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Introduction: Latent inhibition is diminished associative memory because of
pre-exposure to the conditioned stimulus without any consequences. Latent
inhibition likely plays a significant role in the ontogeny of anxiety disorders,
contributing to why anxiety disorders are particularly prevalent in adolescence.
Therefore, the present study examined latent inhibition of conditioned fear in
adolescent and adult rats of each sex. Given that adolescence is associated with
deficits in fear extinction, we hypothesized that latent inhibition will be impaired
in adolescents compared to adults and expected females to show age-specific
estrous cycle effects.

Methods: On day 1, male (Experiment 1) and female (Experiment 2) rats were
placed in fear conditioning chambers. Half of the rats received pre-exposure to
the tone cue while the other half received nothing. On day 2, all rats were placed
back in the same chambers and exposed to three cue-footshock pairings. Latent
inhibition was tested on day 3 with 20 presentations of the cue by itself in the
same chamber.

Results: We unexpectedly observed enhanced latent inhibition in adolescents
compared to adults in both male and female rats, indicated by lower levels of
freezing due to pre-exposure to the cue. Estrous cycle did not affect latent
inhibition at any age.

Discussion: These results suggest that benign experience to a cue reduces
subsequent conditioning to the cue more potently in adolescence compared to
adulthood, which suggests a potential resilience mechanism naturally occurring
in adolescence.
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1 Introduction

Latent inhibition is when prior benign experience with a
cue can impede or inhibit subsequent emotional learning to the
cue (Lubow, 1973; Mineka and Zinbarg, 2006). In Pavlovian
conditioning, latent inhibition is observed when the pre-exposure
to the conditioned stimulus (CS) interferes with acquisition
(George et al., 2010; Shalev et al., 1998; Lubow and Moore,
1959) or retrieval (Leung et al., 2013; Lingawi et al, 2016)
of CS association with the unconditioned stimulus, measured
by decreased conditioned responding in pre-exposed compared
to non-pre-exposed subjects. Latent inhibition is proposed to
explain how prior benign experiences prevent the development of
experience-based anxiety disorders (Mineka and Zinbarg, 2006).
For example, children who did not initially experience stress with
dentists are much less likely to develop dental phobias following
a subsequent traumatic experience (Davey, 1989). Similarly,
monkeys who have observed models playing with snakes in
seemingly safe circumstances do not develop fearful behaviors
when directly exposed to snakes (Mineka and Cook, 1986).

Adolescence is a period of elevated risk to anxiety disorders
(Polanczyk et al, 2015), which may be associated with latent
inhibition. Indeed, anxiety symptoms in humans are related to
deficits in inhibitory learning and memory measured by extinction
of conditioned fear (Ganella et al., 2018a; Marin et al., 2017).
Like latent inhibition, extinction involves benign exposures to a
cue, except that such exposure occurs after the emotional learning
(Bouton, 1993). Adolescents have been shown to display extinction
impairments compared to adults in rats and humans (Ganella
et al., 2017a, 2018a; Ganella and Kim, 2014; Pattwell et al., 2012,
2013; Zbukvic et al., 2017). One study has shown that postnatal
day 35 (P35) adolescent male rats indeed show latent inhibition,
as measured by conditioned suppression of licking behavior in
response to a tone CS that was paired with shocks (Zuckerman
et al., 2003). However, latent inhibition has not yet been directly
compared between adolescents and adults, which is the first aim of
the present study. We hypothesize that the behavior of adolescents
and adults will be differentially affected by latent inhibition because
vulnerability towards anxiety disorders in adolescence (McGrath
et al., 2023) has long been associated with the reduced function
of medial prefrontal cortex (mPFC), which undergoes dramatic
changes in structure and neurochemistry across adolescence (Casey
et al, 2008; Kim et al., 2017; Perry et al, 2021; Gold et al,
2020). Notably, previous literature in rats gives rise to opposing
predictions. On the one hand, temporary inactivation of the
infralimbic cortex (IL) of mPFC led to deficits in latent inhibition
(Lingawi et al., 2016, 2018), which suggests that latent inhibition
would be impaired in adolescence. On the other, IL lesions
facilitated latent inhibition (George et al., 2010), which suggests
that latent inhibition would be facilitated in adolescents. Moreover,
mPFC lesions did not affect latent inhibition in other studies (Joel
et al,, 1997; Lacroix et al., 1998) suggesting that latent inhibition
may be comparable in adolescent and adult rats.

