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Recent breakthroughs in marker-less pose-estimation have driven a significant 

transformation in computer-vision approaches. Despite the emergence of state-

of-the-art keypoint-detection algorithms, the extent to which these tools are 

employed and the nature of their application in scientific research has yet to 

be systematically documented. We systematically reviewed the literature to 

assess how pose-estimation techniques are currently applied in rodent (rat 

and mouse) models. Our analysis categorized each study by its primary focus: 

tool-development, method-focused, and study-focused studies. We mapped 

emerging trends alongside persistent gaps. We conducted a comprehensive 

search of Crossref, OpenAlex PubMed, and Scopus for articles published on 

rodent pose-estimation from 2016 through 2025, retrieving 16,412 entries. 

Utilizing an AI-assisted screening tool, we subsequently reviewed the top ∼1,000 

titles and abstracts. 67 papers met our criteria: 30 tool-focused reports, 28 

method-focused studies, and nine study-focused papers. Publication frequency 

trend has accelerated in recent years, with more than half of these studies 

published after 2021. Through a detailed review of the selected studies, we 

charted emerging trends and key patterns, from the emergence of new 

keypoint-detection methods to their integration into behavioral experiments 

and adoption in various disease contexts. Despite significant progress in 

marker-less pose-estimation technologies, their widespread application remains 

limited. Many laboratories still rely on traditional behavioral assays, under-

using advanced tools. Establishing standardized protocols is the key step to 

bridge this gap, which will ultimately realize the full potential of marker-less 

pose-estimation and even greater insight into preclinical behavioral science. 
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1 Introduction 

The fate preclinical behavioral science relies heavily on 
early in vivo experimentations. Detailed quantification of rodent 
behavior is essential for understanding disease progression, and 
treatment eÿcacy (Lauer et al., 2022). Traditionally, researchers 
have relied on simple, manual assays such as timing a mouse’s 
pause before exploration or counting how often it crosses grid 
lines that require human observers to note every action. Besides 
being tedious and prone to bias, these manual approaches usually 
miss subtle micro-behaviors such as tiny head lifts, brief standing 
events, or slight changes in stride that can contain critical clues 
about early pathological signs (Miller et al., 2011; Desland et al., 
2014). Now the question is about the way to detect those subtle 
micro-behaviors. 

Over the last ten years, deep-learning–powered, marker-less 
pose-estimation has transformed behavioral analysis by detecting 
key anatomical points like the snout, paws, and tail from video 
footage without any physical markers. The DeepLabCut (DLC) 
software (2018) achieved human-level accuracy in tracking fast-
moving rodents at the pixel scale trained using 50–200 manually 
labeled frames (Mathis et al., 2018). Following this innovation, a 
broad list of tools has emerged, including, AlphaTracker (Chen 
et al., 2023), DeepLabStream (Schweiho et al., 2021), Keypoint-
MoSeq (Weinreb et al., 2024), and Social LEAP Estimates Animal 
Poses [SLEAP (Pereira et al., 2022)]. 

Although these pose-estimation tools have advanced rapidly, 
their adoption in standard rodent research workflows remains 
sporadic and largely undocumented. Many labs still depend on 
hand-scored tests, missing out on the detailed, high-resolution 
data that automated pose-estimation algorithms can oer. Key 
contributing factors include: (1) operational costs such as 
retraining personnel, reconfiguring equipment, and provisioning 
computational resources require significant eort (Hagelskjær 
et al., 2018); (2) technical complexity such as diverse pose-
estimation packages demand dierent installations and parameter 
settings, non-expert users can become easily overwhelmed (Dubey 
and Dixit, 2023); (3) a lack of standards leaving users without clear 
guidelines for evaluation tools (Reed et al., 1999); and (4) video-
data challenges, the burden of archiving large datasets and ensuring 
analyses can be reliably repeated (Nassauer and Legewie, 2019). 

To map the current state of adoption, we systematically 
reviewed studies published in last 10 years by searching four 
databases Crossref, OpenAlex, PubMed, and Scopus for reports 
of marker-less, keypoint-based tracking in rat and mouse 
models. Using an AI-assisted screening process, we narrowed 
approximately 16,412 initial hits to 63 relevant articles and four 
Tool-focused papers manual included. Each was classified into one 
of three categories: tool-focused, method-focused, or study-focused 
study and we mapped key trends and remaining challenges. 

Our specific aims were to (1) quantify publication trends and 
the prevalence of dierent software platforms; (2) classify research 
by its primary aim and experimental setting [such as locomotion 
assays (Sturman et al., 2020), social behavior tests (Sterley et al., 
2024), and anxiety paradigms (Sharma et al., 2025)]; (3) map 
the behavioral assays and disease contexts [such as Parkinson’s 
(Andreoli et al., 2021), Alzheimer’s (Miller et al., 2024), and pain 
models (Li et al., 2024)] that have used pose tracking; and (4) 

highlight gaps and opportunities. Through this in-depth analysis, 
we aim to assess whether the accuracy, flexibility, and ease of use of 
current pose-estimation tools have been broadly adopted in in vivo 
research, as well as the gaps between innovative technologies and 
standard preclinical behavioral science. 

2 Materials and method 

Following PRISMA (Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses) guidelines, we systematically reviewed 
only publications focused on rodent marker-less pose-estimation 
techniques. Below, we detail the protocol we followed for the search 
strategy, eligibility criteria, study selection, data extraction, risk of 
bias assessment, and data synthesis 

2.1 Search strategy 

We performed a comprehensive literature search to identify 
studies involving marker-less pose-estimation in rodent (rat or 
mouse) models. The search covered publications from January 
2016 up to March 2025. We constructed search queries using 
combinations of keywords related to pose-estimation (such 
as “pose-estimation,” “posture tracking,” “keypoint detection,” 
“behavioral tracking”) and rodents (such as “rodent,” “"rat,” 
“mouse,” “mice”), as well as specific tool names known in the field 
(such as “DeepLabCut,” “LEAP”, “SLEAP,” etc.). These searches 
were run across multiple databases and search engines, including 
Crossref, OpenAlex PubMed, and Scopus. To facilitate broad 
retrieval, we utilized the Publish or Perish software to query those 
databases with standardized search strings (Harzing, 2007). The 
search was limited to the English language literature. The final 
search was completed on 18 March 2025. All references retrieved 
were imported into a reference manager, and duplicate entries were 
removed prior to screening. The process was completely automated 
without any human intervention. 

2.2 Eligibility criteria 

Studies identified from the search were evaluated against 
predetermined inclusion and exclusion criteria: 

Inclusion criteria: (1) Studies must involve marker-less pose-
estimation (keypoint-based tracking of body parts) performed on 
rodents (rats or mice). (2) The pose-estimation should be applied 
to data from an experimental or observational study (i.e., the 
researchers collected or used rodent behavioral data in which pose 
tracking was implemented). (3) The pose tracking must involve 
more than one key point (to exclude cases like single-point tracking 
of an animal’s centroid). (4) Articles must present original data 
rather than hypothetical concepts. 

Exclusion criteria: (1) Review papers, editorials, or meta-
analyses were excluded (we only included primary research 
studies). (2) Studies focusing on non-rodent species or on humans 
were excluded, even if they discussed pose-estimation, to keep 
the scope specific to rodent models. (3) Studies that did not 
actually perform keypoint detection – for example, those that only 
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discuss pose-estimation conceptually or use other tracking methods 
(like bounding box or mask) without implementing a keypoint 
algorithm – were excluded. (4) If a study solely used marker-based 
motion capture or sensor-based tracking (and not marker-less 
pose-estimation), it was excluded. 

