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Motor learning is supported by both explicit and implicit processes. A central

question in the field of motor control is how these two processes interact

and, critically, how each process can be assessed in an unbiased manner. In

this perspective paper, we propose that the autonomic nervous system (ANS)

offers an informative window into explicit cognitive processes during motor

learning. We first briefly review studies outside the motor learning domain,

where ANS activity has been linked to internal cognitive states such as surprise

and uncertainty. We then discuss how these ANS-related states can be leveraged

to assess the manifestation and influence of explicit processes during motor

learning, as well as to explore cognitive computations that may involve central

ANS activity, including contextual inference.
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Introduction

Motor learning is supported by both explicit and implicit forms of learning.
While this statement seems self-evident when considering complex motor skills, such
as playing a piano sonata, where explicit knowledge of musical notes, melody, and
practice strategies (e.g., chunking) is important, it becomes less clear in the context
of simpler motor tasks, like reaching to grasp a bottle of wine or hitting a ball with
a racket. Although these actions remain complex from a biomechanical perspective,
requiring coordination across multiple muscles and joints to move an end-effector
from an initial to a target position in space, it is difficult to explicitly describe or
implement control over each muscle, especially when accounting for complex multi-
joint dynamics solving equations of motion (Hirashima et al., 2008; Kurtzer et al.,
2008, 2009; Tanaka and Sejnowski, 2013). Moreover, adaptations to ongoing internal
or external changes (e.g., muscle fatigue, or changes in the weight or shape of a tool)
are handled almost entirely implicitly. Indeed, studies in amnesic patients have shown
that learning of such tasks (e.g., pursuit rotor task, mirror drawing, reach adaptation) is
preserved despite damage to the declarative memory system (Brooks and Baddeley, 1976;
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Shadmehr et al., 1998; Squire, 2009), reinforcing the view that
motor learning is fundamentally an implicit process. As a
result, much of the field, particularly in computational motor
neuroscience, has focused on implicit learning processes, using
relatively simple, multi-joint tasks such as reaching as model
behaviors (Shadmehr et al., 2010; Wolpert et al., 2011).

However, recent studies in the same field have increasingly
emphasized the role of explicit cognitive processes in motor
learning (Krakauer et al., 2019; Tsay et al., 2024). This growing
body of research highlights that explicit learning mechanisms
significantly contribute even to relatively simple motor tasks, such
as reaching movements (Bond and Taylor, 2015; Krakauer et al.,
2019; McDougle et al., 2016; Tsay et al., 2024). One form of
explicit strategy appears at the level of action selection or decision-
making, for instance, aiming deliberately away from a target to
compensate for predictable external disturbances like visuomotor
rotation (Taylor et al., 2014; Taylor and Ivry, 2012). A hallmark
of such explicit adjustments is that they rapidly disappear once
participants are instructed to stop using the strategy or detect
that the perturbation is no longer present (Benson et al., 2011;
Morehead et al., 2015). This stands in stark contrast to implicit
learning, in which behavioral changes, such as shifts in reach
direction, can persist even when participants are fully aware
that the perturbation has been removed (Morehead et al., 2015;
Shadmehr et al., 2010). Here, implicit learning is more like a
gradual, experience-driven modification of low-level sensorimotor
mappings (or internal forward models), rather than a deliberate
adjustment of the movement goal itself. Thus, our tentative
definition of explicit motor learning processes in the current
paper is any adaptive behavioral change that does not fall into
sensorimotor recalibration (change in internal model).

Given this, key questions now concern how to objectively
quantify the contributions of each learning process to observed
behavior, how explicit learning is initiated, and how explicit and
implicit processes interact. Currently, the assessment of explicit
learning component relies in large part on verbal report by
participants (Bond and Taylor, 2015; McDougle et al., 2016;
Miyamoto et al., 2020). Therefore, the most important issue is
how to quantify explicit contributions without interfering with
the learning process itself, as frequent reports during learning can
bias participants’ strategies (Maresch et al., 2021a,b). Relatedly,
it is also not clear a priori that how much of explicit cognitive
processes contributing to motor behavioral change is ready for
verbalization. It is likely that the strategic re-aiming is one of many
forms for explicit cognitive contribution in motor adaptation which
work on top of the implicit sensorimotor recalibration. Some of
them could be difficult to verbalize and other may express even
without conscious awareness. Under such circumstances, there is
the growing need for non-verbal methods to assess the cognitive
contributions to motor learning.