The second aim of the present study is to assess latent
inhibition in males and females. Biological sex is a significant
factor for anxiety disorders, with greater prevalence reported within
the female population (Kessler et al, 2005). Sex differences in
inhibitory learning and memory have been observed (Milad et al.,
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2009), although this effect is strongly mediated by hormonal
effects/estrous cycle in female rodents and humans (Lebron-Milad
et al., 2012; Graham and Milad, 2013). Interestingly, these estrous
cycle effects are age dependent. Stages where there are high levels of
estradiol are associated with improved extinction in adult females
(Lebron-Milad et al., 2012; Graham and Milad, 2013), and impaired
extinction in adolescent females (Perry et al., 2020). In addition, sex
effects in extinction have been associated with differences in mPFC
function (Day et al., 2020). Hence, latent inhibition may also be sex-
specific. To our knowledge, there have been no studies that have
examined latent inhibition of conditioned fear in female rodents.
We hypothesize females will show age-specific effects of estrous
cycle on latent inhibition. Specifically, latent inhibition would be
greater when adult rats are in proestrous (i.e., when estradiol levels
are high), while the opposite may be true in adolescent rats.

2 Materials and methods

2.1 Subjects

Male (26 adults and 22 adolescents) and female (44 adults
and 37 adolescents) Sprague Dawley rats were bred in-house
at the Florey Institute of Neuroscience and Mental Health.
All rats were weaned at P21 and housed for the remainder
of experimental procedures in groups of 3-6, with same-sex
littermates in individually ventilated cages under a 12/12 h cycle
(lights on at 7 a.m.) with food and water available ad libitum. All
behavioral testing occurred during the light phase. On the first day
of behavioral experimentation, rats in the adolescent groups were
P35 (& 1), while rats in the adult groups were P70-P98. All rats
were handled three times prior to commencement of behavioral
experimentation. All procedures were approved by the Animal
Care and Ethics Committee at the Florey Institute of Neuroscience
and Mental Health in accordance with the guidelines for animal
use set out in the Australian Code of Practice for the Care and Use of
Animals for Scientific Purposes (8 edition, 2013).

2.2 Apparatus

All behavior occurred in Contextual Near Infra-Red Fear
Conditioning and Video Freeze system (Med Associates,
VT, United States), which provides scrambled direct current
footshocks. The dimensions of the chambers and the grid floor
were as described previously (Zbukvic et al., 2017). A white house
light was on during all sessions, and chambers were cleaned with
80% v/v ethanol and dried thoroughly between tests with rats being

placed 5 min after drying.

2.3 Procedure

2.3.1 Pre-exposure

On day 1, all rats were placed in the novel chambers.
Following a 2-min baseline period, rats in group “pre-exposure”
were presented with 45 tones (5,000 Hz, 80 dB), which served as
the conditioned stimulus (CS). Each CS presentation was 10 s,
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with an inter-trial interval (ITI) of 10 s with 2-min post-tone
period followed by the rats being returned to their home cages,
which is standard in our laboratory for the first day of behavior
in developing rats (Park et al., 2020; Luikinga et al., 2019). Such
protocol was developed to allow some time to adjust at the end
of the first behavioral session. Rats in group “No pre-exposure”
were placed in the chambers for the same length of time (19 min),
however, no tones were delivered.

2.3.2 Conditioning

On day 2, all rats were placed in the same chamber as the
previous day. We used a fear conditioning protocol that produces
robust freezing to the tone that persists to subsequent sessions in
developing and adult rats (Ganella et al., 2017b, 2018b; Park et al.,
2017). Following a 2 min baseline period the CS was presented
for 10 s, co-terminating with a 1 s footshock (the unconditioned
stimulus, US). This CS-US pairing was repeated three times with
an ITT averaging 110 s, with 2-min post-shock period followed by
the rats being returned to their home cages, which is standard in our
laboratory to allow some time to adjust after the shock (Park et al.,
2020; Luikinga et al., 2019). The intensity of the shock was different
between Experiment 1 (males) and Experiment 2 (females). For
males, the US was a 0.45 mA shock. Pilot data from the laboratory
showed that this intensity produced robust freezing and reliable
latent inhibition. However, for female rats, the US was 0.6 mA
because pilot data showed that a 0.45 mA shock failed to produce
robust freezing across conditioning and at test.