2.3 Study selection 

The study selection process summarized in the flow diagram 
(Figure 1). First, titles and abstracts of all retrieved records were 
screened to exclude those unrelated to our focus. 

To assist with screening and ensure, we employed the machine 
learning tool ASReview (de Bruin et al., n.d.), which prioritized 
records based on the likelihood of relevance. Using this tool, we 
iteratively screened approximately 1,000 articles by title, abstract, 
and full-text (if needed). This process allowed us to quickly 
identify candidate studies; any reference that the AI model 
flagged as relevant was given careful consideration, to maintain 
sensitivity (recall: 0.95). This process was primarily automated 
using advanced AI method with minimal human intervention. 
After initial screening, we obtained the full texts of studies that were 
potentially eligible. Authors then reviewed each full text in detail to 
determine final inclusion. 

For the analysis, studies included in the qualitative synthesis; 
were categorized into one of three groups based on its primary 
focus: (1) Tool-focused papers: Studies primarily centered on the 
development or validation of a pose-estimation tool or algorithm. 
These typically introduced new software, frameworks, or technical 
improvements for tracking and analyzing rodent posture/behavior. 
(2) Method-focused papers: Studies that applied pose-estimation 
to propose a specific experimental method or paradigm. These 
papers often aimed to demonstrate how pose tracking can enhance 
a particular behavioral test or an experimental setup using pose-
estimation. (3) Study-focused papers: Studies that used pose-
estimation within the context of addressing a biological or disease-
related research interest. 

All of the included studies outlined a solution leveraging 
marker-less pose-estimation. Despite similarities in their 
methodologies and overlapping theme, we tried to categorized 
them based on the best-fitting approach. 

2.4 Data extraction 

Data of interests were manually pulled by authors from 
each included article using a preformatted form in an Excel 
workbook. For the tool-development paper, recorded fields 
included tool name, primary function or novelty, publication date, 
computational, code availability, and reported performance metrics 
across. For Method and Study papers, we extracted information 
on the experimental design and context: the rodent species/strain 
and any disease model or condition, the behavioral tests or tasks 
conducted, the pose-estimation software or method used, the 
number of key points tracked, the performance of tools, and the 
main outcomes or findings related to pose. The compiled data are 
organized into category-specific tables (Supplementary Tables 1–3). 

2.5 Risk of bias assessment 

We evaluated each study’s risk of bias to maintain the 
trustworthiness of the findings. Given that the selected studies 
involved rodent experiments and computation analyses, in 
accordance with the ROBINS-I-V2 framework (for non-
randomized studies), the risk of bias assessment was performed. 
Due to the nature of the current study, certain bias criteria were 
not applicable, but we still noted them according to the guidelines. 
The seven domains of bias include: Bias due to confounding; Bias 
in selection of participants into the study; Bias in classification of 
interventions; Bias due to deviations from intended interventions; 
Bias due to missing data; Bias in measurement of outcomes; and 
Bias in selection of the reported result. Each study was evaluated 
across multiple domains and assigned a risk level of “low risk,” 
“high risk,” or “unclear risk,” of bias. The risk of bias findings 
was compiled into summary tables and visualized via the Robvis 
tool (McGuinness and Higgins, 2021). These figures display the 
proportion of low/moderate/serious/critical risk in each domain 
and provide an individual risk profile for each paper. 

2.6 Data synthesis 

No meta-analysis was performed considering the study designs. 
Or rather, due to lack of the standardized benchmark across the 
marker-less pose-estimation field. Instead, we created a qualitative, 
descriptive review of the findings, structuring our results to align 
with the review objectives and presenting summary tables and 
figures to illustrate the main idea. Specifically, we synthesized 
the findings through (1) narrative summaries for each category 
(Tool, Method, Study), detailing their shared themes, technological 
advancements, and primary results. (2) We generated a year-
by-year publication chart for tool-development studies and for 
method-application studies to track adoption patterns over time. 
(3) We classified pose-estimation tools according to their primary 
functions to illustrate the field’s functional diversity. (4) We 
analyzed the technical aspects across tools (such as network 
backbones) and alongside experimental variables in method and 
study papers (identifying the most frequently used behavioral 
assays and disease models in pose-estimation research). (5) Where 
applicable, we compared performance metrics (such as accuracy 
and processing speed) across tools where data permitted. Observed 
trends and gaps found are highlighted across the study. 

3 Results 

3.1 Study selection 

The comprehensive search across the selected sources yielded 
a large number of references. The PRISMA flow diagram in 
Figure 1a traces the study selection pathway from the initial 
database search through each subsequent screening stage. After 
removing duplicates, a total of 16,412 unique records were screened 
using ASReview (de Bruin et al., n.d.). Figure 1b represents the 
chronological record and Figure 1c the rate of relevant studies 
discovered using ASReview tool, which is the reason to screen the 
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FIGURE 1 

PRISMA flow chart (a) n = 16,412 studies were retrieved; out of which top n = 1,000 studies were screened using ASReview Tool. Full-text of Relevant 
records n = 69 were manually screened for the selection of the 30 Tool-focused (n = 4 Manual Inclusion), 28 Method-focused, and nine 
Study-focused included studies; *as the screening process is AI-assisted the quantitative details of excluded studies are unavailable. The ASReview 
screening result is represented as (b) the relevant studies found in chronological order and (c) rate of relevant record discovery. 

top 1,000 suggested records by title and abstract and full-text if 
needed. As shown, the recall of relevant studies falls well within 
this range, indicating a low likelihood of missing key studies. 
Of those, identifying 69 that were found to be relevant to the 
current study. The relevant studies were then advanced to full-text 
screening find 63 that met our inclusion criteria and were analyzed 
qualitatively. We classified these into three groups: 26 Tool-focused 
papers, 28 Method-focused papers, and nine Study-focused papers. 
In addition, we have included four Tool-focused papers manually, 
which were overlooked during screening. 

3.2 Characteristics of the included 
studies 

The key characteristics of all 67 included studies were 
summarized across three tables corresponding to Tool, Method, 
and Study. In the following sections, we detail each table’s contents 
and discuss the key findings. Notably, each study confirms the 
added impact of pose-estimation in research on disease models. 

Tool-focused studies (N = 30): Table 1 provides an overview 
of the studies focused on keypoint or behavior detection 
employing marker-less pose-estimation techniques. These studies 
predominantly introduce new pose-estimation frameworks or 

significant extensions to existing ones. The entries in list each tool’s 
given name, the publication year, and running title is mentioned. 

Method-focused studies (N = 28): Table 2 summarizes the 
studies that we categorized as Method papers. These works 
employed existing pose-estimation techniques to advance or refine 
a particular experimental method in behavioral research. For each 
study, we list the name of method, behavioral test that was the focus 
(such as balance beam walking test, open field test, elevated plus 
maze, operant conditioning task, etc.), year of publication, and the 
running title. 

Study-focused studies (N = 9): Table 3 provides details on the 
included studies that we classified as Study papers, meaning their 
primary aim was to answer a biological or disease-related question, 
with pose-estimation being a means to that end. Each entry in table 
describes the disease or model under investigation, the behavioral 
assays used, year of publication, and the running title. All records 
included in the current studies performed the significant role in the 
advancement of the pose-estimation field. 

3.3 Risk of bias assessment 

We evaluated the risk of bias for the included studies, 
and a summary is presented in Supplementary Figures 1–3. 
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TABLE 1 List of selected studies in the category tool-focused (n = 30). 

