
Frontiers in Behavioral Neuroscience 01 frontiersin.org

Different frequencies of human 
scalp-recorded theta activity may 
index integration of activity in 
distinct recurrent 
cortico-subcortical mnemonic 
networks
Inanna K. Haddon , Rohan O. C. King , Dylan A. Taylor , Jodie 
N. Bell , Jasmine E. B. Murray , Meghan van der Meer , 
Christopher D. Erb  and Ian J. Kirk *

School of Psychology and Centre for Brain Research, University of Auckland, Auckland, New Zealand

It is now well-accepted that differing frequencies of neuro-oscillations support 
the selection, quantising, and pacing of information around different circuits in 
the brain. Another related function of neuro-oscillations, for which the frequency 
of oscillation is again critical, is to allow for integration of neural activity across 
differing spatial scales. In this short review, we discuss the degree to which human 
scalp-recorded EEG occurring in the theta-range (4-8 Hz) can be used to infer 
activation of mnemonic circuits involving the hippocamps and diencephalon 
(Papez loops), as well as in the neocortical areas the activity is directly recorded 
from. We also discuss the potential role of theta-range frequency modulation in 
the selection of specific mnemonic circuits. In light of the foregoing, we suggest 
that the frequency at which theta is occurring within and between cognitive tasks 
should be reported more thoroughly than it generally is. Finally, we suggest that 
assessing disruptions in frequency modulation of theta-range oscillations is a 
potentially valuable biomarker for disorders such as Alzheimer’s disease.
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Introduction

The intracranially recorded hippocampal EEG (usually obtained from animals) is 
characterised by a large-amplitude, pseudo-sinusoidal waveform known as theta rhythm 
(O’Keefe and Nadel, 1978; Miller, 1991; Gray and McNaughton, 2000; Mitchell et al., 2008). 
Due to the rhythmic nature of theta, and that its frequency is finely modulated [see Kirk 
(1998)], it is usually assigned a role in timing or quantising the passage of information around 
various hippocampal-related circuits. For example, it has been suggested that one function of 
theta is to organise information flow through the hippocampal tri-synaptic loop and associated 
structures. That is, from entorhinal cortex → dentate gyrus → CA3 → CA1 → subiculum; and/
or around a subiculum → lateral septum → medial septum → hippocampus (O’Keefe and 
Nadel, 1978; Gray and McNaughton, 2000; Stepan et al., 2015; Farrell and Soltesz, 2025; see 
Figure 1). An equivalent role of theta has also been suggested for more spatially distributed 
loops. Theta (and the precise frequency of theta) might allow selection from a variety of 
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potential recurrent loops (originally proposed by Papez, 1937) 
comprised of nuclei in the anterior thalamic complex, the mamillary 
body, and hippocampus (Parmeggiani et al., 1971, 1974; Gray and 
McNaughton, 2000).

Theta-range EEG activity is also readily recorded from the scalp 
electrodes in human participants. It is most prominent over the 
frontal-midline, and has hence become known as frontal-midline 
theta (Mitchell et al., 2008). However, theta-rhythmic oscillations can 
be  recorded across wide regions of the neocortex (von Stein and 
Sarnthein, 2000; Kirk and Mackay, 2003; Mitchell et  al., 2008; 
Kawasaki et al., 2014). Indeed, Miller (1991) suggested that theta acts 
to establish a rhythmic interplay (resonance) between the 
hippocampus and various neocortical regions. Recurrent loops 
between the hippocampus and different neocortical areas will have 
different path lengths, and thus different circuits, with different return 
times will be preferentially selected by different frequencies of theta. 
That is, a particular frequency of theta will select a particular 
neocortical component of the circuit to be entrained into resonant 
activity with the hippocampus.

It has also been argued that different frequencies of oscillation 
bind or integrate neocortical areas across different spatial scales (von 
stein and Sarnthein, 2000). High-frequency gamma-band oscillations 
might bind neighbouring neural nodes, within the visual cortex for 
example, via short interconnections. Lower frequency oscillations 
within the theta-band might co-ordinate activity across greater spatial 
scales, with longer range interconnections. It follows therefore that 
within the theta-range, different frequencies might integrate different 
neocortical networks.