In this perspective, we propose that the autonomic nervous
system (ANS) may offer a promising window into explicit cognitive
processes during motor learning. This is not to suggest that
ANS activity serves as a direct readout of explicit learning
components (e.g., aiming direction), but rather that it may reflect
internal states that influence the deployment of such explicit
strategies. A growing body of research in cognitive psychology and
psychophysiology has used peripheral ANS indices, such as pupil
diameter, skin conductance, and heart rate, to monitor participants

while they perform various cognitive tasks. These studies have
yielded important insights into how both peripheral ANS signals
and central ANS-related brain networks contribute to cognitive
processes, including error detection, performance monitoring,
action selection, and decision-making (Critchley, 2005; De Berker
et al., 2016; Hajcak et al., 2003; Joshi and Gold, 2020; Nassar et al.,
2012; Ullsperger et al., 2014; van der Wel and van Steenbergen,
2018; Zénon, 2019).

In the following section, we first briefly review studies outside
the domain of motor learning, in which ANS activity has been
linked to various internal states relevant to cognitive tasks. We also
highlight ANS responses to conscious/unconscious errors. Next,
we present findings from motor learning research that emphasize
cognitive contributions even in seemingly simple actions like
reaching movements and suggest similarity between motor and
cognitive learning paradigms. Finally, we discuss how ANS-related
internal states can be leveraged to assess the expression and
influence of explicit processes during motor learning, as well as
to explore common cognitive computations across cognitive and
motor tasks that may engage central ANS mechanisms.

Autonomic nervous system activity
reflects internal cognitive states

Beyond its well-known association with emotional states
and threat responses (Canon, 1915; Roelofs and Dayan, 2022),
ANS indices, such as pupil diameter and heart rate, have been
widely used in cognitive psychology and neuroscience to probe
internal state changes during non-motor (or minimally motor)
cognitive tasks. For example, tasks involving mental arithmetic
or working memory elicit sympathetic upregulation, reflected in
increased pupil diameter (Ahern and Beatty, 1979; Beatty, 1982;
Hess and Polt, 1964; Kahneman and Beatty, 1966), cardiovascular
responses such as elevated heart rate and blood pressure, as well
as heightened muscle sympathetic nerve activity (Anderson et al.,
1987; Callister et al., 1992). These ANS responses tend to scale with
the (presumably subjective) difficulty of the task, suggesting that
they covary with cognitive effort (van der Wel and van Steenbergen,
2018).

