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Different frequencies of human
scalp-recorded theta activity may
index integration of activity in
distinct recurrent
cortico-subcortical mnemonic
networks

Inanna K. Haddon, Rohan O. C. King, Dylan A. Taylor, Jodie
N. Bell, Jasmine E. B. Murray, Meghan van der Meer,
Christopher D. Erb and lan J. Kirk*

School of Psychology and Centre for Brain Research, University of Auckland, Auckland, New Zealand

It is now well-accepted that differing frequencies of neuro-oscillations support
the selection, quantising, and pacing of information around different circuits in
the brain. Another related function of neuro-oscillations, for which the frequency
of oscillation is again critical, is to allow for integration of neural activity across
differing spatial scales. In this short review, we discuss the degree to which human
scalp-recorded EEG occurring in the theta-range (4-8 Hz) can be used to infer
activation of mnemonic circuits involving the hippocamps and diencephalon
(Papez loops), as well as in the neocortical areas the activity is directly recorded
from. We also discuss the potential role of theta-range frequency modulation in
the selection of specific mnemonic circuits. In light of the foregoing, we suggest
that the frequency at which theta is occurring within and between cognitive tasks
should be reported more thoroughly than it generally is. Finally, we suggest that
assessing disruptions in frequency modulation of theta-range oscillations is a
potentially valuable biomarker for disorders such as Alzheimer's disease.

KEYWORDS

frontal—parietal and fronto-temporal theta oscillations, theta-gamma coupling,
frontal midline theta, memory, Alzheimer's disease

Introduction

The intracranially recorded hippocampal EEG (usually obtained from animals) is
characterised by a large-amplitude, pseudo-sinusoidal waveform known as theta rhythm
(O’Keefe and Nadel, 1978; Miller, 1991; Gray and McNaughton, 2000; Mitchell et al., 2008).
Due to the rhythmic nature of theta, and that its frequency is finely modulated [see Kirk
(1998)], it is usually assigned a role in timing or quantising the passage of information around
various hippocampal-related circuits. For example, it has been suggested that one function of
theta is to organise information flow through the hippocampal tri-synaptic loop and associated
structures. That is, from entorhinal cortex — dentate gyrus - CA3 — CA1 — subiculum; and/
or around a subiculum — lateral septum — medial septum — hippocampus (O'Keefe and
Nadel, 1978; Gray and McNaughton, 2000; Stepan et al., 2015; Farrell and Soltesz, 2025; see
Figure 1). An equivalent role of theta has also been suggested for more spatially distributed
loops. Theta (and the precise frequency of theta) might allow selection from a variety of
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FIGURE 1

Hippocampal tri-synaptic loop. EC, entorhinal cortex; DG, dentate gyrus; CAL and CA3, cornu ammonis 1 and 3; Re, nucleus reuniens; SuM,
supramammillary nucleus. Figure modified from Lépez-Madrona et al. (2017).

potential recurrent loops (originally proposed by Papez, 1937)
comprised of nuclei in the anterior thalamic complex, the mamillary
body, and hippocampus (Parmeggiani et al., 1971, 1974; Gray and
McNaughton, 2000).

Theta-range EEG activity is also readily recorded from the scalp
electrodes in human participants. It is most prominent over the
frontal-midline, and has hence become known as frontal-midline
theta (Mitchell et al., 2008). However, theta-rhythmic oscillations can
be recorded across wide regions of the neocortex (von Stein and
Sarnthein, 2000; Kirk and Mackay, 2003; Mitchell et al., 2008;
Kawasaki et al., 2014). Indeed, Miller (1991) suggested that theta acts
to establish a rhythmic interplay (resonance) between the
hippocampus and various neocortical regions. Recurrent loops
between the hippocampus and different neocortical areas will have
different path lengths, and thus different circuits, with different return
times will be preferentially selected by different frequencies of theta.
That is, a particular frequency of theta will select a particular
neocortical component of the circuit to be entrained into resonant
activity with the hippocampus.

