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Sound influences motor functions and sound perception is conversely modulated 
by locomotion. Accumulating evidence supports an interconnection between 
the auditory system and the basal ganglia (BG), which has functional implications 
on the interaction between the two systems. Substantial evidence now supports 
auditory cortex and auditory thalamus inputs to the tri-laminar region of the tail of 
the striatum (tTS) in rodents. Thalamic input modulates the response gain of striatal 
neurons, whereas cortical input shapes their frequency tuning. Only recently has 
our understanding of BG projections to the auditory system advanced. GABAergic 
neurons in the tTS, which receive input from the auditory cortex, project to the 
posterior globus pallidus external segment (GPe). Posterior GPe, in turn, sends 
strong GABAergic projections to the non-lemniscal auditory thalamus (NLAT) and 
moderate projections to the cuneiform nucleus (CnF). The BG and auditory system 
are thus interconnected at multiple levels, forming a loop circuit in which the 
auditory system projects to the striatum and receives BG output via the NLAT. This 
circuit may mediate BG influence on auditory processing; however, the absence 
of motor cortex input to the tTS raises questions about its role in movement-
related modulation of auditory responses. Given that the NLAT serves as a neural 
substrate for sound-cued aversive associative learning, BG output to the NLAT 
may influence learning processes. The pathway connecting the auditory system 
and CnF via the BG may underlie rhythmic entrainment in healthy individuals and 
therapeutic effects of rhythmic cues on gait in Parkinson’s disease.

KEYWORDS

auditory cortex, auditory thalamus, lemniscal, non-lemniscal, tail of striatum, 
tri-laminar tail of striatum, posterior globus pallidus, cuneiform nucleus

1 Introduction

The basal ganglia (BG) are involved in movement control, action selection, habit learning, 
reward processing, and motivational regulation (Bromberg-Martin et al., 2010; Hikosaka et al., 
2014; Jin and Costa, 2010; Wilson, 2004; Yin and Knowlton, 2006). The striatum, the main 
input nucleus of the BG, receives afferents from diverse cortical areas—including the auditory 
cortex—and from numerous thalamic nuclei, including those of the non-lemniscal auditory 
thalamus (NLAT) in rodents (McGeorge and Faull, 1989; Hunnicutt et al., 2014, 2016; Oh 
et  al., 2014). Recent studies combining functional imaging with viral-based anterograde 
tracing have offered new insights into the projection from the auditory cortex to the striatum 
(Nakata et al., 2020). In the canonical BG circuit (Wilson, 2004), the substantia nigra pars 
reticulata (SNr) and the internal segment of the globus pallidus (GPi) are the output nuclei, 
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and the striatum projects directly to these nuclei in the direct pathway, 
and indirectly to these nuclei via the external segment of the globus 
pallidus (GPe) and the subthalamic nucleus (STN) in the indirect 
pathway; the BG output modulates thalamic nuclei that project to 
motor cortical areas. The posterior striatum, often referred to as the 
tail of the striatum (TS; a loosely defined structure discussed further 
in Section 3) is a major part of the striatum that receives auditory 
input (Chen et al., 2019; McGeorge and Faull, 1989; Miyamoto et al., 
2018). Recent findings indicate that neurons in the TS, receiving input 
from the auditory cortex, project not to the SNr/GPi (cf. Aoki et al., 
2019; Valjent and Gangarossa, 2021), but instead primarily to the 
posterior GPe, ultimately influencing the NLAT and the mesencephalic 
locomotor region (MLR) rather than the thalamic motor nucleus 
(Tomioka et al., 2024). In this review, we examine recent evidence 
regarding auditory inputs to the striatum and the resulting outputs 
from the TS in rodents. We then discuss the interaction between the 
BG and the auditory system and propose hypotheses on the functional 
significance of the auditory system–BG circuitry.