In the following brief review, we  discuss the degree to which 
human scalp-recorded EEG occurring in the theta-range (4-8 Hz) 
might be  used to infer activation and integration across different 
nodes of the circuitry of the kind discussed above. The first (and 
simplest) case we will consider is that of theta occurring across the 
neocortex. We  will consider whether we  might expect different 
frequencies of theta to bind fronto-parietal vs. fronto-temporal 

networks, for example. As the subcortical (e.g., Papez) circuits 
discussed above include potential neocortical components, we will 
also discuss the possibility that scalp-recorded theta-range neocortical 
oscillations might also provide a window into the state of these more 
distributed circuits, even though we are unable to record electrical 
activity directly from the hippocampal and/or diencephalic 
components of these circuits.

It is worth noting here too that hippocampal theta, and indeed 
hippocampal function in general, usually focusses on a well-
established involvement in mnemonic processes (O’Keefe and Nadel, 
1978; Mitchell et al., 2008; Colgin, 2013; Buzsàki and Moser, 2013; 
Lisman and Jensen, 2013; Korotkova et  al., 2018; Karakas, 2020). 
However, hippocampal theta likely also occurs in other non-mnemonic 
processes (Bland and Oddie, 2001; Pan and McNaughton, 2004; 
Korotkova et al., 2018; Karakas, 2020), and it has been suggested that 
neocortical frontal midline theta might be a signature of cognitive 
control (Cavanagh and Frank, 2014), and thus occurs during 
mnemonic processes (Sauseng et al., 2005; Berger and Sauseng, 2022), 
but is not limited to them. Here, however, we  will largely limit 
ourselves to the discussion of theta in mnemonic processes, and the 
potential disruptions that may accompany memory loss in disorders 
such as Alzheimer’s.

Fronto-midline theta, frontal–parietal and 
fronto-temporal theta oscillations, and 
theta-gamma coupling

As noted above, one role of oscillations in general is to integrate 
neocortical areas across different spatial scales (von stein and 
Sarnthein, 2000). It follows therefore that different frequencies within 
the theta-range might differentially engage different neocortical 
networks in different cognitive tasks. Working memory involves the 
short-term selection, maintenance, and manipulation of memory 
information (Baddeley, 1986, 2003), and increased theta power over 

FIGURE 1

Hippocampal tri-synaptic loop. EC, entorhinal cortex; DG, dentate gyrus; CA1 and CA3, cornu ammonis 1 and 3; Re, nucleus reuniens; SuM, 
supramammillary nucleus. Figure modified from López-Madrona et al. (2017).
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frontal regions has consistently been reported in human EEG (and 
MEG) during working memory tasks (Mitchell et al., 2008; Klimesch, 
1999; Jensen and Tesche, 2002; Hsieh and Ranganath, 2014). The 
power of frontal-midline theta also increases with working memory 
load (Klimesch, 1999; Meltzer et al., 2007, 2008; Scheeringa et al., 
2008; Hsieh et al., 2011; Roberts et al., 2013).

Of particular note here, is the repeated observation of frontal 
midline theta coherent with additional theta-range EEG oscillations 
over the temporal (Anderson et  al., 2010; Kawasaki et  al., 2010; 
Kawasaki et  al., 2014) or parietal lobes (Kawasaki et  al., 2010; 
Kawasaki et al., 2014; Griesmayr et al., 2014; Berger et al., 2019) in, 
respectively, verbal or visuospatial working memory. On the argument 
we present here, coherent theta-range oscillations over the frontal and 
temporal lobes are indicative of the selection of a frontal-temporal 
network in verbal working memory tasks, while coherent theta-range 
oscillations in frontal and parietal regions indicates the selection of a 
frontal–parietal network for spatial working memory tasks. Further, 
we suggest that the frequency at which theta occurs will be significantly 
different in verbal versus spatial tasks.