It has also been argued that different frequencies of oscillation
bind or integrate neocortical areas across different spatial scales (von
stein and Sarnthein, 2000). High-frequency gamma-band oscillations
might bind neighbouring neural nodes, within the visual cortex for
example, via short interconnections. Lower frequency oscillations
within the theta-band might co-ordinate activity across greater spatial
scales, with longer range interconnections. It follows therefore that
within the theta-range, different frequencies might integrate different
neocortical networks.

In the following brief review, we discuss the degree to which
human scalp-recorded EEG occurring in the theta-range (4-8 Hz)
might be used to infer activation and integration across different
nodes of the circuitry of the kind discussed above. The first (and
simplest) case we will consider is that of theta occurring across the
neocortex. We will consider whether we might expect different
frequencies of theta to bind fronto-parietal vs. fronto-temporal
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networks, for example. As the subcortical (e.g., Papez) circuits
discussed above include potential neocortical components, we will
also discuss the possibility that scalp-recorded theta-range neocortical
oscillations might also provide a window into the state of these more
distributed circuits, even though we are unable to record electrical
activity directly from the hippocampal and/or diencephalic
components of these circuits.

It is worth noting here too that hippocampal theta, and indeed
hippocampal function in general, usually focusses on a well-
established involvement in mnemonic processes (O’Keefe and Nadel,
1978; Mitchell et al., 2008; Colgin, 2013; Buzsaki and Moser, 2013;
Lisman and Jensen, 2013; Korotkova et al., 2018; Karakas, 2020).
However, hippocampal theta likely also occurs in other non-mnemonic
processes (Bland and Oddie, 2001; Pan and McNaughton, 2004;
Korotkova et al., 2018; Karakas, 2020), and it has been suggested that
neocortical frontal midline theta might be a signature of cognitive
control (Cavanagh and Frank, 2014), and thus occurs during
mnemonic processes (Sauseng et al., 2005; Berger and Sauseng, 2022),
but is not limited to them. Here, however, we will largely limit
ourselves to the discussion of theta in mnemonic processes, and the
potential disruptions that may accompany memory loss in disorders
such as Alzheimer’s.

Fronto-midline theta, frontal—parietal and
fronto-temporal theta oscillations, and
theta-gamma coupling

As noted above, one role of oscillations in general is to integrate
neocortical areas across different spatial scales (von stein and
Sarnthein, 2000). It follows therefore that different frequencies within
the theta-range might differentially engage different neocortical
networks in different cognitive tasks. Working memory involves the
short-term selection, maintenance, and manipulation of memory
information (Baddeley, 1986, 2003), and increased theta power over

frontiersin.org


https://doi.org/10.3389/fnbeh.2025.1686252
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org

Haddon et al.

frontal regions has consistently been reported in human EEG (and
MEG) during working memory tasks (Mitchell et al., 2008; Klimesch,
1999; Jensen and Tesche, 2002; Hsieh and Ranganath, 2014). The
power of frontal-midline theta also increases with working memory
load (Klimesch, 1999; Meltzer et al., 2007, 2008; Scheeringa et al.,
2008; Hsieh et al., 2011; Roberts et al., 2013).

Of particular note here, is the repeated observation of frontal
midline theta coherent with additional theta-range EEG oscillations
over the temporal (Anderson et al., 2010; Kawasaki et al., 20105
Kawasaki et al, 2014) or parietal lobes (Kawasaki et al., 2010;
Kawasaki et al., 2014; Griesmayr et al., 2014; Berger et al., 2019) in,
respectively, verbal or visuospatial working memory. On the argument
we present here, coherent theta-range oscillations over the frontal and
temporal lobes are indicative of the selection of a frontal-temporal
network in verbal working memory tasks, while coherent theta-range
oscillations in frontal and parietal regions indicates the selection of a
frontal-parietal network for spatial working memory tasks. Further,
we suggest that the frequency at which theta occurs will be significantly
different in verbal versus spatial tasks.