2 Auditory inputs to the striatum and 
other BG nuclei

In rodents, the striatum is divided into three functional regions: 
sensorimotor, associative, and limbic, which roughly correspond to 
the dorsolateral, dorsomedial, and ventral striatum, respectively (Yin 
and Knowlton, 2006; Thorn et al., 2010; Gruber and McDonald, 2012). 
A fourth region, the TS, has been identified based on the localization 
of corticostriatal and thalamostriatal inputs (Hunnicutt et al., 2016). 
Alternatively, the striatum can be compartmentalized into striosomes 
and matrix (Graybiel and Ragsdale, 1978). However, a narrow band 
along the dorsal and lateral margins, as well as part of the posterior 
regions of the striatum, is devoid of striosomes (Miyamoto et al., 2018).

The TS is, however, often vaguely defined. In rodents, the striatum 
has a large volume and comparable sizes along the mediolateral and 
dorsoventral dimensions in the rostral region, but tapers in volume 
and becomes dorsoventrally elongated toward the posterior end. An 
early rat study separated the striatum along the rostrocaudal direction 
into the body of the striatum and the TS, without a definition of 
border (Donoghue and Herkenham, 1986). Similarly, the TS is 
sometimes taken equal to the posterior striatum (Menegas et al., 2015; 
Pai and Monosov, 2022). A strict definition of the TS in rodents is “the 
extreme caudal part of the striatum” (Valjent and Gangarossa, 2021), 
whose ventral half exhibits a tri-laminar organization along the 
mediolateral axis, i.e., the medial division, the intermediate division, 
and the lateral division, with the intermediate division being 
striosome-free (Miyamoto et al., 2018, 2019). These three divisions 
can be  characterized by the expression pattern of many marker 
molecules, including dopamine receptors (Gangarossa et al., 2013; 
Miyamoto et al., 2018, 2019; Ogata K. et al., 2022). We will use the 
term tTS to refer to the tri-laminar TS, and the term TS to refer to the 
posterior striatum including tTS.

Auditory input to the striatum was first shown for the auditory 
thalamus, the medial geniculate body (MGB). The MGB has a ventral 
subdivision (MGv), the largest component belonging to the ascending 
lemniscal auditory pathway, and several other smaller subdivisions, 
which are in the non-lemniscal pathway, including the dorsal nucleus 
(MGd), the medial nucleus (MGm), the internal nucleus (MGi), and 

the suprageniculate nucleus (Sun et al., 2025; Tomioka et al., 2023, 
2024). Posterior thalamic nuclei adjacent to the MGB also participate 
in auditory processing, including the posterior intralaminar nucleus 
(PIN). In an early study, Ryugo and Killackey (1974) reported in rats 
that the MGm, but not the MGv, projects to the TS. Subsequent 
studies confirmed the projection in mice and rats (LeDoux et al., 1985; 
Ogata S. et  al., 2022), and further localized the projection to the 
intermediate division of the tTS (Ogata S. et al., 2022). The medial 
region of MGB, however, may contain multiple subdivisions. Analysis 
of marker expression patterns in the MGB has identified the MGi, 
located between the MGv and the MGm (Tomioka et  al., 2023). 
Previous injection sites may have included MGi, together with MGm. 
In addition, MGd and the PIN are also shown to project to the TS in 
a study using a retrograde viral tracer (Ponvert and Jaramillo, 2019) 
(Figure 1).

In an early rat study, McGeorge and Faull (1989) reported 
projections from the auditory cortex to the dorsal part of striatum and 
the TS. Two years later, LeDoux et al. (1991) further showed that the 
auditory cortex and the auditory thalamus projected to an overlapping 
region in the TS. Like the auditory cortex in primates (Kaas and 
Hackett, 2000), the auditory cortex in rodents has a core region and a 