2.3.3 Test

On day 3, all rats were placed in the same chamber as the
previous day. As for the previous sessions, there was a 2-min
baseline period after which the 10 s CS was presented 20 times in
the absence of any footshock. ITT was 10 s.

2.3.4 Estrous phase monitoring

For Experiment 2, vaginal lavages were taken from female rats
1 h after each behavioral session as described previously (Perry
et al., 2020). Briefly, a pipette tip containing 20 L of saline was
used to flush the vagina two or three times if the vagina was
opened. The fluid collected was dried on a microscope slide then
stained with a 4% (v/v) methylene blue solution. Slides were then
rinsed twice with distilled water, air dried, and observed under
a light microscope (10 x magnification, Olympus BH-2). Slides
were cross-checked by two independent researchers in a double-
blind manner. They were categorized according to the proestrus,
estrus, metestrus, and diestrus cycle using the morphology of cells
and their relative cellular proportions (Cora et al., 2015). Rats in
diestrus and metestrus were pooled together for statistical analyses
as reported previously (Perry et al., 2020; Hecht et al., 1999), due to
their similarities in rising levels of estrogen and the relatively short
length of metestrus (Westwood, 2008).

2.4 Data analysis

All analyses were carried out using SPSS (IBM Corp., NY,
United States). Percent freezing from all behavioral sessions was
subjected to analysis of variance (ANOVA) or repeated-measures
(RM) ANOVA. Post hoc analyses of simple effects using the
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Bonferroni correction were used to explain significant interactions
wherever appropriate (Drummond et al.,, 2021). For analysis of
CS-elicited freezing during pre-exposure, percent freezing across
CS trials were averaged. For group No pre-exposure that did not
receive any CS trials during the pre-exposure session, freezing was
calculated for the matching periods as the group Pre-exposure. For
analysis of CS-elicited freezing during conditioning, the first 9 s
of each CS-US trial was used to discount the effects of shock on
movement during the last second of each CS-US trial. Freezing
during test was blocked into five CS presentations to result in four
blocks. For all analyses in females, estrous phase at each behavioral
session was included as a factor to account for potential hormonal
effects. Metestrus and diestrus were pooled into a single group due
to the shortness of metestrus phase as reportedly previously (Perry
et al,, 2020). Speed measurements of the rat center of mass were
used to determine shock responsivity to the US and occurrences
of darting to the CS (Carroll et al., 2025; Mitchell et al., 2024).
Using DeepLabCut [version 3.0.0rc10; (Mathis et al., 2018; Nath
et al, 2019)], 200 frames from ~90% randomly selected videos
from conditioning and test were assigned a tracking point to the
rat center of mass. Using these annotated frames, the DeepLabCut
markerless tracking model was generated using the ResNet50
neural network for 200 epochs using the PyTorch engine. All
videos from conditioning and test were analyzed with this model
then fed into the Simple Behavioral Analysis software [SimBA;
(Goodwin et al., 2024)] to calculate speed (cm/s). Shock sensitivity
was calculated as speed of movement during 1 s shock averaged
across trials. Darting was defined as movement across the chamber
at or exceeding 20 cm/s during the CS as previously described
(Mitchell et al., 2024).

3 Results

3.1 Baseline freezing

Freezing was recorded during the 2-min baseline periods for all
sessions, which was clearly low during each session (Figures 1,2 and
Table 1). However, 2-way ANOVAs (Age x Pre-exposure) revealed
significant main effects of Age during the conditioning baseline
period for Experiment 1 [F(1,77) = 4.85, p = 0.03] and Experiment
2 [F(1,77) = 6.58, p = 0.01], with adolescents freezing more than
adults in both experiments. Neither the Pre-exposure main effect
nor the Age x Pre-exposure interaction were significant in any
of the three sessions in any experiment (p’s > 0.05). In fact, prior
to experiencing the first shock (i.e., across Pre-exposure session
and Conditioning baseline), freezing in both sexes was very rarely
observed (Table 1). During baseline, most rats showed 0% freezing.
As such, the significant main effect of Age appears to be driven by
the lack of variability and are unlikely to be meaningful.