In a range of studies in Pavlov and Kotchoubey (2022) for
example, it appears that frontal-midline theta in verbal tasks may
occur at higher frequency than in visuo-spatial tasks. Unfortunately,
our confidence in this observation is limited. Most importantly, most
published studies report a range of theta rather than precise
frequencies, requiring estimates to be made from published figures. It
is also likely that there will be a degree of individual variability in the
frequency (or range of frequencies) of theta-band activity as there is
for alpha [see for, e.g., Klimesch (1997)], and working memory studies
employ a variety of different designs even when studying ostensibly
the same cognitive task (Pavlov and Kotchoubey, 2022). Thus, cross-
study comparisons are not ideal. Indeed, more repeated measures
designs, in which the same subjects are tested in two or more memory
tasks (Kawasaki et al., 2014), in which the frequency of theta is
specifically measured, are needed.

In addition to the study of frontal midline theta per se, there is
also considerable work assessing the role of gamma oscillations nested
in theta (or cross-frequency coupling). It has been suggested, for
example, that separate items of information are held on different
sub-cycles of gamma allowing for information to be stored in a
temporally sequenced manner [see Lisman and Idiart (1995), Jensen
and Colgin (2007), Lisman and Jensen (2013), and Sheremet and Qin
(2025)]. On this argument, the number of gamma sub-cycles nested
onto a single theta-cycle determines the number of items that can
be stored in working memory. It follows therefore that alterations in
the frequency (and therefore wavelength) of theta will affect storage
capacity. Theta-gamma coupling has been demonstrated in the human
hippocampus (Canolty et al., 2006; Axmacher et al., 2010; Daume
et al., 2024) and has been repeatedly demonstrated across frontal-
parietal networks in human EEG during working memory tasks
(Sauseng et al., 2009; Berger et al., 2019). Further, and specific to the
current discussion, manipulations of theta frequency (and thus
wavelength) have been shown to acutely alter working memory
capacity in the hypothesised direction - that is, lowering the frequency
of theta increased the number of items that are stored in working
memory (Wolinski et al., 2018; Akturk et al., 2022).

Theta-gamma coupling has also been used to assess working
memory in the elderly (Abubaker et al., 2024), and in people with mild
cognitive impairment (MCI) or Alzheimer’s disease (AD; Goodman
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et al,, 2018). MCI is considered the prodromal phase of AD, and
prefrontal function in MCI has been used to predict progression to
AD (Gomar et al,, 2011). Goodman et al. (2018) found that AD
patients had the lowest level of theta-gamma coupling, followed by
MCI and then control participants. Theta-gamma coupling was also
found to be the most significant predictor of working
memory performance.

Theta-gamma coupling and working memory might therefore
serve as an indicator (or biomarker) for those likely to progress from
MCI to AD. Theta-gamma coupling might also serve as an assay for
the efficacy of therapeutic interventions, or may be a target for them.
For instance, Diedrich et al. (2025) applied tACS to dorsolateral
prefrontal cortex and showed some improvement in a working
memory task in elderly participants. Interventions of this sort may

well prove to be of benefit in AD or MCI populations.

Hippocampal theta and
cortico-hippocampal interplay

Although neocortical networks may be sufficient to maintain
information in working memory in some tasks (Nyberg and Eriksson,
2016), it is likely that most longer-term mnemonic tasks — targeting
episodic, recognition, or working memory - require hippocampal
involvement (Kirk and Mackay, 2003; Mitchell et al., 2008; Cashdollar
etal,, 2009; Leszczynski, 2011; Yonelinas et al., 2023). As noted above,
theta activity occurring across cortical-hippocampal loops is proposed
to co-ordinate this involvement (Miller, 1991). Further, Miller
proposed that different frequencies of hippocampal theta would select
different cortico-hippocampal loops.