FIGURE 1

Interconnections between the auditory system and basal ganglia in 
rodents. Red arrows indicate excitatory connections; blue arrows 
indicate inhibitory connections. The ventral nucleus of the medial 
geniculate body is the primary drive for the auditory cortex, but is not 
illustrated here. The cortical area labeled as TeA also includes ventral 
auditory area and ectorhinal cortex. Abbreviations: AAF, anterior 
auditory field; A1, primary auditory cortex; CnF, cuneiform nucleus; 
GPe, external segment of the globus pallidus; MGd, dorsal nucleus of 
the medial geniculate body; MGi/m, internal and medial nuclei of the 
medial geniculate body; PIN, posterior intralaminar nucleus; SNL, 
substantia nigra lateralis; TeA, temporal association cortex. tTS: tri-
laminar tail of striatum. Section diagrams are based on Paxinos and 
Franklin (2008).
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surrounding belt region, with the core region comprising the primary 
auditory area (A1) and the anterior auditory field (AAF) and the belt 
region being consisted of several small fields (Nishimura et al., 2007; 
Polley et al., 2007; Sawatari et al., 2011; Stiebler et al., 1997). McGeorge 
and Faull (1989) appeared to have injected tracers into the entire 
auditory cortex, while LeDoux et al. (1991) restricted their injections 
to a cortical area ventral to Au1 (the core region according to brain 
atlas, which contains both A1 and AAF; Paxinos and Franklin, 2008), 
likely encompassing the ventral auditory area (AuV), temporal 
association area (TeA), and ectorhinal cortex. Subsequent studies 
traced projections from Au1 and have consistently found projections 
to the dorsal, striosome-free rostral striatum and the intermediate 
division of the tTS (Li et  al., 2021; Miyamoto et  al., 2018; Ogata 
S. et al., 2022; Tomioka et al., 2024; Xiong et al., 2015; Znamenskiy and 
Zador, 2013). Au1 projects to the dorsal region of the entire striatum 
other than the tTS, where the projection is confined to the intermediate 
division of tTS (Miyamoto et  al., 2018). One study, however, has 
reported Au1 projection to a medial region of the caudal striatum, 
immediately adjacent to the GPe (Gangarossa et  al., 2013). This 
discrepancy needs to be resolved in future studies.

Nakata et al. (2020) made injections of viral-based tracer into 
frequency-matched sites in functionally identified A1 and AAF, and 
found overlapping projections from these fields to both the dorsal part 
of striatum and the intermediate division of the tTS in mice. A1 and 
AAF receive parallel, independent inputs from the MGv (Takemoto 
et al., 2014). At this time, projections from the core auditory fields and 
AuV to the striatum is well established (Figure  1). It remains to 
be elucidated whether other auditory fields in the belt region project 
to the striatum in a similar way. Nevertheless, the projection from the 
core region and the AuV, together with the projections from the NLAT 
subdivisions to the tTS demonstrate that the striatum receives diverse 
auditory input from both the lemniscal and the non-lemniscal pathways.

The dual innervation of the striatum by cortical and thalamic 
auditory inputs raises the question whether the two inputs converge at 
the cellular level. Onto individual medium spiny neurons within the 
matrix compartment of the striatum, corticostriatal and thalamostriatal 
afferents have been shown anatomically to converge (Huerta-Ocampo 
et al., 2014). There is also electrophysiological evidence that cortical 
and thalamic projections converge onto individual striatal neurons in 
rat dorsal striatum (Smeal et al., 2008). Whether convergence occurs 
in the intermediate division of the tTS remains to be elucidated.

While there is consensus on the notion that the dorsal part of 
striatum integrates auditory, visual, and somatosensory inputs, two 
opposing views exist on the sensory inputs to the TS. One view is that 
the TS receives auditory input exclusively (Chen et al., 2019; McGeorge 
and Faull, 1989; Miyamoto et  al., 2018), while the other posits 
convergence of auditory, visual, and somatosensory inputs (Lee et al., 
2023; Hunnicutt et al., 2016; Oh et al., 2014; Valjent and Gangarossa, 
2021). This discrepancy may stem from studies focusing on different 
striatal regions: the former on the tTS, and the latter on the posterior 
striatum anterior to the tTS. Miyamoto et  al. (2018) clearly 
demonstrated that the posterior striatum rostral to the tTS receives 
cortical inputs in a manner similar to rostral striatum: auditory, visual, 
and somatosensory inputs to the dorsal region and motor input to the 
lateral region, and that the tTS receives input only from the auditory 
cortex at its intermediate division. The term auditory striatum has 
been used in prior literature (Chen et al., 2019; Nakajima et al., 2019); 
here, we propose defining it as the intermediate division of the tTS.

The striatum receives auditory input not only directly from the 
auditory cortex and auditory thalamus but also indirectly from nuclei 
outside the canonical auditory pathway. The superior colliculus (SC) 
relays auditory information from the inferior colliculus (Mellott et al., 
2018) and from the auditory cortex (Nakata et al., 2020; Benavidez 
et al., 2021) to the dorsal striatum via the parafascicular nucleus of the 
thalamus (Melleu and Canteras, 2024).