Name of tool Year Title 

DeepLabCut 
(Mathis et al., 2018) 

2018 DeepLabCut: marker-less pose-estimation of user-defined body parts with deep learning 

LEAP 

(Pereira et al., 2019) 
2018 Fast animal pose-estimation using deep neural networks 

DeepPoseKit (Graving et al., 2019) 2019 DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning 

SimBa 

(Nilsson et al., 2020) 
2020 Simple Behavioral Analysis (SimBA): an open source toolkit for computer classification of complex social behaviors in 

experimental animals 

Anipose 

(Karashchuk et al., 2021) 
2021 Anipose: A toolkit for robust markerless 3D pose estimation 

CAPTURE 

(Marshall et al., 2021) 
2021 Continuous Whole-Body 3D Kinematic Recordings across the Rodent Behavioral Repertoire 

DANNCE 

(Dunn et al., 2021) 
2021 Geometric deep learning enables 3D kinematic profiling across species and environments 

DeepLabStream 

(Schweiho et al., 2021) 
2021 DeepLabStream enables closed-loop behavioral experiments using deep learning-based marker-less, real-time posture 

detection 

MARS 

(Segalin et al., 2021) 
2021 The Mouse Action Recognition System (MARS) software pipeline for automated analysis of social behaviors in mice 

MouseVenue3D 

(Han et al., 2022) 
2021 MouseVenue3D: A Marker-less Three-Dimension Behavioral Tracking System for Matching Two-Photon Brain Imaging 

in Free-Moving Mice 

OptiFlex 

(Liu et al., 2021) 
2021 OptiFlex: Multi-Frame Animal Pose-estimation Combining Deep Learning With Optical Flow 

BehaviorDEPOT 

(Gabriel et al., 2022) 
2022 BehaviorDEPOT is a simple, flexible tool for automated behavioral detection based on marker-less pose tracking 

DeepLabCut 
(Lauer et al., 2022) 

2022 Multi-animal pose-estimation, identification and tracking with DeepLabCut 

SLEAP 

(Pereira et al., 2022) 
2022 SLEAP: A deep learning system for multi-animal pose tracking 

AlphaTracker 

(Chen et al., 2023) 
2023 AlphaTracker: a multi-animal tracking and behavioral analysis tool 

DeepOF 

(Bordes et al., 2023) 
2023 Automatically annotated motion tracking identifies a distinct social behavioral profile following chronic social defeat 

stress 

ContrastivePose 

(Zhou et al., 2023) 
2023 ContrastivePose: A contrastive learning approach for self-supervised feature engineering for pose-estimation and 

behavorial classification of interacting animals 

SaLSa 

(Sakata, 2023) 
2023 SaLSa: A Combinatory Approach of Semi-Automatic Labeling and Long Short-Term Memory to Classify Behavioral 

Syllables 

Temporal Semi-supervision method 

(Li et al., 2023) 
2023 Improved 3D Marker-less Mouse Pose-estimation Using Temporal Semi-supervision 

A-SOiD 

(Tillmann et al., 2024) 
2024 A-SOiD, an active-learning platform for expert-guided, data-eÿcient discovery of behavior 

ABNet 
(Chen et al., 2024) 

2024 ABNet: AI-Empowered Abnormal Action Recognition Method for Laboratory Mouse Behavior 

ARBEL 

(Barkai et al., 2024) 
2024 ARBEL: A Machine Learning Tool with Light-Based Image Analysis for Automatic Classification of 3D Pain Behaviors 

FABEL 

(Catto et al., 2024) 
2024 FABEL: Forecasting Animal Behavioral Events with Deep Learning-Based Computer Vision 

Keypoint-MoSeq 

(Weinreb et al., 2024) 
2024 Keypoint-MoSeq: parsing behavior by linking point tracking to pose dynamics 

Lightning Pose 

(Biderman et al., 2024) 
2024 Lightning Pose: improved animal pose-estimation via semi-supervised learning, Bayesian ensembling, and cloud-native 

open-source tools 

(Continued) 

Frontiers in Behavioral Neuroscience 05 frontiersin.org 

https://doi.org/10.3389/fnbeh.2025.1663089
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/


fnbeh-19-1663089 August 19, 2025 Time: 18:16 # 6

Bhola et al. 10.3389/fnbeh.2025.1663089 

TABLE 1 (Continued) 

Name of tool Year Title 

REVEALS 

(Phadke et al., 2024) 
2024 REVEALS: An Open Source Multi Camera GUI For Rodent Behavior Acquisition 

STCS 

(Tang et al., 2024) 
2024 Segmentation tracking and clustering system enables accurate multi-animal tracking of social behaviors 

STPoseNet 
(Lv et al., 2024) 

2024 STPoseNet: A real-time spatiotemporal network model for robust mouse pose-estimation 

SuperAnimal Model 
(Ye et al., 2024) 

2024 SuperAnimal pretrained pose-estimation models for behavioral analysis 

Seizure Classification Pipeline 

(Yu et al., 2025) 
2025 Integrating manual preprocessing with automated feature extraction for improved rodent seizure classification 

In general, the methodological quality of studies varied, with 
many studies showings some risk of bias or reporting limitations 
in one or more domains. For the subset of studies, common 
issues included the lack of explicit randomization of animals into 
experimental groups and blinding. For example, several papers 
did not clearly state whether the experimenters were blinded 
to treatment or genotype during behavioral assessments, raising 
the risk of detection bias. On the other hand, most studies 
clearly defined their objectives and reported results thoroughly, 
so reporting bias was generally low. Many studies did not report 
factors such as animal selection, age, housing conditions, sleep– 
wake cycles; recording sessions plan likely deemed irrelevant for 
tool performance. However, overlooking these variables introduces 
confounding and selection bias. Additionally, some behavior 
classification studies omitted keypoint detection accuracy, raising 
concerns of reporting bias. Depending on the context, these 
biases may impact the reliability of datasets or the development 
of new tools or methods. In the graphical representation, we 
provide an aggregate view using color-blind safe format: indicate 
a low risk, a moderate, a high risk, and unclear risk in each 
domain. Overall, while no study was excluded due to quality, 
the assessment suggests that around half of the studies had at 
least one domain with a potential issue, meaning results should 
be interpreted with that context in mind. Conversely, about half 
of the studies (especially some tool papers and well-designed 
experiments) adequately addressed most bias concerns. It also 
highlights an area for improvement: future studies, particularly 
those implementing pose-estimation in biological experiments, 
should consider a robust design practice to strengthen confidence 
in their findings. 

4 Quality evaluation of the included 
studies 

Beyond the basic characteristics and bias assessment, 
we conducted further analyses to evaluate the trends and 
qualities of the included studies. In the following subsections, 
we present these findings, which encompass the temporal 
trends in publications, the evolution of tool features, the 
contexts in which pose-estimation is applied, and the usage 
patterns of dierent pose-estimation software. Each subsection 
entertains a specific aspect of idea and is represented by a 
figure or table. 

4.1 Chronological list of tools 

We first examined the timeline of publication related to the 
rodent pose-estimation tools (Figure 2a). The analysis revealed a 
clear upward trend over the past several years. From 2018 through 
2025, there has been a steady increase in the number of new tools 
published per year. In the initial period, only a handful of tools were 
introduced, like DLC (Mathis et al., 2018) and LEAP (Pereira et al., 
2019). The pace picked up modestly around 2020–2021 and then 
surged markedly in 2023 and 2024. The year 2024, in particular, 
saw the highest influx, with seven distinct new tools reported in 
that year alone, according to our dataset. This suggests that the 
field of pose-estimation for rodent analysis is in a phase of rapid 
innovation. 