3.2 Adolescent males show greater
propensity for latent inhibition compared
to adult males

Freezing during pre-exposure session was low, regardless of
whether rats were presented with the CS or not (Figure 1A).
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FIGURE 1

Baseline and CS-elicited freezing across (A) pre-exposure, (B) conditioning and (C) test sessions and (D) shock sensitivity in males. During
conditioning, pre-exposed rats showed lower freezing compared to non-pre-exposed rats (main effect of Pre-exposure **p < 0.001), however,
there were no differences between adults and adolescents. At test, both adults and adolescents in the pre-exposed condition showed lower
freezing compared to non-pre-exposed counterparts, however, this effect was greater for adolescents (significant Age x Pre-exposure interaction,
post-hoc tests *p < 0.05, ***p < 0.0001). Pre-exposed adolescent rats showed greater shock sensitivity than non-pre-exposed adolescents
(significant Age x Pre-exposure interaction, post-hoc tests *p < 0.05], whereas this effect was not evident in adult rats. BL, baseline.
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FIGURE 2

Baseline and CS-elicited freezing across (A) pre-exposure, (B) conditioning and (C) test sessions and (D) shock sensitivity in females. During
conditioning, pre-exposed rats showed lower freezing compared to non-pre-exposed rats (main effect of Pre-exposure *p < 0.05), however, there
were no differences between adults and adolescents. At test, only adolescents in the pre-exposed condition showed lower freezing compared to
Non pre-exposed counterparts (significant Age x Pre-exposure interaction, post-hoc tests, **p < 0.05). There were no group differences in shock

sensitivity. BL, baseline.

Two-way ANOVA (Age x Pre-exposure) of freezing during pre-
exposure confirmed no main effect of Pre-exposure and no
Age x Pre-exposure interaction (p’s > 0.05) indicating that the pre-
exposure to the CS does not trigger freezing in adolescent and adult
male rats. There was also no main effect of Age (p > 0.05).

Conditioned stimulus-elicited freezing during conditioning
(Figure 1B) was analyzed using repeated measures ANOVA
(Age x Pre-exposure x Conditioning trial). Mauchley’s Test
of Sphericity indicated that the assumption of sphericity had
been violated (p < 0.001), and therefore a Greenhouse-Geisser
correction was applied to all repeated measures analyses. There
were significant main effects of Conditioning trial [F(2, 44) = 37.33,
p < 0.001] and Pre-exposure [F(1, 44) = 16.80, p < 0.001]. The
main effect of Age was not significant [F(1,44) = 3.18, p = 0.08].
None of the two-way interactions, nor the three-way interactions
were significant (p’s > 0.05). Thus, all rats significantly increased
CS-elicited freezing across the conditioning trials, with pre-exposed
groups overall freezing less than no pre-exposure groups regardless
of age.
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Figure 1C shows freezing during the 20 CS presentations at test,
binned into blocks of five CS presentations. Three-way ANOVA
(Age x Pre-exposure x Block) revealed significant main effects of
Age [F(1,44) = 4.865, p < 0.05], Pre-exposure [F(1,44) = 38.983,
p < 0.001] and Block [F(3,44) = 69.25, p < 0.001]. There was
a significant Age x Pre-exposure interaction [F(1,44) = 11.87,
p = 0.001], and although Block x Pre-exposure interaction was
significant [F(3,44) = 3.23, p < 0.05], Age x Block x Pre-exposure
was not (p > 0.05). The post hoc analysis revealed that although
latent inhibition was expressed for both adults and adolescents (i.e.,
there was a significant difference between pre-exposed and non-
pre-exposed rats), this effect was greater for adolescents compared
to adults [Adults: 95% CI (0.40, 30.76); Adolescents; 95% CI (37.42,
70.47)]. Furthermore, freezing for the pre-exposed rats was greater
than non-pre-exposed rats at all four blocks (all p’s < 0.001). Taken
together, adolescent male rats showed greater latent inhibition
following a protocol than adult males, and reduced freezing at
test was due reduced retrieval of fear in pre-exposed rats that was
apparent from the first block of CS presentations.
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TABLE 1 Mean (SEM) baseline freezing expressed as a percentage of
total baseline period each behavioral session.