In addition to the striatum, several other nuclei within the basal 
ganglia also receive auditory inputs. Dopamine neurons in the 
substantia nigra pars compacta have long been known to respond to 
sound stimulation (Steinfels et al., 1983), and a subset of STN neurons 
responds to auditory stimuli with short latency (Mirzaei et al., 2017). 
These auditory responses in the substantia nigra and STN may 
originate from inputs conveyed through the SC (Al Tannir et al., 2022; 
Melleu and Canteras, 2024).

3 Output of the BG to the auditory 
system and other brain regions

Neuronal tracer studies have demonstrated projections from the 
rodent TS to the GPe (Li et al., 2021; Tulloch et al., 1978). Recently, 
using a combination of viral vectors in transgenic mice for cell-type-
specific trans-synaptic tracing, Tomioka et al. (2024) demonstrated 
that GABAergic neurons in the tTS, which receive input from the Au1, 
project primarily to the posterior GPe (Figure  1), with a minor 
projection to the substantia nigra lateralis (SNL). Tracer injections 
into the intermediate division of the tTS also result in labeling of the 
posterior GPe and the SNL (Ogata K. et al., 2022). The majority of cells 
in the intermediate division of tTS, or the auditory striatum, expresses 
dopamine receptor D2 (Miyamoto et al., 2019; Ogata K. et al., 2022); 
the projection from this division to GPe is thus consistent with the 
indirect pathway in canonical BG circuit (Ogata K. et al., 2022; Valjent 
and Gangarossa, 2021).

GABAergic neurons in the posterior GPe innervate several target 
regions in the thalamus, brainstem, and temporal cortex (Figure 1). 
Among these targets, the subdivisions of the NLAT and the PIN receive 
the strongest input; the SNL and the cuneiform nucleus (CnF) receive 
moderate input; and the TeA receives the weakest input (Tomioka et al., 
2024; Figure 1). The STN—the target of GPe in the canonical BG circuit 
(Hikosaka et al., 2014; Wilson, 2004)—receives minimal input from the 
posterior GPe (Tomioka et al., 2024). Projections from the GPe receiving 
input from the auditory striatum to the auditory sector of the thalamic 
reticular nucleus have been reported (Nakajima et al., 2019); however, 
this pathway was not consistently observed in the study by Tomioka et al. 
(2024). This discrepancy warrants clarification in future investigations.

Additional tTS-related outputs are mediated by large GABAergic 
neurons in the medial division of the tTS, whose dendrites extend into 
the intermediate division and receive input from both the auditory 
cortex and auditory thalamus. These neurons project to the zona incerta 
and the ventral medial nucleus of the thalamus (Ogata S. et al., 2022).

4 Functional interactions of the 
auditory system and the BG

Inputs from the auditory cortex and thalamus drive robust sound 
responses in neurons of the TS (Bordi and LeDoux, 1992; Bordi et al., 
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1993; Guo et al., 2018). Recent studies have demonstrated distinct 
roles for cortical and thalamic inputs in producing the responses of TS 
neurons to sound. Ponvert and Jaramillo (2019) examined the 
auditory responses of identified cortical neurons and thalamic 
neurons that project to the TS, and found that both the cortical 
neurons and the thalamic neurons respond to a broad range of tone 
frequencies and broadband noise, with thalamic neurons capable of 
following higher amplitude modulation frequencies. This latter 
finding aligns with the general trend that the highest amplitude 
modulation frequency a neuron can follow gradually decreases along 
the ascending auditory pathway (Joris et al., 2004). Thalamic inputs 
may therefore convey more precise temporal information to the TS 
than cortical inputs. In the frequency domain, Chen et al. (2019) 
demonstrated that thalamic input controls the response gain of TS 
neurons to auditory stimuli, while cortical input provides frequency 
tuning information to TS neurons. In rodents, neurons in the AAF are 
more broadly tuned to frequency (Hackett, 2011; Guo et al., 2012), 
and can follow faster temporal modulations than A1 neurons (Polley 
et al., 2007; Linden et al., 2003; Sołyga and Barkat, 2019). Although 
axon terminals from both A1 and AAF overlap in tTS (Nakata et al., 
2020), it remains to be  elucidated whether A1 and AAF inputs 
converge onto the same tTS neuron, and how their different response 
properties manifest in the auditory response of striatal neurons.