In a range of studies in Pavlov and Kotchoubey (2022) for 
example, it appears that frontal-midline theta in verbal tasks may 
occur at higher frequency than in visuo-spatial tasks. Unfortunately, 
our confidence in this observation is limited. Most importantly, most 
published studies report a range of theta rather than precise 
frequencies, requiring estimates to be made from published figures. It 
is also likely that there will be a degree of individual variability in the 
frequency (or range of frequencies) of theta-band activity as there is 
for alpha [see for, e.g., Klimesch (1997)], and working memory studies 
employ a variety of different designs even when studying ostensibly 
the same cognitive task (Pavlov and Kotchoubey, 2022). Thus, cross-
study comparisons are not ideal. Indeed, more repeated measures 
designs, in which the same subjects are tested in two or more memory 
tasks (Kawasaki et  al., 2014), in which the frequency of theta is 
specifically measured, are needed.

In addition to the study of frontal midline theta per se, there is 
also considerable work assessing the role of gamma oscillations nested 
in theta (or cross-frequency coupling). It has been suggested, for 
example, that separate items of information are held on different 
sub-cycles of gamma allowing for information to be  stored in a 
temporally sequenced manner [see Lisman and Idiart (1995), Jensen 
and Colgin (2007), Lisman and Jensen (2013), and Sheremet and Qin 
(2025)]. On this argument, the number of gamma sub-cycles nested 
onto a single theta-cycle determines the number of items that can 
be stored in working memory. It follows therefore that alterations in 
the frequency (and therefore wavelength) of theta will affect storage 
capacity. Theta-gamma coupling has been demonstrated in the human 
hippocampus (Canolty et al., 2006; Axmacher et al., 2010; Daume 
et al., 2024) and has been repeatedly demonstrated across frontal–
parietal networks in human EEG during working memory tasks 
(Sauseng et al., 2009; Berger et al., 2019). Further, and specific to the 
current discussion, manipulations of theta frequency (and thus 
wavelength) have been shown to acutely alter working memory 
capacity in the hypothesised direction – that is, lowering the frequency 
of theta increased the number of items that are stored in working 
memory (Wolinski et al., 2018; Akturk et al., 2022).

Theta-gamma coupling has also been used to assess working 
memory in the elderly (Abubaker et al., 2024), and in people with mild 
cognitive impairment (MCI) or Alzheimer’s disease (AD; Goodman 

et  al., 2018). MCI is considered the prodromal phase of AD, and 
prefrontal function in MCI has been used to predict progression to 
AD (Gomar et  al., 2011). Goodman et  al. (2018) found that AD 
patients had the lowest level of theta-gamma coupling, followed by 
MCI and then control participants. Theta-gamma coupling was also 
found to be  the most significant predictor of working 
memory performance.

Theta-gamma coupling and working memory might therefore 
serve as an indicator (or biomarker) for those likely to progress from 
MCI to AD. Theta-gamma coupling might also serve as an assay for 
the efficacy of therapeutic interventions, or may be a target for them. 
For instance, Diedrich et  al. (2025) applied tACS to dorsolateral 
prefrontal cortex and showed some improvement in a working 
memory task in elderly participants. Interventions of this sort may 
well prove to be of benefit in AD or MCI populations.

Hippocampal theta and 
cortico-hippocampal interplay

Although neocortical networks may be  sufficient to maintain 
information in working memory in some tasks (Nyberg and Eriksson, 
2016), it is likely that most longer-term mnemonic tasks – targeting 
episodic, recognition, or working memory – require hippocampal 
involvement (Kirk and Mackay, 2003; Mitchell et al., 2008; Cashdollar 
et al., 2009; Leszczynski, 2011; Yonelinas et al., 2023). As noted above, 
theta activity occurring across cortical-hippocampal loops is proposed 
to co-ordinate this involvement (Miller, 1991). Further, Miller 
proposed that different frequencies of hippocampal theta would select 
different cortico-hippocampal loops.