Several factors likely contributed to this growth: the success 
and wide adoption of initial tools probably spurred further 
developments with the increasing computational resources and 
open-source frameworks have lowered the barrier to creating new 
specialized tools (Voulodimos et al., 2018). By early 2025, the trend 
appears to continue, with at least a new tool already published in the 
first part of 2025, the seizure classification pipeline (Yu et al., 2025). 
The chronological trend underscores that the technology landscape 
is evolving quickly, and researchers are actively working on new 
solutions to extend capabilities. This also means that researchers 
will get access to an expanding array of tools to choose from with 
the advancement in the pose-estimation technology. 

4.2 Primary purpose 

We categorized each pose-estimation tool (from the Tool-
focused studies) by its primary intended purpose (Figure 2b). This 
classification helps illustrate the diversity of approaches and end 
goals among the tools in this field. We identified several broad 
categories of tool functionality: (1) Core Pose-estimation: Tools 
whose primary aim is accurate marker-less tracking of animal key 
points. Examples: DLC (Mathis et al., 2018), LEAP (Pereira et al., 
2019), SLEAP (Pereira et al., 2022) (functional successor of LEAP), 
Lightning Pose (Biderman et al., 2024), STPoseNet (Lv et al., 2024). 
These focus on improving the accuracy, robustness, or eÿciency of 
pose detection. (2) Multi-Animal Tracking: Tools designed to track 
multiple animals simultaneously and possibly maintain individual 
identities. Examples: AlphaTracker (Chen et al., 2023), MARS 
(Segalin et al., 2021), SLEAP (Pereira et al., 2022) (which also falls 
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TABLE 2 List of selected studies in the category method-focused (n = 28). 

Name of method Behavior test Year Title 

DLCAnalyzer 

(Sturman et al., 2020) 
Open-field; Elevated Plus Maze; 

Forced Swim Test 
2020 Deep learning–based behavioral analysis reaches human accuracy and is 

capable of outperforming commercial solutions 

*Not Specified* 

(Lang et al., 2020) 
Unrestricted cage exploration 

Rodent Beam Walk 

2020 Detecting and quantifying ataxia-related motor impairments in rodents 
using marker-less motion tracking with deep neural networks 

Marker-less 2D Kinematic 

Analysis 
(Sato et al., 2022) 

Treadmill walking 2021 Marker-less analysis of hindlimb kinematics in spinal cord-injured mice 

through deep learning 

PS-VAE 

(Whiteway et al., 2021) 
Head-fixed tasks 
Open Field Test 

2021 Partitioning variability in animal behavioral videos using semi-supervised 

variational autoencoders 

Automated Deep Phenotyping 

Pipeline 

(Klibaite et al., 2022) 

Open Field Test 2022 Deep phenotyping reveals movement phenotypes in mouse 

neurodevelopmental models 

VAME 

(Luxem et al., 2022) 
Open Field Test 2022 Identifying behavioral structure from deep variational embeddings of animal 

motion 

*Not Specified* 

(O’Neill et al., 2022) 
Single Pellet Retrieval Task 2022 Marker-less tracking enables distinction between strategic compensation and 

functional recovery after spinal cord injury 

*Not Specified* 

(Sheppard et al., 2022) 
Open Field Test 2022 Stride-level analysis of mouse open-field behavior using deep-learning-based 

pose-estimation 

AMBER 

(Lapp et al., 2023) 
Maternal behavior observation 2023 Automated maternal behavior during early life in rodents (AMBER) pipeline 

Posture Analysis Workflow 

(Wan et al., 2023) 
Rodent Beam Walk 2023 An integrated workflow for 2D and 3D posture analysis during vestibular 

system testing in mice 

SEB3R 

(Chelini et al., 2023) 
Open Field Test 2023 Automated Segmentation of the Mouse Body Language to Study 

Stimulus-Evoked Emotional Behaviors 

Two-bottle choice assay 

(Kim et al., 2023) 
Two-bottle choice licking assay in 

fasted vs. sated mice 

2023 Evaluation of mouse behavioral responses to nutritive versus non-nutritive 

sugar using a deep learning-based 3D real-time pose-estimation system 

*Not Specified* 

(Bogachev et al., 2023) 
Open Field Test 2023 Video-based marker-free tracking and multi-scale analysis of mouse 

locomotor activity and behavioral aspects in an open field arena: A 

perspective approach to the quantification of complex gait disturbances 
associated with Alzheimer’s disease 

*Not Specified* 

(Li et al., 2022) 
Overground runway gait 

Treadmill locomotion 

2023 A Multimode Marker-less Gait Motion Analysis System Based on 

Lightweight Pose-estimation Networks 

Air-Stepping 

(Mistretta et al., 2024) 
Air Stepping in neonatal mouse 2024 Air-stepping in the neonatal mouse: a powerful tool for analyzing early 

stages of rhythmic limb movement development 

Arthritis Pain Assessment System 

(Li et al., 2024) 
Automated Arthritis Pain 

Assessment 
2024 Combining dual-view fusion pose-estimation and multi-type motion feature 

extraction to assess arthritis pain in mice 

BAS 

(Piotrowski et al., 2024) 
Rodent Beam Walk 2024 Phenotypic analysis of ataxia in spinocerebellar ataxia type 6 mice using 

DeepLabCut 

KineWheelSystem 

(Albrecht et al., 2024) 
Paw placement tracking on the 

KineWheel 
2024 KineWheel–DeepLabCut Automated Paw Annotation Using Alternating 

Stroboscopic UV and White Light Illumination 

MoSoMoTr 

(Sterley et al., 2024) 
Social interaction assays 2024 Marker-less Mouse Tracking for Social Experiments 

SBeA 

(Han et al., 2024) 
Free–social behavior 2024 Multi-animal 3D social pose-estimation, identification and behavior 

embedding with a few-shot learning framework 

String Pulling Analysis Pipeline 

(Sandhu et al., 2024) 
Standing string-pulling for 

reward 

2024 Information-theory analysis of mouse string-pulling agrees with Fitts’s Law: 
Increasing task diÿculty engages multiple sensorimotor modalities in a dual 

oscillator behavior 

*Not Specified* 

(Zahran et al., 2024) 
Three Chamber Sociability and 

Social Novelty Test 
2024 Deep learning-based scoring method of the three-chamber social behavior 

test in a mouse model of alcohol intoxication. A comparative analysis of 
DeepLabCut, commercial automatic tracking and manual scoring 

*Not Specified* 

(Bidgood et al., 2024) 
Rodent Beam Walk 2024 Automated procedure to detect subtle motor alterations in the balance beam 

test in a mouse model of early Parkinson’s disease 

ArguelloALab 

(Sanabria et al., 2025) 
Operant Self-Administration 

(Cocaine IVSA) 
2025 Analysis of Operant Self-administration Behaviors with Supervised Machine 

Learning: Protocol for Video Acquisition and Pose-estimation Analysis 
Using DeepLabCut and Simple Behavioral Analysis 

(Continued) 
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TABLE 2 (Continued) 

Name of method Behavior test Year Title 

ForestWalk 

(Tozzi et al., 2025) 
Rodent Beam Walk 2025 Forestwalk: A Machine Learning Workflow Brings New Insights Into 

Posture and Balance in Rodent Beam Walking 

InteBOMB 

(Zhai et al., 2025) 
Open-Field; Elevated Plus Maze; 

Forced Swim Test 
2025 InteBOMB: Integrating generic object tracking and segmentation with 

pose-estimation for animal behavior analysis 

LBWT-AT 

(Ruiz-Vitte et al., 2025) 
Rodent Beam Walk 2025 Ledged Beam Walking Test Automatic Tracker: Artificial intelligence-based 

functional evaluation in a stroke model 

Touchscreen-based rodent 
Continuous Performance Test 

(rCPT) 
(Li et al., 2025) 

Touchscreen-based rCPT 2025 Time-on-task–related decrements in performance in the rodent continuous 
performance test are not caused by physical disengagement from the task 

TABLE 3 List of selected studies in the category Studies-focused (n = 9). 