What functional roles might auditory inputs to the TS play? One 
function of the corticostriatal pathway is to drive decision making in 
sound-cued multichoice behavior (Xiong et al., 2015; Znamenskiy and 
Zador, 2013). Dopaminergic input to the TS is virtually exclusively 
from the SNL (Menegas et al., 2015), which may carry reinforcement 
signal modifying synaptic efficacy in the auditory corticostriatal and/
or thalamostriatal pathways, and thereby implement the formation of 
behavioral choice. The auditory corticostriatal pathway has also been 
shown to mediate sound-induced defense behaviors (Li et al., 2021). 
The pathway from the auditory cortex and thalamus to the CnF 
reported by Tomioka et al. (2024), constitutes a disinhibitory pathway 
(Figure 2B), in which CnF is excited by the cortex and thalamus via 
disinhibition. This discovery suggests that the CnF may serve as a 
downstream component to the corticostriatal pathway in mediating 
escape behavior, as the CnF is interconnected with the periaqueductal 
gray and participates in mediating defensive behavior (Bindi et al., 
2023). It remains to be investigated how the sound response properties 
of striatal neurons (Chen et al., 2019), shaped by cortical and thalamic 
inputs (Ponvert and Jaramillo, 2019), relate to their functional roles.

The recent discovery of projections from GABAergic neurons in the 
posterior GPe to the NLAT subdivisions and the PIN (Tomioka et al., 
2024) raises the possibility that the auditory system and BG form a loop 
circuit, in which NLAT neurons may be excited by cortical neurons via 
disinhibition mediated by the BG circuitry (Figure 1; Figure 2A). How 
the BG influence the activity of the NLAT neurons remains unknown. 
Because GPe neurons typically exhibit persistent and continuous firing 
at a high rate (Bevan et al., 2002), the BG may suppress NLAT activity 
in the absence of auditory input to the auditory striatum. Considering 
that A1 and AAF are primarily driven by the lemniscal MGB, i.e., MGv, 
it is tempting to hypothesize that the lemniscal auditory pathway (from 
MGv to A1 and AAF) may gate NLAT neuron activity dynamically via 
disinhibition through the BG loop (Figure 2A). In turn, the NLAT, 
under BG control, modulates auditory cortical activity. Because the tTS 
receives only auditory input (Chen et al., 2019; Miyamoto et al., 2018), 

the auditory system-BG loop might not be  a substrate mediating 
movement-related modulation of auditory cortical responses, a 
modulation effect that is now well documented (Morandell et al., 2024).

All subdivisions of the NLAT, along with the PIN, are known to 
project to the amygdala (LeDoux et al., 1991; Figure 2A). The NLAT, 
its calretinin-expressing neurons in particular, plays a critical role in 
sound-cued aversive associative learning (Barsy et  al., 2020; 
Weinberger, 2011). The BG may therefore modulate emotional 
responses and sound-cued learning via these pathways.

5 Control of the CnF by the auditory 
system and BG

The posterior GPe serves as the output nucleus of the BG in 
the recently identified auditory system-BG loop (Tomioka et al., 
2024; Figures 1, 2), in contrast to the canonical BG circuit, where 
the GPi and SNr act as output nuclei (Hikosaka et  al., 2014; 
Wilson, 2004). One major target of the posterior GPe, deviating 