Autonomic indices also respond to unexpected or unfamiliar
events, reflecting their involvement in novelty detection and
attentional or vigilance processes, often described as orienting
responses (Sara and Bouret, 2012; Sokolov, 1990). For example,
in oddball paradigms, where participants respond to or passively
observe sequences of frequent and infrequent stimuli, pupil
diameter and skin conductance responses (SCR) increase more
strongly in response to infrequent (i.e., rare) stimuli (Bach
et al., 2008; Friedman et al., 1973; Graham and Clifton, 1966;
Hirano et al., 1994; Qiyuan et al., 1985), while heart rate shows
deceleration. These effects often habituate with repeated stimulus
presentation, highlighting the role of the ANS as an indicator of
novelty detection. Particularly, the locus coeruleus (LC), one of
subcortical autonomic centers, shows typical responses to novel
stimuli/situations and also habituation in animals (Hervé-Minvielle
and Sara, 1995; Vankov et al., 1995) and humans (Meissner et al.,
2024; Murphy et al., 2014).
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Related to stimulus unexpectedness, similar orienting-like ANS
responses are also observed after participants made an error
during various cognitive tasks, including increased pupil diameter,
heightened skin conductance, and transient heart rate deceleration
(Danev and de Winter, 1971; Di Gregorio et al., 2024; Hajcak et al.,
2003; Maier et al., 2019; Murphy et al., 2016; Nassar et al., 2012;
Preuschoff et al., 2011; Wessel et al., 2011). The post-error slowing
(PES), an increase in response time after an error (Botvinick et al.,
2001), and subsequent behavioral adjustments have been associated
with these ANS responses, such that the magnitude of pupil dilation
following an error correlates positively with PES and improved
accuracy on subsequent trials (Maier et al., 2019; Murphy et al.,
2016). Although this positive association between PES and post-
error performance is not always observed (Wessel, 2017), error-
related ANS responses likely form part of a broader performance
monitoring system that coordinates post-error adjustments and
behavioral control (Botvinick et al., 2001; Ullsperger et al., 2014;
Wessel, 2017). An interesting topic in this context is that whether
the ANS indices also respond to errors that does not reach
conscious awareness. Although evidence is mixed, several studies
have reported the modulation of ANS response by whether or
not the participants were aware of the error (O’Connell et al.,
2007; Wessel et al., 2011). Correspondingly, activity in the anterior
insular cortex (AIC), one of cortical regions influencing autonomic
regulation (Beissner et al., 2013), is known to be modulated by
the error awareness (Klein et al., 2007; Ullsperger et al., 2010).
Another recent report demonstrated that the pupil responds to
novel stimulus transition pattern that participants were not aware
of (Alamia et al., 2019). Although one needs to carefully interpret
these results, as the definition of error (or surprise) varies across the
studies, these results suggest the potential of ANS indices to probe
into implicit error processing.

Building on prior work linking ANS indices to cognitive effort
and orienting, more recent studies have interpreted ANS activity,
particularly pupil dilation, through the lens of information theory
(Zénon, 2019) and Bayesian inference frameworks that estimate
hidden task or environmental states (De Berker et al., 2016; Nassar
et al., 2012; O’Reilly et al., 2013; Preuschoff et al., 2011; Urai
et al., 2017). For example, in decision-making and choice tasks,
cue-evoked pupil dilation increases in response to both stimulus
uncertainty (De Berker et al., 2016; Satterthwaite et al., 2007;
Urai et al., 2017) and response uncertainty (Muller et al., 2019;
Richer and Beatty, 1987), indicating that ANS activity may also
reflect subjective uncertainty (Dayan and Yu, 2006; De Berker
et al., 2016). Furthermore, the link between ANS indices (pupil
diameter) and learning during value-based inference tasks has also
been suggested. For example, Nassar et al. (2012) recorded pupil
diameter while participants performed a predictive inference task
in which they estimated the mean of noisy stimuli sampled from
distributions that switched unpredictably. The authors developed a
normative Bayesian model of belief updating that included two key
latent variables: change-point probability and belief uncertainty.
They found that tonic (baseline) pupil diameter correlated with
belief uncertainty, while phasic outcome-evoked pupil dilation
tracked the change-point probability. Notably, the learning rate
(defined as the ratio of estimate update to prediction error) was
jointly predicted by these two latent variables, and thus, by pupil
measures. In short, large prediction errors indicate a likely change
in the generative environment (i.e., distribution switch), leading

to increases in both change-point probability (indexed by phasic
pupil dilation) and belief uncertainty (indexed by baseline pupil
diameter), which together drive an adaptive increase in learning
rate. Other studies have similarly suggested that ANS activity tracks
hierarchical Bayesian inference processes in volatile environments
(De Berker et al., 2016; Vincent et al., 2019).