The ascending system that modulates hippocampal theta
frequency has been reviewed extensively previously (Kirk, 1998;
Vertes and Kocsis, 1997; Kirk and Mackay, 2003; Pan and
McNaughton, 2004). To briefly summarise, hippocampal theta is
possibly driven by rhythmically-bursting pacemaker cells in the
medial septum/diagonal band of Broca or, as some modelling studies
suggest, theta may be an intrinsic property of a septo-hippocampal
reciprocal loop (Denham and Borisyuk, 2000; Wang, 2002). Either
way, ascending pacemaker activity from theta bursting cells in the
supramammillary nucleus (SuM) of the hypothalamus provides a
theta-rhythmic pacemaker signal to the medial septum, that in turn
determines the frequency of hippocampal theta. In turn, reciprocal
descending input to SuM from the septo-hippocampal system
modulates SuM discharge frequency, thereby maintaining fine control
of theta frequency. It should be noted, however, that SuM may only
determine theta frequency during some behaviours. During other
theta in the
be independent of SuM input (Kirk, 1998; Denham and Borisyuk,
2000; Kirk and Mackay, 2003; Pan and McNaughton, 2004).

In any case, different frequencies of hippocampal theta produced

behaviours septo-hippocamapal system may

by different behaviours will produce different cortico-hippocampal
loops. Again, this should lead to different topographies of neocortical
theta, occurring at different frequencies, for different behaviours. It is
generally assumed that coherent theta in neocortex and hippocampus
described here is due to interaction via the entorhinal cortex (EC),
and certainly this is the bi-directional pathway proposed by Miller
(1991) for theta-modulated cortico-hippocampal resonant loops. In
freely moving animals however, Chrobak and Buzsaki (1994) found
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theta modulated activity in cells of the input layers of the EC (i.e., in
the EC relay from neocortex to hippocampus, layers I-III, see
Figure 1), but not in the cells of the output layers (i.e., in the EC relay
from neocortex to hippocampus, layers I-V-VT; see Figure 1). Thus,
neocortically recorded theta (including frontal midline theta), if
coherent with ongoing hippocampal theta, may indicate that a
neocortical to hippocampal input pathway is currently active. An
MEG study showing that theta from the pre-frontal cortex drove that
of the hippocampus during performance of a mismatch task (Garrido
et al,, 2015) is consistent with this view. As cells in the hippocampal
output layers of the EC (Chrobak and Buzsaki, 1994; see Figure 1) are
not theta modulated in freely moving animals, the hippocampal to
cortex part of a recurrent cortico-hippocampal loop proposed by
Miller (1991) has been suggested to be not via the EC (Kirk and
Mackay, 2003; Mitchell et al., 2008). Kirk and Mackay (2003) also note
that the theta-modulated re-entrant loop might be completed via
descending projections to the medial mammillary bodies, and back
to neocortex via the anterior thalamic complex (see section 4 below).
Observations of hippocampal theta leading that of frontal theta
(Siapas et al., 2005) are perhaps consistent with activation of this
circuit. Of note however, recordings from intracranial electrodes
during a working memory task in humans suggest that theta/alpha
band activity co-ordinates unidirectional communication from
hippocampus to EC (Li et al., 2024). It is perhaps likely that theta
modulated flow through the hippocampus and associated circuitry is
very much task dependent.

The SuM, as well as projecting to and providing theta-rhythmic
input to the medial septum, also directly projects to the dentate gyrus
and CA2 of the hippocampus. Another ascending projection from the
nucleus reuniens of the thalamus (Re) provides complimentary input
to the CA1 and subiculum (Vertes, 2015). The SuM and Re may,
respectively, modulate activity in the neocortical to hippocampal
input pathway, and the hippocampal to subcortical output pathway
discussed above. The Re is also reciprocally connected to the prefrontal
cortex and may relay information between hippocampus and frontal
cortex (Vertes et al., 2007; Ito et al., 2018). Volume reductions in Re
have recently been shown to be a potential biomarker for progression
to Alzheimer’s (Censi et al., 2024). Dysfunction of the Re-hippocampal
pathway might specifically affect theta-modulated output from the
hippocampus. Thus, there exists the possibility of human scalp

10.3389/fnbeh.2025.1686252

recorded theta being used to assess relative integrity of hippocampal
output (relative to input) pathways, and thus Re function.