| Pre-cxposure Conditioning

Males

Adult: no pre-exposure 0.3(0.2) 1.6 (0.6) 20.3 (7.4)
Adult: pre-exposure 0.3(0.1) 1.3 (0.5) 27.8 (8.8)
Adolescent: no 1.2 (0.5) 1.7 (0.5) 31.4(10.9)
pre-exposure

Adolescent: pre-exposure 0.5 (0.3) 0.6 (0.3) 17.2 (5.7)
Females

Adult: no pre-exposure 1.5(0.3) 1.0 (0.5) 17.1 (6.3)
Adult: pre-exposure 0.8 (0.2) 0.5(2.7) 12.2 (3.9)
Adolescent: no 4.3(1.1) 2.2(0.7) 22.2(7.5)
pre-exposure

Adolescent: pre-exposure 2.4 (0.4) 1.8 (0.5) 13.7 (4.3)

Note that there was a significant difference between adolescents and adults (averaged across
pre-exposure condition i.e., main effect of Age) on the Conditioning day only (p < 0.5).
However, this constitutes a difference of 0.3% freezing for males and 1.2% freezing for
females, which is negligible compared to freezing levels once shock has been experienced,
and is unlikely to constitute a biologically meaningful difference.

Shock sensitivity averaged across three shock exposures
(Figure 1D) was analyzed using two way ANOVA (Age x Pre-
exposure). There were no main effects for Age nor Pre-exposure
[F(1,44) = 0.35 and 1.13, respectively, p’s > 0.05], however, there
was a significant Age x Pre-exposure interaction [F(1,44) = 5.38,
p < 0.05]. Bonferroni-corrected simple effects revealed greater
sensitivity to shock in pre-exposed compared to non-pre-exposed
adolescent (p < 0.05), but not adult (p = 0.353). This indicates that
the interaction was driven by increased shock sensitivity in pre-
exposed group for adolescents only. Darting was negligible across
both conditioning and test (only a single dart of moving across the
chamber in all the groups was recorded during conditioning and
test). Therefore, this behavior could not be analyzed.

3.3 Adolescent females show propensity
for latent inhibition compared to adult
females

Three-way ANOVA of freezing during pre-exposure showed no
significant main effects nor interactions of Age, Pre-exposure, and
Estrous (p’s > 0.05). These results suggest that the pre-exposure
to the CS and different estrous phases do not elicit freezing in
adolescent and adult female rats (Figure 2A).

Conditioned stimulus-elicited freezing during conditioning
(Figure 2B) was analyzed using repeated measures ANOVA
(Age x Pre-exposure x Estrous x Conditioning Trial). Mauchley’s
Test of Sphericity indicated that the assumption of sphericity
had been violated (p < 0.001), and therefore a Greenhouse-
Geisser correction was applied to all repeated measures analyses.
Similarly, to males, there was a main effect of Conditioning trial
[F(2,136) = 73.23, p < 0.001], indicating freezing increased across
repeated trials. There also was a main effect of Pre-exposure
[F(1,68) = 8.28, p = 0.005], showing that freezing across the
three CS presentations was overall lower following pre-exposure

Frontiers in Behavioral Neuroscience

10.3389/fnbeh.2025.1636674

to the stimulus. Main effects of Age and Estrous phase were non-
significant [F(1,68) = 1.34, p = 0.25; F(3,67) = 0.24, p = 0.87,
respectively]. There were no two, three nor four-way significant
interactions (p’s > 0.05).

Figure 3C shows freezing during the 20 CS presentations
at test, binned into blocks of five CS presentations. Four-way
(Age x Pre-exposure x Block x Estrous) ANOVA revealed a
main effect of Pre-exposure [F(1,68) = 12.052, p < 0.001] and Pre-
exposure X Age interaction [F(1,68) = 5.00, p < 0.05]. Main effects
of Age and Estrous were not significant [F(1,68) = 3.94, p = 0.051;
F(3,68) = 1.15, p = 0.33, respectively]. Main effect of Block was
significant [F(3,68) = 27.87, p < 0.001], however, there were no
significant interactions involving Block (two, three, and four-way
Block interaction p’s > 0.05). There were no significant interactions
involving Estrous (p’s > 0.05). Since there were no interactions
with Estrous, we determined the simple effects averaging across
Estrous phase. These showed that there was no significant effect of
Pre-exposure for adults [p = 0.86, 95% CI (—21.55, 17.99)], where
there was for adolescent female rats [p < 0.001, 95% CI (17.77,
59.69)]. Therefore, as with male rats, the latent inhibition effect
was greater in adolescent female rats when compared with adults.
Lack of interaction with Block showed that this was due to reduced
retrieval of fear in Adolescent pre-exposed rats from the first CS
presentation.