Condition Behavior test Year Title 

Parkinsonism (6-OHDA lesion) 
(Andreoli et al., 2021) 

Abnormal involuntary 

movements rating 

2021 Distinct patterns of dyskinetic and dystonic features following D1 or D2 

receptor stimulation in a mouse model of parkinsonism 

Mechanical pain hypersensitivity 

(Zhang et al., 2022) 
Home-cage exploration 2022 Automated preclinical detection of mechanical pain hypersensitivity and 

analgesia 

Photothrombotic ischemic stroke 

(Weber et al., 2022) 
Gait analysis 2022 Deep learning–based behavioral profiling of rodent stroke recovery 

Thermal pain hypersensitivity 

(Reddy et al., 2023) 
Thermal-plate assay 2023 A Deep-Learning Driven Investigation of the Circuit Basis for Reflexive 

Hypersensitivity to Thermal Pain 

Neuropathic pain 

(Norris et al., 2023) 
Tail suspension assay 2023 Spared nerve injury causes motor phenotypes unrelated to pain in mice 

Alzheimer’s disease models 
(Miller et al., 2024) 

Open-field exploration 2024 Machine learning reveals prominent spontaneous behavioral changes and 

treatment eÿcacy in humanized and transgenic Alzheimer’s disease models 

Rett syndrome 

(Mykins et al., 2024) 
Pup retrieval 2024 Multidimensional Analysis of a Social Behavior Identifies Regression and 

Phenotypic Heterogeneity in a Female Mouse Model for Rett Syndrome 

Dopamine depletion model 
(Yang et al., 2024) 

Open-field locomotion 2024 Dopamine lesions alter the striatal encoding of single-limb gait 

Buprenorphine exposure 

(Sharma et al., 2025) 
Elevated zero maze 2025 Machine learning and confirmatory factor analysis show that 

buprenorphine alters motor and anxiety-like behaviors in male, female, and 

obese C57BL/6J mice 

under core pose), and STCS (Tang et al., 2024) (spatio-temporal 
clustering for socials). These are crucial for social interaction 
studies or high-throughput settings with group-housed animals. 
(3) 3D Pose-estimation: These go beyond 2D to reconstruct 
animal poses in three dimensios, often for more complex motor 
or biomechanical studies such as Anipose (Karashchuk et al., 
2021), CAPTURE (Marshall et al., 2021), DANNCE (Dunn et al., 
2021), and MouseVenus3D (Han et al., 2022). (4) Real-Time 
Tracking: Marker-less pose-estimation detection for closed-loop 
experiments, delivers posture-dependent stimuli by estimating 
animal pose online with millisecond latency, DeepLabStream 
(Schweiho et al., 2021) is one of the tool for that purpose. (5) 
Behavior Classification: Tools that integrate a layer of identifying 
specific behaviors or actions from the pose data. Examples: 
SimBA (Nilsson et al., 2020) (which uses pose features to classify 
behaviors), BehaviorDEPOT (Gabriel et al., 2022), and ARBEL 
(Barkai et al., 2024). (6) Behavior Prediction: the highly specialized 
tools which forecast, flag abnormal behaviors [ABNet (Chen 
et al., 2024)] or detect pain [ARBEL (Barkai et al., 2024)] using 
trained models and pose dynamics. Even the prediction of future 
locomotion trajectories from past movements like FABEL (Catto 

et al., 2024). (7) Infrastructure/Frameworks: Foundation models 
for pose-estimation across species such as SuperAnimal (Ye et al., 
2024). 

The resulting distribution shows that core pose-estimation, 
multi-animal tracking, 3D pose-estimation, real-time 
tracking, behavior classification, behavior prediction, and 
infrastructure/frameworks are very prominent needs that many 
tools address. Overall, this analysis highlights that the tools are 
being developed with dierent end goals in mind. 

4.3 Architectural approaches in tools 

We evaluated the algorithmic and architectural approaches 
employed by the various pose-estimation tools (Table 4). Virtually 
all modern rodent pose-estimation tools leverage deep learning, 
but there are variations in network architecture and training 
strategies: A majority use Convolutional Neural Network (CNN) 
backbones originally developed for image recognition or human 
pose-estimation (Grinciunaite et al., 2016). For example, ResNet-
50 is a common backbone (used in DLC and others), often coupled 
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FIGURE 2 

(a) Based on the year of publication, the timeline of marker-less rodent pose-estimation based keypoint detection and behavior detection tools. (b) 
The current network represents the primary intended purpose and key capabilities. The main categories (Green node) include: Core 
Pose-estimation, Multi-Animal Tracking, 3D Pose-estimation, Real-Time Tracking, Behavior Classification, Behavior Prediction, and 
Infrastructure/Frameworks. The published tools (Blue node) are linked with their intended purpose. 

with deconvolution or upsampling layers to produce heatmaps for 
keypoint locations (Mathis et al., 2018). Some tools experimented 
with dierent backbones: AlphaTracker mentions DarkNet-53 and 
ResNet variants (Chen et al., 2023); LEAP used a variant of a stacked 
dense network (Pereira et al., 2019); similarly DeepPoseKit also uses 

variant of a stacked dense network and stacked hourglass model 
(Graving et al., 2019); newer tools like STPoseNet may integrate 
spatial transformer networks (Lv et al., 2024). For multi-animal 
tracking, architectures often incorporate an identity association 
component. SLEAP (Pereira et al., 2022), for instance, can use 
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TABLE 4 The tools are categorized based on the architecture family. 

Architecture family Tools 

DeepLabCut-based 

(ResNet-50) 
ABNet (Chen et al., 2024) 

ARBEL (Barkai et al., 2024) 
BehaviorDEPOT (Gabriel et al., 2022) 

DeepLabCut (Mathis et al., 2018) 
DeepLabStream (Schweiho et al., 2021) 

DeepOF (Bordes et al., 2023) 
Keypoint-MoSeq (Weinreb et al., 2024) 

REVEALS (Phadke et al., 2024) 
SaLSa (Sakata, 2023) 

SimBa (Nilsson et al., 2020) 

YOLO-based ContrastivePose (Zhou et al., 2023) 
Seizure Classification Pipeline (Yu et al., 2025) 

STCS (Tang et al., 2024) 

YOLOv3-based AlphaTracker (Chen et al., 2023) 

YOLOv8-based STPoseNet (Lv et al., 2024) 

SLEAP-based 

(UNet/Hourglass) 
FABEL (Catto et al., 2024) 

SLEAP (Pereira et al., 2022) 

Semi-supervised 

Bayesian Ensemble 

Lightning Pose (Biderman et al., 2024) 

Pretrained ensemble 

(DeepLabCut Model) 
SuperAnimal (Ye et al., 2024) 

Other CNN 

Multi-view CNN MouseVenue3D (Han et al., 2022) 

Custom 15-layer CNN LEAP (Pereira et al., 2019) 

3D triangulation 

TCN 

CAPTURE (Marshall et al., 2021) 

CNN (FlexibleBaseline) 
Optical Flow 

OptiFlex (Liu et al., 2021) 

MSC-Multibox detector 

8-stack Hourglass CNN 

MARS (Segalin et al., 2021) 

Custom 3D pose CNN Temporal Semi-supervision Method (Li et al., 
2023) 

part aÿnity fields [similar to OpenPose (Cao et al., 2019)] or 
other graphical models to separate individuals. AlphaTracker’s 
pipeline combined a YOLO-based detection with pose-estimation, 
eectively splitting the task into detecting each animal and then 
finding key points (Chen et al., 2023). 