Theta oscillations and re-entrant loops in
Papez circuit

Finally, and consistent with the theme developed so far, it was
suggested over fifty years ago (Parmeggiani et al., 1971, 1974) that
a function of theta might be to control the selection of re-entrant
loops around circuits originally proposed by Papez (1937); see
Figure 2. This general idea has been revisited and refined many
times since (e.g., Kirk, 1998; Gray and McNaughton, 2000; Kirk and
Mackay, 2003; Dalrymple-Alford et al., 2015; Perry and Mitchell,
2019; Aggleton et al., 2022; McNaughton and Vann, 2022).
Consistent with this idea, however is that theta-rhythmic activity
has been found in mammillary nuclei (Kocsis and Vertes, 1994;
Bland et al., 1995; Kirk et al., 1996), and in the anteroventral (AV)
anteromedial (AM) and anterodorsal (AD) nuclei (Kirk et al., 1997;
Vertes et al., 2001) in addition to that of the septohippocampal
system and SuM discussed above. As discussed previously (Kirk,
1998; Kirk and Mackay, 2003), theta activity in mammillary bodies
is likely driven by descending input from the septo-hippocampal
system, and mammillary bodies subsequently drive the anterior
thalamic nuclei (AV, AM, and AD). The anterior thalamic nuclei
(AT) project back to the hippocampal region (and to neocortex),
thus completing Papez circuit (or a more recent interpretation of
it). Theta-rhythmic activity has also been reported in mediodorsal
thalamus (MD; Kirk et al., 1997), but it is not in receipt of
mamillary body input, and is thus not part of the same parallel
re-entrant circuitry as AV, AD, and AM. However, the MD is in
receipt of afferent input from Sum, and is therefore in receipt of
theta frequency input (Kirk and Mackay, 2003). Thus MD, as
outlined below, might still be part of a parallel mnemonic
re-entrant system.

The anterior thalamic nuclei also reciprocally connect to
neocortex (Shibata, 1993a, 1993b; Mathiasen et al., 2020), forming
additional re-entrant loops (Figure 2). If different frequencies of theta
select for different re-entrant loops involving different anterior
thalamic nuclei, then this will likely be reflected in different

PRH CTX/HIPP

NEOCORTEX

MB/SuM

FIGURE 2

OO
M., m

Schematic showing the re-entrant loops of the Papez circuit. PRH CTX, perirhinal cortex; HIPP, hippocampus; MB, mammillary bodies; SuM,
supramammillary nucleus; MD, mediodorsal thalamic nucleus; AD, anterodorsal thalamic nucleus; AV anteroventral thalamic nucleus; AM,
anteromedial thalamic nucleus. Figure modified from Parmeggiani et al. (1974).
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frequencies of theta recorded from neocortex. Again, there is therefore
the possibility we might assess deep activation via scalp recorded EEG
in humans. Activation in different deep Papez loops involving the
anterior thalamic nuclei may reflect different stages or depth of
processing (McNaughton and Vann, 2022). The MD is also reciprocally
connected to the neocortex (Mitchell, 2015) and thus the same
argument applies albeit for a somewhat different circuit. Of particular
relevance here is the argument that two separate re-entrant loops may
be involved in two distinct processes of recognition memory. It has
been argued that a process of recollection might involve a circuit that
includes hippocampus and AT, while familiarity judgements involve
a circuit that includes perirhinal cortex and MD (Aggleton and
Brown, 1999). Again, if theta frequency is involved in the selection of
these two processes, this should be reflected in different frequencies
of scalp recorded theta generated in the theta-modulated targets of
AT and MD.

Finally, and again with respect to clinical applications, perirhinal
cortex might be amongst the first brain areas affected in the early
stages of Alzheimer’s (Hirni et al., 2016), and there is some evidence
that familiarity-based memory deficits might be a specific behavioural
marker for Alzheimer’s (e.g., Wolk et al., 2013). This further motivates
investigation of scalp-recorded theta-range oscillations in the EEG
occurring during familiarity tasks (as opposed to recollection tasks)
as a potential biomarker for the early and/or prodromal stages of
Alzheimers.
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