Shock sensitivity averaged across three shock exposures
(Figure 2D) was analyzed using two-way ANOVA (Age x Pre-
exposure). There were no main effects for Age nor Pre-exposure
[F(1,68) = 0.01 and 2.55, respectively, p’s > 0.05], nor was there
a significant Age x Pre-exposure interaction [F(1,68) = 1.17,
p > 0.05]. Darting was not observed and could not be analyzed.

In order to verify that rats were cycling, we analyzed changes
in proportion of rats in each phase across behavioral days as
previously reported (Perry et al., 2020). As expected, adult females
showed significant [x2(4,44) = 11.07, p < 0.05] changes in the
proportion of estrus phases (Figure 3A) whereas adolescent females
did not [%2(6,37) = 5.60, p = 0.47] (Figure 3C). Examination of
individual rats revealed that many adolescent rats have not begun
estrus cycling (Figure 3D). Interestingly, the adolescents that have
begun cycling and adults largely showed similar expected pattern
of 2-3 days met/diestrus, ~1 day of proestrus and ~1 day of estrus
(Figures 3B, D), unlike the previous study in which adolescents
showed much more erratic cycling (Perry et al., 2020). Average
freezing levels were graphed for each phase (Figure 3D). We
could not analyze the data (even with excluding unopened groups)
because there were 0-1 rats for some phases in each session. There
appears to be very little impact of estrous phase within groups.

4 Discussion

The aim of this study was to examine age differences
(adolescent vs. adult) in latent inhibition in male and female rats.
We found that adolescents were more likely to display evidence
of latent inhibition when compared to adults, with lower levels
of freezing shown in adolescents compared to adults in the pre-
exposed rats. These findings do not exclude that latent inhibition
occurs for adults as well, since there is evidence of delayed
conditioning in the pre-exposed rats on day 2 regardless of age and
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sex (Figures 1, 3). This delayed learning was not due to decreased
sensitivity to the shock as a result of pre-exposure to the CS. If
anything, pre-exposed animals showed greater sensitivity, although
this effect was only evident in adolescent males. Thus, during pre-
exposure both adults and adolescents had learned that the CS has
no aversive consequence, and this learning delays acquisition of
the CS-shock association similarly across age groups. However,
the effect of the initial experience is clearly more enduring for
adolescents, since pre-exposure was more likely to reduce fear
expression on day 3 in that age group. Surprisingly, despite previous
studies that fear learning is affected by sex hormones (Graham and
Milad, 2013, 2014; Perry et al., 2020), we found no effect of estrous
in our female rats.