4.4 Accuracy versus speed trade-offs 

One practical consideration in pose-estimation tool 
performance is the trade-o between accuracy and speed. We 
aggregated the performance information reported in tool papers 
to qualitatively assess this trade-o. Dierent studies report 
performance in dierent ways, but two common measures for 
pose-estimation accuracy [often quantified by metrics like% of 
correct key points, mean pixel error, or mAP (mean average 
precision)] and runtime eÿciency [measured in FPS (frames 
per second) processed, or whether the method can run in real-
time]. We summarize schematically how tools tend to position 
themselves, available in Supplementary Tables 1–3. Generally, 
most tools cluster toward the high-accuracy end, given the 
emphasis on precise tracking in research. In the absence of 

evaluation against a standardized benchmark dataset, the reported 
performance values in their studies are not directly comparable 
and should be interpreted as arbitrary. However, a subset extends 
toward the all-rounders as most of the tools are built upon 
DLC-based architecture. 

4.5 Chronological list of methods 

We also looked at the timeline of the Method-focused studies 
to see when researchers started incorporating pose-estimation 
into their experimental methods (Figure 3a). Unlike the tool 
development, which began in the 2018, the uptake of pose-
estimation in general behavioral research shows a slight delay. 
The earliest Method category papers in our review were published 
around 2020. There was only one such study in 2020 that met our 
criteria and a couple in 2021. The count rises in 2022 and more 
sharply in 2023 and 2024, similar to the tool trend. Many published 
methods were focused on diverse behavioral assays such as gait 
analysis (Li et al., 2022; Sheppard et al., 2022), maternal care (Lapp 
et al., 2023), social interaction (Sterley et al., 2024; Zahran et al., 
2024), and pain behavior (Li et al., 2024). Notably, 2024 emerged 
as a peak year, with a considerable number of new pipelines 
introduced. And the momentum appears to continue into 2025 
(we already have five from early 2025 in our inclusion list). This 
timeline suggests that broad adoption by experimentalists lagged a 
year or two behind the introduction of major tools. It makes sense: 
tools like DLC (Mathis et al., 2018) became widely known around 
2018–2019, and after some time for dissemination and training, 
more labs began applying them to their own experiments, leading 
to publications a year or more later. The accelerating trend in 2023– 
2024 indicates that pose-estimation is becoming more mainstream 
in the methods of behavioral labs. This analysis highlights the 
encouraging fact that the community is increasingly embracing 
these new methods, though it also points to a gap, it took a few years 
for many researchers to integrate these tools, suggesting a learning 
curve or initial resource barrier that needed to be overcome. 

4.6 Pose-estimation tools used in 
method papers 

We systematically reviewed the tools used for pose-estimation 
in both Method and Study category papers (37 papers total). 
As discussed earlier for method studies, DLC was the most 
commonly used tool (Figure 3b). DLC was used in 30 of 37 studies 
(∼81%). This includes various versions (2D, 3D, multi-animal 
extensions) but collectively underscores its prevalence. Most of 
the method papers explicitly used DLC (Mathis et al., 2018) for 
their pose tracking, often in conjunction with downstream analysis 
frameworks such as SimBA (Nilsson et al., 2020). For example, 
tools like AMBER (Lapp et al., 2023), ArguelloALab (Sanabria 
et al., 2025), and BAS (Piotrowski et al., 2024) all incorporated 
DLC keypoints and used Random Forest classifiers for behavior 
annotation. Several tools also employed hybrid approaches by 
integrating pose-estimation with domain-specific algorithms. For 
instance, Air-Stepping employed circular statistics and EMG step-
matching (Mistretta et al., 2024), while Posture Analysis Workflow 
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FIGURE 3 

(a) Chronological milestone for method-focused studies. (b) Marker-less pose-estimation tool usage frequency across method development and 
disease studies. (c) The cross-analysis map of disease conditions, behavioral assays, study-focused or method-focused studies, and tools to present 
the current scenario of marker-less pose-estimation technology in the disease studies. 

relied on FluoRender scripts for beam-walk kinematics (Wan 
et al., 2023). While performance reporting varied in detail, pixel 
error was the most common accuracy metric. Tools such as 
ForestWalk (Tozzi et al., 2025) and ArguelloALab (Sanabria 
et al., 2025) reported test errors ranging between 3–10 pixels, 
demonstrating practical precision for behavioral quantification in 
freely moving animals. DLC was the prominent framework found 
in the developments of the above-mentioned methods. Bias toward 
DLC may arise from its position as the earliest developed tool in 
the field development and established role as a benchmark tool 
in the field. And based on our findings, most of the behavior 
classification pipeline, and methodology are built upon DLC, using 
it as the foundational keypoint detection framework, followed 
by the application of specialized algorithms to address specific 
research problems. From a broader perspective, this indicates that 
researchers doing rodent experiments largely rely on a few well-
established pose-estimation platforms rather than exploring the 
trend or writing their own from scratch. 

LEAP (Pereira et al., 2019) was used in about four studies 
(mostly older ones before 2020) and SLEAP (Pereira et al., 2022) 
appearing in a few studies (approximately 3 out of 37). Those were 
typical cases needing multi-animal tracking or where authors were 
early adopters of this newer tool. No other single tool besides DLC 
and SLEAP showed up more than once or twice in the method and 
studies. This indicates that the community has largely coalesced 

around one primary tool (DLC) for conducting pose-estimation in 
practice; the usage frequency we see reflects a lag: tools introduced 
a few years ago (like DLC, SLEAP) have usage now, whereas brand-
new ones have little to no representation yet outside their own 
introduction papers. This metric also highlights a potential risk: 
with so much reliance on one tool, if that tool had any biases or 
limitations, many results could be aected similarly. Over time, 
we may see diversification as newer tools mature and demonstrate 
clear advantages. As of the data in our review, the pose-estimation 
landscape in practice is highly centered on DLC. 

4.7 Behavioral assays addressed by 
method papers 

We analyzed which behavioral tests or paradigms were most 
commonly addressed by the Method-focused studies (Table 5). 
This gives insight into where researchers find pose-estimation most 
useful in terms of types of behavior. The rodent balance beam walk 
(and similar gait/coordination tests) emerged as a frequently used 
paradigm in these papers. At least four independent method studies 
focused on beam walking tasks to evaluate motor coordination, 
often in the context of neurological disorders (Lang et al., 2020; 
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TABLE 5 Developed methods primarily focusing on disease conditions. 

Behavioral 
domain 

Behavioral assay Method 
papers 

Associated disease models 

Locomotion and gait Open Field Test 8 Alzheimer’s disease (Bogachev et al., 2023; Miller et al., 2024) 

Rodent Beam Walk 5 Autism (Klibaite et al., 2022) 

Treadmill/Runway Walking 2 Angelman syndrome (Tozzi et al., 2025) 

Air-Stepping (Neonatal) 1 Spinocerebellar/Ataxia (Lang et al., 2020; Piotrowski et al., 2024) 

KineWheel Gait Task 1 Stroke (Weber et al., 2022; Ruiz-Vitte et al., 2025) 

Elevated Plus Maze 2 Parkinson’s disease (Mistretta et al., 2024) 

Spinal cord Injury (O’Neill et al., 2022; Sato et al., 2022) 

SLC6A-1 disorder (Tozzi et al., 2025) 

Anxiety-like behavior Elevated Zero Maze 1 Anxiety-like Behavior (Sharma et al., 2025) 

Rewards and operant 
conditioning 

Operant/Reward Tasks 1 Cocaine self-administration (Sanabria et al., 2025) 

Three Chamber Sociability 

and Social Novelty Test 
1 Alcohol consumption preference (Zahran et al., 2024) 

