zinbarg, 2006). 
The fact that age-dierences in expression of latent inhibition 
did not emerge until test (under extinction conditions) provides 
weight to this interpretation. However, future studies should 
explore this possibility among others, such as reduced behavioral 
flexibility and changes in attention, in order to provide a more 
comprehensive understanding on how learning styles change across 
development. Anxiety disorders often emerge in adolescence, and 
this has led to the perspective that adolescents are more vulnerable 
(Polanczyk et al., 2015; Ganella et al., 2018a; Kim and Ganella, 
2015). The current findings show that this story is more complex, 
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because facilitated latent inhibition may provide resilience against 
development of anxiety. Notably, this resilience is dependent on 
experiential factors, since latent inhibition is dependent on prior 
exposure to the stimuli. In other words, timing of traumatic 
experiences relative to other experiences across adolescence is 
critical for determining how much of an impact the trauma will 
have on subsequent behavior. 
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