Crucially, brain regions implicated in performance and
conflict monitoring, cognitive flexibility, and hierarchical Bayesian
inference, such as the anterior cingulate cortex (ACC) and
anterior insula cortex (AIC), also exert strong regulatory influence
on ANS activity (Beissner et al., 2013; Botvinick et al., 2001;
Critchley, 2005; Critchley et al., 2003; Soltani and Izquierdo, 2019;
Ullsperger et al., 2014). These cortical regions, including several
subcortical structures like the amygdala and LC, are called the
central autonomic network (CAN) (Beissner et al., 2013). These
regions have been shown to encode unsigned prediction errors
and uncertainty (or volatility) of task environment in human fMRI
studies (Behrens et al., 2007; Critchley et al., 2001; Loued-Khenissi
et al., 2020; Preuschoff et al., 2008; Singer et al., 2009). Thus, as
a result, the peripheral ANS indices, such as pupil diameter, skin
conductance and heart rate, can also reflect these variables. Of these
ANS indices, pupil diameter is attracting increasing attention as an
established peripheral indicator of central noradrenergic activity in
the LC (Joshi et al., 2016; Joshi and Gold, 2020; Rajkowski et al.,
1993). The LC–noradrenaline (NA) system has been extensively
studied in relation to prefrontal attention (Arnsten et al., 2012; Sara,
2009), cognitive flexibility (Aston-Jones et al., 1994; Bouret and
Sara, 2004; McBurney-Lin et al., 2022), novelty detection (Bouret
and Sara, 2005; Hervé-Minvielle and Sara, 1995; Vankov et al.,
1995), and memory formation and consolidation (Clewett et al.,
2020, 2025; Clewett et al., 2018; Sara et al., 1999; Sara and Devauges,
1988; Strange et al., 2003; Strange and Dolan, 2004; Takeuchi
et al., 2016). For instance, LC neurons increase their firing rates,
mirroring increases in reaction time, when animals (re-)adapt to
cue–reward contingency in reversal learning tasks (Aston-Jones
et al., 1997). Similarly, increases in baseline pupil diameter have
been shown to precede exploratory behavior in humans performing
analogous tasks (Gilzenrat et al., 2010; Jepma and Nieuwenhuis,
2011). These body of evidence, thus, suggest the involvement of
CAN in various cognitive functions.

Cognitive contribution during motor
learning tasks

In the context of motor skill learning, such as sequential finger
tapping, the relationship between explicit and implicit aspects of
learning (e.g., declarative knowledge of the sequence versus implicit
motor memory of finger transitions) has been extensively studied
and debated (Abrahamse et al., 2013; Robertson, 2007; Verwey
et al., 2010; Willingham et al., 1989). However, the role of explicit
cognitive processes has received comparatively less attention in
the domain of motor adaptation, such as goal-directed reaching
movements (Shadmehr et al., 2010; Shadmehr and Krakauer, 2008;
Wolpert, 2015; Wolpert et al., 2011). Although earlier work had
suggested a contribution of cognitive factors in motor adaptation
(Fernandez-Ruiz et al., 2011; Kagerer et al., 1997; Saijo and Gomi,
2010; Sakaguchi et al., 2001; Slachevsky et al., 2001, 2003; Taylor and
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Ivry, 2012; Taylor and Thoroughman, 2007, 2008), it is only recently
that the field has begun to explicitly isolate and characterize the role
of explicit cognitive processes in adaptation paradigms (Bond and
Taylor, 2015; McDougle et al., 2015; Taylor et al., 2014).

The core idea is that behavioral changes in response to
novel environments, such as force fields or visuomotor rotations,
cannot be fully explained by implicit adaptation (sensorimotor
recalibration) alone, but instead include a sizable contribution from
explicit processes, such as deliberately altering the aiming direction
to counteract perceived errors (Jakobson and Goodale, 1989;
Redding and Wallace, 2006). This perspective led researchers to
directly ask participants to report their intended aiming location on
each trial. The reported aim was then subtracted from the observed
reach direction to estimate the contribution of implicit adaptation
(Bond and Taylor, 2015; McDougle et al., 2015; Taylor et al., 2014).
These studies revealed a characteristic pattern: an initial, transient
rise and fall in deliberate aiming responses, followed by a gradual,
sustained increase in implicit adaptation across repeated trials with
perturbed feedback (Bond and Taylor, 2015; McDougle et al., 2015;
Taylor et al., 2014).