Maternal care Maternal Behavior 1 Maternal care deficits (Lapp et al., 2023) 

Pain assessment Arthritis Pain Gait Assay 1 Arthritis (Li et al., 2024) 

Fine motor skills Single-Pellet Reaching 1 Stroke Recovery (Weber et al., 2022) 

String-Pulling 1 Motor Deficit Models (Sandhu et al., 2024) 

Spontaneous/longitudinal 
behavior 

Homecage Observations 1 Stroke Recovery (Weber et al., 2022) 

Tozzi et al., 2025) or injuries (Ruiz-Vitte et al., 2025). Pose-
estimation is particularly well-suited here because it can count 
foot slips, measure crossing speed, and even detail how each paw 
moves – critical for detecting ataxia (Lang et al., 2020) or subtle 
motor deficits (Tozzi et al., 2025). Open field testing was another 
common assay, appearing either alone or in combination with 
other tests in several studies. In an open field, pose tracking gives 
not only total distance and speed (which could be done with simpler 
tracking) but also posture, limb movement patterns, and specific 
behaviors like rearing if 3D or multi-point is tracked (Klibaite 
et al., 2022). Some studies used open-field data to derive more 
complex metrics (such as unsupervised clustering of movement 
motifs) (Klibaite et al., 2022; Bogachev et al., 2023; Miller et al., 
2024). Elevated Plus Maze and related anxiety tests (Sharma et al., 
2025) (light-dark box, etc.) were present in a few papers. Pose-
estimation here can automate measurements such as time spent 
in open vs. closed arms, as well as provide additional detail like 
head dips or stretch-attend postures if key points are tracked. 
Forced Swim Test (FST) was included in at least one study (Zhai 
et al., 2025). Social interaction tests and Operant behavior tests 
were featured in a couple of method papers. At least one method 
paper specifically dealt with an arthritis pain model (Li et al., 
2024), using pose tracking to evaluate gait changes and pain-related 
behaviors like weight shifting. Another included a pain test in a 
broader context (Norris et al., 2023). A minority of studies looked 
at naturalistic behaviors (like maternal care or freely moving in 
homecage behaviors) for continuous pose tracking to capture subtle 
or long-term patterns (Lapp et al., 2023). This suggests that the 
community finds immediate value in applying pose tracking to 
tasks where movement is central, and deficits are quantitative. 
Other domains (social and cognitive tests) are less represented, 

possibly because they are either harder to quantify or just emerging 
areas for such analysis. In time, as pose-estimation becomes more 
routine, we might see it applied even more broadly. 

4.8 Disease models addressed by method 
papers 

Among the Method-focused studies, a significant subset 
involved specific disease or injury models. We tallied the types of 
disease models featured (Table 5). Out of the 28 method papers, 14 
(50%) incorporated an explicit disease or physiological challenge. 
The distribution of disease models in the method papers included: 
(1) Neurodegenerative and Neurological Disorders: Several studies 
focused on models of diseases such as Parkinson’s disease (Yang 
et al., 2024), Alzheimer’s disease (Bogachev et al., 2023; Miller 
et al., 2024), and spinocerebellar ataxia (Piotrowski et al., 2024). 
(2) Neurodevelopmental Disorders: Autism spectrum disorder 
models (Klibaite et al., 2022) and other developmental disorder 
models like Angelman syndrome (Tozzi et al., 2025) appeared in 
method studies. (3) Psychiatric/Addiction Models: Some papers 
involved substance use or withdrawal models [such as chronic 
alcohol exposure and withdrawal in mice (Zahran et al., 2024) 
and cocaine self-administration in rats (Sanabria et al., 2025)]. 
These studies used pose-estimation to observe changes in behavior, 
such as locomotor activity or specific actions during withdrawal 
periods. (4) Pain and Injury Models: Chronic pain models [like 
inflammatory arthritis in mice (Li et al., 2024)] and acute injury 
models [like spinal cord injury (Sato et al., 2022) or stroke 
(Weber et al., 2022)] were present. The stroke model study, for 
instance, introduced a new method to assess motor recovery by 
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tracking limb movement symmetry in a home cage monitoring 
(HCM) (Ruiz-Vitte et al., 2025), the rationale focuses on the idea of 
automated behavior analysis. From data presented it is evident that 
neurological disease models form the largest group among these 
method papers. This aligns with the intuition that motor deficits are 
a key feature of many neurological disorders, making those models 
a prime target for such methods. 

4.9 Mapping behaviors to disease 

The network is illustrated in Figure 3c represent the map 
linking behavioral assays to the disease models they were used 
to evaluate, across all relevant studies (both Method and Study 
categories). This mapping helps reveal if certain behaviors are 
particularly associated with certain types of disease research 
when using pose-estimation. We found that motor coordination 
tests like the beam walk are commonly used as mentioned 
above. These diseases naturally aect coordination, so researchers 
often employ beam walking or similar gait tests to quantify 
deficits (Bidgood et al., 2024; Ruiz-Vitte et al., 2025; Tozzi 
et al., 2025). Open field tests were used in a broad range of 
contexts, including Alzheimer’s models, autism models, and as 
baseline in many others. Social interaction tests were specifically 
utilized in neurodevelopmental disorder studies and occasionally 
in neurodegeneration or psychiatric models. Tests commonly 
used in the domain of Anxiety research like elevated plus maze 
appeared in contexts like Alzheimer’s disease (Miller et al., 
2024) and in substance withdrawal studies (Sharma et al., 
2025). 

Pain-related gait assays (like automated scoring of limp or 
weight distribution) were obviously tied to pain models or 
nerve injury models (Norris et al., 2023). Complex behavior 
batteries were often used for models with uncertain phenotypes. 
For example, one comprehensive study on a Rett syndrome 
model mouse used a battery including open field, social test, 
and motor tests to capture a spectrum of behaviors via pose 
tracking (Mykins et al., 2024). The mapping highlights that each 
disease domain tends to utilize a relevant subset of behavioral 
tests, and pose-estimation is flexible enough to be applied to all 
these. 

4.10 Limitation of screening strategy 

The screening strategy leans extensively on automated 
processes from keyword searches to the retrieval of relevant 
publications. Publish or Perish software eÿciently retrieves 
references, but it has limitations including a limit on results per 
query. Moreover, some retrieved entries lack abstracts, they might 
get prematurely excluded in subsequent screening step. ASReview 
relies on the structured abstracts and limits the inclusion of 
potentially relevant studies with missing or malformed metadata. 
Automated screening fell short when applied to extensive datasets. 
Notably, key studies such as Anipose (Karashchuk et al., 2021), 
A-SOiD (Tillmann et al., 2024), DANNCE (Dunn et al., 2021), 
and DeepPoseKit (Graving et al., 2019) were missed during the 
automated retrieval process. 