The enhanced latent inhibition observed here in adolescents
is similar to effects seen following experimental lesion of the
IL (George et al, 2010). Compared to other brain regions, the
mPFC is last to reach maturity in rodents and humans (Casey
et al., 2008; Kim et al., 2017; Gogtay et al., 2004; Giedd, 2004;
Bjerke et al., 2025). It is therefore possible that the enhanced
latent inhibition effect observed here in adolescents may be due to
reduced functionality in the IL mPFC, which led to stronger effects
of pre-exposure. When IL lesions facilitated latent inhibition,
George et al. (2010) argued that the role of IL is to allow the
learning of a second, conflicting information about a cue. As
such, IL hypofunction during adolescence results in enhanced
latent inhibition because the second association (cue-shock) is not
encoded properly. Such a role for IL is also consistent with previous
studies showing impaired extinction and reduced IL function in
adolescents (Ganella et al., 2018a; Kim et al., 2011). In contrast,
others have shown that temporary inactivation of the IL inhibited
retrieval of latent inhibition (Lingawi et al, 2016, 2018). The
differences in findings may be explained by specific methodology.
In George et al. (2010), IL lesions occurred prior to any behavioral
training. Thus, function was impaired across pre-exposure and
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at test. When IL inactivation only occurred immediately prior to
retrieval test (Lingawi et al., 2016, 2018), IL function would have
been intact during pre- exposure. From this, IL may be critical
for remembering the latent inhibition memory once pre-exposure
and conditioning have already occurred. In our study, assumed
IL hypofrontality was due to developmental stage rather than
experimental manipulation, hence would have been present during
pre-exposure and conditioning as with George et al. (2010).
Importantly, brain maturation is not restricted to the IL and
the present results may be due to dopamine signaling in the
nucleus accumbens (NAc). A recent study showed that cue-elicited
dopamine release in the NAc core was directly linked to latent
inhibition (Kutlu et al., 2022). Specifically, exposure to the cue
evokes dopamine release, which declines with repeated exposures
across the pre-exposure session. Therefore, during conditioning,
the pre-exposed cue evokes a smaller dopamine release than the
non-pre-exposed cue, meaning that it is less able to form an
association with the US (Kutlu et al., 2022). At conditioning, intra-
nucleus accumbens (NAc) injections of amphetamine attenuated,
while a dopamine receptor 2 (D2) antagonist (haloperidol)
enhanced latent inhibition (Joseph et al., 2000). However, intra-
mPFC injection of amphetamine or apomorphine had no effects
(Lacroix et al., 2000; Broersen et al., 1999). Furthermore, deficits
in latent inhibition of conditioned fear due to adolescent social
isolation were associated with increased D2 expression in the mPFC
and NAc (Han et al,, 2012). Conversely, a dopamine receptor 1
(D1) agonist administered systemically prior to pre-exposure and
conditioning sessions mildly inhibited latent inhibition of fear
conditioning (Feldon et al., 1991). A DI antagonist (SCH23390)
administered alone had no effect, but did block amphetamine-
induced disruption of latent inhibition (Nelson et al., 2012). In
summary, attenuated D1 or D2 signaling appears to promote
latent inhibition, which can explain the present age differences
observed with D1 reduced in the ventral striatum but not mPFC
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in adolescence compared to adulthood (Bjerke et al., 2025; Cullity
et al., 2019). Future studies should look at differential effects of D1
and D2 receptor modulators in adults and adolescents in order to
better understand these effects.

Latent inhibition involves targeted redirection of attention
following pre-exposure to the stimulus (Colagiuri et al., 2021;
Lubow, 2005). In other words, there is decreased attention directed
towards to the target stimulus following pre-exposure, making it
less available for association to the US in subsequent conditioning
sessions. Children with attention deficit hyperactivity disorder
showed reduced latent inhibition compared to controls in a
discrimination task (Lubow and Josman, 1993) and a visual search
task (Lubow, 2005). Within this context, the current findings
suggest that adolescents were more able to attend to non-predictive
stimuli than adults. However, we also observed that both adults
and adolescents acquired conditioned fear to the non-pre-exposed
stimulus, meaning that both ages are equally able to attend to
a stimulus when it is novel. Further, the age difference in latent
inhibition only emerged at test, which suggests a retrieval rather
than an encoding effect. Nevertheless, this does not rule out that
a weaker association was formed between the pre-exposed CS and
the US due to increased attention in the adolescent group.

We did not find any effects for estrous cycle during
conditioning or at test. In contrast, extinction is impacted by the
estrous phase (Milad et al., 2009; Perry et al., 2020), and by the
experimental manipulation of gonadal hormones (Perry et al., 2020;
Zeidan et al., 2011; Maeng et al., 2017). Interestingly, this effect on
extinction is also apparently age-dependent, because in adults high
levels of estrogen facilitate extinction (Milad et al., 2009; Maeng and
Milad, 2015; Velasco et al., 2019), while in adolescents extinction is
facilitated where estrogen is not present/present at low levels (Perry
etal,, 2020). In the current study there were no differences in latent
inhibition reported where rats were at different stages of estrous
cycle, regardless of age. This suggests that interference between
a benign memory and a traumatic experience is not dependent
on cycling gonadal hormones and implies that there are distinct
neural mechanisms underlying extinction and latent inhibition.
Notably, the present study observed overall reduced variation
in estrous cycling in adolescents due to many animals staying
unopened throughout the behavioral days, which is different from
the previous study in which the adolescent female rats of the same
age were much more variable in their estrus phases (Perry et al,
2020). It is possible that testing adults and adolescents together as
in the present study affected estrous cycling, as previous studies
have shown female rats in proximity can affect their estrous phase
(Alekhina et al,, 2015). Different outcomes may be observed if the
adolescent and adult females are not concurrently tested.