The ascending system that modulates hippocampal theta 
frequency has been reviewed extensively previously (Kirk, 1998; 
Vertes and Kocsis, 1997; Kirk and Mackay, 2003; Pan and 
McNaughton, 2004). To briefly summarise, hippocampal theta is 
possibly driven by rhythmically-bursting pacemaker cells in the 
medial septum/diagonal band of Broca or, as some modelling studies 
suggest, theta may be an intrinsic property of a septo-hippocampal 
reciprocal loop (Denham and Borisyuk, 2000; Wang, 2002). Either 
way, ascending pacemaker activity from theta bursting cells in the 
supramammillary nucleus (SuM) of the hypothalamus provides a 
theta-rhythmic pacemaker signal to the medial septum, that in turn 
determines the frequency of hippocampal theta. In turn, reciprocal 
descending input to SuM from the septo-hippocampal system 
modulates SuM discharge frequency, thereby maintaining fine control 
of theta frequency. It should be noted, however, that SuM may only 
determine theta frequency during some behaviours. During other 
behaviours theta in the septo-hippocamapal system may 
be independent of SuM input (Kirk, 1998; Denham and Borisyuk, 
2000; Kirk and Mackay, 2003; Pan and McNaughton, 2004).

In any case, different frequencies of hippocampal theta produced 
by different behaviours will produce different cortico-hippocampal 
loops. Again, this should lead to different topographies of neocortical 
theta, occurring at different frequencies, for different behaviours. It is 
generally assumed that coherent theta in neocortex and hippocampus 
described here is due to interaction via the entorhinal cortex (EC), 
and certainly this is the bi-directional pathway proposed by Miller 
(1991) for theta-modulated cortico-hippocampal resonant loops. In 
freely moving animals however, Chrobak and Buzsàki (1994) found 
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theta modulated activity in cells of the input layers of the EC (i.e., in 
the EC relay from neocortex to hippocampus, layers I-III, see 
Figure 1), but not in the cells of the output layers (i.e., in the EC relay 
from neocortex to hippocampus, layers I-V-VI; see Figure 1). Thus, 
neocortically recorded theta (including frontal midline theta), if 
coherent with ongoing hippocampal theta, may indicate that a 
neocortical to hippocampal input pathway is currently active. An 
MEG study showing that theta from the pre-frontal cortex drove that 
of the hippocampus during performance of a mismatch task (Garrido 
et al., 2015) is consistent with this view. As cells in the hippocampal 
output layers of the EC (Chrobak and Buzsàki, 1994; see Figure 1) are 
not theta modulated in freely moving animals, the hippocampal to 
cortex part of a recurrent cortico-hippocampal loop proposed by 
Miller (1991) has been suggested to be  not via the EC (Kirk and 
Mackay, 2003; Mitchell et al., 2008). Kirk and Mackay (2003) also note 
that the theta-modulated re-entrant loop might be completed via 
descending projections to the medial mammillary bodies, and back 
to neocortex via the anterior thalamic complex (see section 4 below). 
Observations of hippocampal theta leading that of frontal theta 
(Siapas et  al., 2005) are perhaps consistent with activation of this 
circuit. Of note however, recordings from intracranial electrodes 
during a working memory task in humans suggest that theta/alpha 
band activity co-ordinates unidirectional communication from 
hippocampus to EC (Li et al., 2024). It is perhaps likely that theta 
modulated flow through the hippocampus and associated circuitry is 
very much task dependent.

The SuM, as well as projecting to and providing theta-rhythmic 
input to the medial septum, also directly projects to the dentate gyrus 
and CA2 of the hippocampus. Another ascending projection from the 
nucleus reuniens of the thalamus (Re) provides complimentary input 
to the CA1 and subiculum (Vertes, 2015). The SuM and Re may, 
respectively, modulate activity in the neocortical to hippocampal 
input pathway, and the hippocampal to subcortical output pathway 
discussed above. The Re is also reciprocally connected to the prefrontal 
cortex and may relay information between hippocampus and frontal 
cortex (Vertes et al., 2007; Ito et al., 2018). Volume reductions in Re 
have recently been shown to be a potential biomarker for progression 
to Alzheimer’s (Censi et al., 2024). Dysfunction of the Re-hippocampal 
pathway might specifically affect theta-modulated output from the 
hippocampus. Thus, there exists the possibility of human scalp 

recorded theta being used to assess relative integrity of hippocampal 
output (relative to input) pathways, and thus Re function.