5 Discussion 

Our systematic review illustrates a period of rapid development 
and refinement of pose-estimation tools for rodent research. 
Over roughly 8 years (2017–2025), the field progressed from 
a handful of pioneering methods to a suite of sophisticated 
algorithms with diverse capabilities. Early tools established the 
feasibility of accurate marker-less tracking for instance, achieving 
sub-centimeter accuracy in detecting rodent limb positions 
eectively proving that computer vision could automate what was 
once manual scoring or marker-based motion capture (Mathis 
et al., 2018). Building on that foundation, successive tools 
have incrementally expanded the frontiers: introducing multi-
animal tracking (Lauer et al., 2022) (to handle social groups or 
littermates in a cage), improving tracking speed (Phadke et al., 
2024) (to approach real-time feedback, important for closed-
loop experiments), and incorporating behavior classification and 
unsupervised analysis (Nilsson et al., 2020) (to interpret the 
raw pose data in terms of meaningful actions or patterns). The 
architectural evolution of these tools has been largely driven 
by advances in deep learning. Convolutional neural networks 
pre-trained on large datasets brought a step-change in keypoint 
detection accuracy around 2018, and since then, many tools have 
repurposed. The development trajectory of pose-estimation tools, 
from general frameworks like DLC (Mathis et al., 2018) and SLEAP 
(Pereira et al., 2022) to more specialized ones has been especially 
productive, developing a range of options that collectively cover 
many needs of the research community. The uptake of pose-
estimation technology in preclinical behavioral experiments is 
clearly underway, as evidenced by the growing number of studies 
incorporating these methods. Our results show that starting around 
2020, researchers began to apply pose tracking in classical rodent 
behavioral tests, and the trend has accelerated in the last few years. 
For example, in a open field test, instead of just recording the total 
distance travelled, researchers can quantify detailed trajectories, 
speed profiles, and even specific behavior postures automatically 
(Weber et al., 2022). In coordination tasks like the balance beam 
(Tozzi et al., 2025), subtle dierences in how a rodent places its 
paws or maintains balance, which might be overlooked by human 
observation, are captured through automated video analysis (Ruiz-
Vitte et al., 2025). This not only increases the sensitivity of the 
experiments (allowing detection of mild phenotypic dierences or 
drug eects) but also their reliability [reducing observer bias and 
variability (Ruiz-Vitte et al., 2025)]. 

Our review highlights the use of pose-estimation to augment 
traditional behavioral assays rather than replace them outright. 
We see a methodological modernization in rodent behavioral 
science: the field is moving from stopwatches and manual counts 
toward automated, quantitative behavioral phenotyping. One of the 
most compelling findings of this review is how pose-estimation is 
empowering research on rodent models of disease. A transgenic 
mouse modeling early-stage Parkinson’s disease might not exhibit 
obvious motor deficits under casual observation, but with pose-
estimation, researchers can detect slight irregularities in gait or 
balance that herald disease onset (Mistretta et al., 2024). Such 
sensitive measures can serve as early biomarkers of disease 
progression or as endpoints to test intervention eÿcacy that would 
otherwise require a much larger sample sizes and sophisticated 
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experimentation to even notice. In pain and injury models, pose-
estimation has allowed more objective and continuous monitoring 
of pain-related behaviors (Li et al., 2024). For instance, instead 
of relying solely on discrete scoring (like a pain scale based on 
observations at intervals), some studies continuously track how an 
animal shifts weight or adjusts posture, which can quantify pain 
levels with higher resolution over time (Norris et al., 2023). The 
ability to link specific behavioral metrics to disease conditions has 
much broader implications. 

6 Limitation and future direction 

While our review underscores many positive developments, 
it is important to acknowledge its limitations, as well as those 
in the field, and to suggest areas for future work. First, our 
review is limited by the scope of available literature, our search 
strategy, and the AI-assisted screening method. Being overly 
dependent on tools contains blind spots, which leads to the 
exclusion relevant studies as mentioned in the section above. 
And we focused on publications up to early 2016 and only those 
in English. It is possible that some relevant studies (especially 
very recent or non-indexed ones or those in other languages) 
were not captured. Second, the heterogeneity in study designs 
due to the lack of benchmarks across the included papers. 
This made it challenging to directly compare outcomes like 
accuracy or eect sizes. We relied on authors’ reported metrics; 
some provided comprehensive evaluations, while others oered 
only qualitative assessments. A more standardized benchmarking 
across tools would greatly facilitate objective comparison. In our 
synthesis, we had to qualitatively assess trade-os and trends rather 
than perform a quantitative meta-analysis due to this variability. 
Third, our categorization into tool-focused, method-focused, and 
study-focused studies was somewhat subjective and there is 
overlap between categories. Some tool papers also performed 
biological experiments to showcase their tool; some method papers 
introduced minor technical innovations. We chose categories to 
structure the review. This also reflects a limitation in the field: 
interdisciplinary studies sometimes defy neat categorization and 
valuable insights might be get over looked. 

In terms of the research field’s limitations revealed by this 
review, one notable aspect is the uneven adoption of pose-
estimation. A large proportion of studies still come from either 
technology-oriented groups or early adopters instead of the 
preclinical research labs. Many traditional behavioral studies 
have yet to incorporate these methods. Barriers might include 
required expertise, computational resources, or simply inertia 
with established methods, as mentioned above. Another limitation 
is that while pose-estimation greatly improves measurement, 
it doesn’t automatically interpret behavior; behavioral meaning 
must be inferred from pose data, and that still relies on 
expert knowledge or complementary experiments. Advanced 
analytics like machine learning classification or unsupervised 
clustering can help identify patterns, but there’s a risk of over-
reliance on algorithms without biological context. Future research 
should consider on linking pose-derived metrics more tightly to 
benchmark processes. 

Looking ahead, future directions could include: (1) Expanding 
pose-estimation to more complex environments, most current 

studies are in relatively controlled settings. Adaptive methods are 
required (Pereira et al., 2022). (2) Enhancing 3D pose-estimation 
for rodents; a few studies did this, but it’s not widespread; improved 
3D tracking could yield better readouts of complex behaviors 
(Lauer et al., 2022). (3) Integration with other data modalities such 
combining pose data with neural recordings, optogenetics triggers, 
or physiological readouts could provide a better understanding 
of behavior in context, and synchronized channel serve as a 
critical proof of concept, which are essential in establishing the 
benchmarks. 

The advancement of pose-estimation has catalyzed progress 
in connected technologies, notably home cage monitoring (HCM) 
systems, which allow for 24/7, non-invasive collection of behavioral 
and physiological digital biomarkers (Baran et al., 2022). More 
recently, large language and vision-language models such as 
MouseGPT (Xu et al., 2025) and AmadeusGPT (Ye et al., 2023) 
have transformed behavior classification by directly interpreting 
raw video into open-vocabulary behavioral annotations also not 
relying on keypoint detection, steering the preclinical research 
toward new heights. 

The current review’s limitations are natural product of a 
new and very fast-moving field. We attempted to compile a 
comprehensive overview, and while some gaps remain, the trends 
identified are well defined. A continued push to upgrade these 
tools and broaden their adoption will help ensure that the insights 
from pose-estimation reach their full potential in advancing 
behavioral science. 

7 Conclusion 

Marker-less pose-estimation is the advent of advanced pose-
estimation techniques, though this transformation is still in 
progress. We found that the development of new pose-estimation 
tools has been vigorous over the last several years, providing 
researchers with unprecedented capabilities to track and quantify 
behavior. The adoption of these tools in experimental studies 
is growing, particularly in areas where fine behavioral details 
matter, such as disease models and complex behavioral assays. 
Despite the availability of these tools, our review also highlights 
a persisting gap between technological advancements and their 
implement. Many rodent studies have yet to incorporate marker-
less pose-estimation. And the majority of practitioners rely 
on a few key software tools. The evidence from the studies 
we synthesized indicates that embracing marker-less pose-
estimation can significantly enhance the quality of data and 
conclusions in preclinical research. Whether it is validating a new 
therapy in a mouse model of disease or exploring fundamental 
questions of neuroscience, the ability to quantify behavior 
with high resolution leads to more robust and reproducible 
findings. In summary, the current trend in pose-estimation 
for rodent models is one of promising growth. Continued 
advancement is mostly likely to be the case. However, collaboration 
between tool developers and traditional researchers, for addressing 
practical barriers will be essential. By doing so, the field can 
ensure that the considerable advances in computational behavior 
analysis fully translate into deeper insights and breakthroughs in 
biomedical research. 
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