FIGURE 2

Proposed feedback (A) and feedforward (B) circuits illustrating 
functional hypotheses for the auditory system–basal ganglia 
interaction. (A) The intermediate division of tri-laminar tail of the 
striatum (tTS) receives auditory input from both the auditory cortex 
and the non-lemniscal auditory thalamus (NLAT). Through inhibition 
of the posterior GPe, which is itself inhibitory, the tTS may disinhibit 
NLAT output and thus modulates auditory cortical activity. The NLAT 
and its downstream target, the amygdala, also receive additional 
inputs and are involved in diverse auditory-related functions. (B) The 
feedforward circuit from the auditory cortex and thalamus to the 
cuneiform nucleus (CnF) via the basal ganglia may mediate sound-
induced activation of the CnF through disinhibition. Given the CnF’s 
role as part of the mesencephalic locomotor region, this circuit may 
underlie movement initiation and modulation of locomotor speed in 
response to auditory stimuli.
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away from the loop circuit, is the CnF (Figures 1, 2B), which, 
along with the pedunculopontine nucleus, constitutes the MLR 
(Noga and Whelan, 2022; Ryczko, 2024; cf. Bindi et al., 2023). The 
CnF contains both excitatory glutamatergic neurons and 
inhibitory GABAergic interneurons (Ryczko, 2024), and activation 
of glutamatergic neurons can initiate locomotion and regulate 
locomotor speed (Caggiano et  al., 2018; Josset et  al., 2018). 
Behaviorally, the CnF is involved not only in escape behavior, but 
also in normal walking (Noga and Whelan, 2022; cf. Bindi et al., 
2023). Because activation of the GABAergic neuron can have 
opposing effects on locomotion (Ryczko, 2024), the exact function 
of the posterior GPe input to CnF depends on the postsynaptic 
cell type. It is tempting to speculate that the auditory cortex and 
thalamus may enhance CnF activity via disinhibition of GPe 
neurons, leading to the initiation or modulation of locomotion 
(Figure 2B). This hypothesis might relate to the human ability to 
dance in response to music. The therapeutic effects of rhythmic 
auditory stimulation on gait in patients with Parkinson’s disease, 
in which the MLR shows decreased activity (Ryczko and Dubuc, 
2017), are consistent with this hypothesis. In this regard, the 
intermediate division of the tTS has low level of tyrosine 
hydroxylase (Miyamoto et al., 2019), suggesting that dopaminergic 
modulation may be reduced in this region. Therefore, the pathway 
from the auditory cortex and thalamus to the CnF via the tTS (see 
Figure 2B) may remain relatively preserved in Parkinson’s disease, 
potentially supporting sound-guided movement. However, 
caution is warranted when extending the discussion of the rodent 
auditory system-BG-CnF circuit to humans, since the TS in 
primates may receive cortical input primarily from the ventral 
inferior temporal cortex, a region primarily associated with visual 
processing (Lee et al., 2023). However, the presence of input from 
the NLAT to the TS in primates supports the relevance of this 
hypothesis for investigation in primates.

The feedforward circuit from the auditory system to the CnF 
via the BG predicts that movement is reactive to sound stimuli. 
Any neural circuit linking the auditory system to motor centers 
should also predict reactive movement. While this is consistent 
with a rat study showing reactive movement to sound of regular 
rhythm (Katsu et  al., 2021), a recent study, however, shows 
evidence of predictive motor behavior in both rats and humans 
(Ito et  al., 2022). Some form of adaptive mechanism must 
be invoked to account for predictive movement.

The circuit show in Figure 2B is by no means the only circuit 
linking the auditory system to motor-related brain areas. The 
output of the dorsal part of striatum which also receives auditory 
input (Miyamoto et  al., 2018; Nakata et  al., 2020), remains to 
be explored, and might be linked to motor related thalamic nuclei. 
The secondary motor cortex (Nakata et  al., 2020), cerebellum 
(Wolfe, 1972), and other subcortical motor-related structures 
(Xiao et al., 2023) are also linked with the auditory system.

6 Future directions

While the influence of auditory cortical and thalamic inputs 
on the sound responses of TS neurons is now well characterized, 
how BG innervation of the NLAT modulates auditory cortical 

responses remains to be elucidated. In this review, we proposed 
the hypothesis that the lemniscal auditory pathway regulates 
NLAT activity via BG-mediated disinhibition (Figure 2A). This 
hypothesis awaits experimental validation. We also hypothesize 
that the CnF, regulated by the auditory system via the BG, 
mediates sound-driven modulation of movement (Figure 2B)—a 
concept that likewise requires functional validation. To better 
understand how the auditory system–BG loop functions, the 
circuit diagram shown in Figure  1 must be  refined to a cell-
level resolution.
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