A limitation of this study is that male and female cohorts
were run in separate experiments, meaning that direct statements
regarding sex differences cannot be made. We chose to treat the
two cohorts as separate experiments due to differences in shock
sensitivity. Specifically, male rats showed robust freezing and latent
inhibition effect (at least for adolescents) using a 0.45 mA shock,
while for females freezing was unreliable using these parameters,
and the shock needed to be increased to 0.6 mA in order to obtain
reliable conditioning. Sex differences in sensitivity to footshock
and consequent conditioning have been observed previously (Stock
et al, 2001; Gupta et al., 2001; Wiltgen et al, 2001; Baran
et al., 2009), although this is not always the case (Orsini et al,
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2016). Sex differences in latent inhibition have been reported for
a conditioned taste aversion whereby adult female rats showed
weaker latent inhibition than males (Angulo et al., 2020; Angulo
and Arévalo-Romero, 2021). Interestingly, the same study saw
delayed extinction in males compared with females (Angulo and
Arévalo-Romero, 2021), which is different from what we (Perry
et al, 2020) and others (Velasco et al., 2019) have observed.
Furthermore, human participants did not show sex differences in
latent inhibition for a discrimination task (Lubow and Josman,
1993). Indeed, it is possible that sex specificity of latent inhibition
is task-dependent.

Notably, all sessions occurred in the same context in the
present study, which means that latent inhibition of context
conditioning may have occurred (Killcross et al., 1998; Westbrook
et al., 1994; Kiernan and Westbrook, 1993). That is, prolonged
pre-exposure to a context can reduce subsequent conditioning
in that context. However, typical latent inhibition of contextual
conditioned fear involves extensive pre-exposure to the context,
such as 20 min twice a day for 11 days (Killcross et al., 1998).
Interestingly, shorter exposure to the context can lead to “context
pre-exposure facilitation effect” (Heroux et al., 2018; Fanselow,
19865 Robinson-Drummer and Stanton, 2015), which is increased
context conditioned fear when there is a presentation of the
footshock as soon as the rodent is placed into the context. Without
context pre-exposure, such immediate shock in a context leads
to a failure in context conditioning (“immediate shock deficit”)
(Fanselow, 1986; Robinson-Drummer and Stanton, 2015). Such
deficit is not so apparent with discrete cues, highlighting how
forming a contextual representation requires longer time than
forming a discrete cue representation (Rudy, 1993; Kim and
Richardson, 2009). This may be due to the necessity of the
different elements in the context to come together to form a
spatial representation in contextual learning (Rudy and Sutherland,
1995). In any case, with the inclusion of “No pre-exposure” group
that received an identical amount of context exposure as the pre-
exposed group, it is unlikely that the present age effects are due to
differences in latent inhibition of contextual conditioned fear.

In summary, the current findings show that adolescents show
stronger latent inhibition than adults. Latent inhibition serves an
adaptive purpose (Lubow, 2005). For example, it helps to focus
attention away from stimuli less likely to be relevant in a new
situation, thereby preserving cognitive load. It may also prevent
too much predictive value being attributed to stimuli that are only
salient in passing/in certain contexts. Thus, this facilitated latent
inhibition in adolescents reflects experience-dependent resilience
as they are able to form robust CS-no-event association that is more
readily retrieved following conditioning when the rats are tested
in extinction (i.e., safe) conditions (Mineka and Zinbarg, 2006).
The fact that age-differences in expression of latent inhibition
did not emerge until test (under extinction conditions) provides
weight to this interpretation. However, future studies should
explore this possibility among others, such as reduced behavioral
flexibility and changes in attention, in order to provide a more
comprehensive understanding on how learning styles change across
development. Anxiety disorders often emerge in adolescence, and
this has led to the perspective that adolescents are more vulnerable
(Polanczyk et al., 2015; Ganella et al., 2018a; Kim and Ganella,
2015). The current findings show that this story is more complex,
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because facilitated latent inhibition may provide resilience against
development of anxiety. Notably, this resilience is dependent on
experiential factors, since latent inhibition is dependent on prior
exposure to the stimuli. In other words, timing of traumatic
experiences relative to other experiences across adolescence is
critical for determining how much of an impact the trauma will
have on subsequent behavior.
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