Theta oscillations and re-entrant loops in 
Papez circuit

Finally, and consistent with the theme developed so far, it was 
suggested over fifty years ago (Parmeggiani et al., 1971, 1974) that 
a function of theta might be to control the selection of re-entrant 
loops around circuits originally proposed by Papez (1937); see 
Figure 2. This general idea has been revisited and refined many 
times since (e.g., Kirk, 1998; Gray and McNaughton, 2000; Kirk and 
Mackay, 2003; Dalrymple-Alford et al., 2015; Perry and Mitchell, 
2019; Aggleton et  al., 2022; McNaughton and Vann, 2022). 
Consistent with this idea, however is that theta-rhythmic activity 
has been found in mammillary nuclei (Kocsis and Vertes, 1994; 
Bland et al., 1995; Kirk et al., 1996), and in the anteroventral (AV) 
anteromedial (AM) and anterodorsal (AD) nuclei (Kirk et al., 1997; 
Vertes et al., 2001) in addition to that of the septohippocampal 
system and SuM discussed above. As discussed previously (Kirk, 
1998; Kirk and Mackay, 2003), theta activity in mammillary bodies 
is likely driven by descending input from the septo-hippocampal 
system, and mammillary bodies subsequently drive the anterior 
thalamic nuclei (AV, AM, and AD). The anterior thalamic nuclei 
(AT) project back to the hippocampal region (and to neocortex), 
thus completing Papez circuit (or a more recent interpretation of 
it). Theta-rhythmic activity has also been reported in mediodorsal 
thalamus (MD; Kirk et  al., 1997), but it is not in receipt of 
mamillary body input, and is thus not part of the same parallel 
re-entrant circuitry as AV, AD, and AM. However, the MD is in 
receipt of afferent input from Sum, and is therefore in receipt of 
theta frequency input (Kirk and Mackay, 2003). Thus MD, as 
outlined below, might still be  part of a parallel mnemonic 
re-entrant system.

The anterior thalamic nuclei also reciprocally connect to 
neocortex (Shibata, 1993a, 1993b; Mathiasen et al., 2020), forming 
additional re-entrant loops (Figure 2). If different frequencies of theta 
select for different re-entrant loops involving different anterior 
thalamic nuclei, then this will likely be  reflected in different 

FIGURE 2

Schematic showing the re-entrant loops of the Papez circuit. PRH CTX, perirhinal cortex; HIPP, hippocampus; MB, mammillary bodies; SuM, 
supramammillary nucleus; MD, mediodorsal thalamic nucleus; AD, anterodorsal thalamic nucleus; AV anteroventral thalamic nucleus; AM, 
anteromedial thalamic nucleus. Figure modified from Parmeggiani et al. (1974).
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frequencies of theta recorded from neocortex. Again, there is therefore 
the possibility we might assess deep activation via scalp recorded EEG 
in humans. Activation in different deep Papez loops involving the 
anterior thalamic nuclei may reflect different stages or depth of 
processing (McNaughton and Vann, 2022). The MD is also reciprocally 
connected to the neocortex (Mitchell, 2015) and thus the same 
argument applies albeit for a somewhat different circuit. Of particular 
relevance here is the argument that two separate re-entrant loops may 
be involved in two distinct processes of recognition memory. It has 
been argued that a process of recollection might involve a circuit that 
includes hippocampus and AT, while familiarity judgements involve 
a circuit that includes perirhinal cortex and MD (Aggleton and 
Brown, 1999). Again, if theta frequency is involved in the selection of 
these two processes, this should be reflected in different frequencies 
of scalp recorded theta generated in the theta-modulated targets of 
AT and MD.

Finally, and again with respect to clinical applications, perirhinal 
cortex might be amongst the first brain areas affected in the early 
stages of Alzheimer’s (Hirni et al., 2016), and there is some evidence 
that familiarity-based memory deficits might be a specific behavioural 
marker for Alzheimer’s (e.g., Wolk et al., 2013). This further motivates 
investigation of scalp-recorded theta-range oscillations in the EEG 
occurring during familiarity tasks (as opposed to recollection tasks) 
as a potential biomarker for the early and/or prodromal stages of 
Alzheimer’s.
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