A very similar pattern of transient rise and fall has also been
observed in reaction time (RT) following the onset of a perturbation
(Benson et al., 2011; Fernandez-Ruiz et al., 2011; Haith et al., 2015;
Huberdeau et al., 2015). Importantly, such transient increases in
RT are positively correlated with the use of deliberate strategies
in motor adaptation tasks (Fernandez-Ruiz et al., 2011; McDougle
et al., 2015). Furthermore, when participants are forced to initiate
movements under strict time constraints, the explicit component
of adaptation is diminished (Fernandez-Ruiz et al., 2011; Haith
et al., 2015), supporting the link between RT increase and strategic
involvement. Also, as described in the previous section, such
increase in RT following an error reminds us of the PES (Botvinick
et al., 2001; Hajcak et al., 2003; Murphy et al., 2016; Ullsperger et al.,
2014), which possibly implies the involvement of similar cognitive
control processes triggered by sudden increase in movement error.

Computationally, the trial-by-trial trajectory of explicit strategy
use closely resembles the memory dynamics predicted by two-state
state-space models of learning, which posit the coexistence of fast
and slow learning systems with distinct learning and forgetting
rates (Smith et al., 2006). Accordingly, the fast and slow processes
have been mapped onto explicit strategy use and implicit learning,
respectively (McDougle et al., 2015). Intriguingly, experimental
manipulations that interfere cognitive processes, such as limiting
reaction time or introducing dual-task interference resulted in
selective impairment of the fast component (Haith et al., 2015;
Keisler and Shadmehr, 2010), strengthening the view that fast
cognitive learning system and slow implicit learning system coexist
in motor adaptation. These results are in line with the observation
that the patients with prefrontal damage show deficit in the
strategy use and correctly describe (or notice) perturbations during
visuomotor adaptation (Slachevsky et al., 2001, 2003), indicating
the critical contribution of performance monitoring and cognitive
control systems in motor adaptation tasks.

In terms of the interaction between the explicit and
implicit motor learning systems, evidence suggests something
like competitive cooperation. Although the two processes work
together to compensate the error produced by perturbation
(McDougle et al., 2015; Miyamoto et al., 2020; Taylor et al., 2014),
a number of studies have suggested the suppression of the implicit

learning by the explicit process (Albert et al., 2022). For instance,
a high reliance on explicit strategies may reduce the extent of
implicit adaptation, as error-driven learning is attenuated when
behavioral errors are actively corrected by cognitive means (Benson
et al., 2011; Fernandez-Ruiz et al., 2011). Conversely, several studies
have shown that implicit adaptation is enhanced when participants
are unaware of the error or environmental change, for instance,
when the perturbation is introduced gradually (Benson et al., 2011;
Kagerer et al., 1997; Neville and Cressman, 2018; Sakaguchi et al.,
2001). The exact mechanism behind such reciprocal interaction is
still unclear.

Although directly asking participants to report their aiming
direction on each trial initially appeared to be a simple yet effective
approach for quantifying explicit learning process, recent work
has raised concerns that such explicit commitment to reports may
themselves influence the learning process. Indeed, several studies
have demonstrated that the act of reporting can significantly bias
the contribution of the explicit process (Maresch et al., 2021a;
Maresch et al., 2021b), and that the standard subtraction method
used to isolate implicit learning may not accurately capture the
learning process (‘t Hart et al., 2024). In addition, it is not clear
a priori that how much of cognitive processes contributing to
motor behavioral change is accessible for conscious report. It is
likely that the strategic re-aiming is one of many forms for explicit
cognitive contribution in motor adaptation that work on top of
the implicit sensorimotor recalibration. Some of them could be
difficult to verbalize and other may express even without conscious
awareness. Under such circumstances, there is the growing need for
less biased, more ecologically valid methods to assess the cognitive
contributions to motor learning (de Brouwer et al., 2018).

How can ANS be useful for motor
learning research and what does it
capture?

As discussed, a common trigger for both the ANS-indexed
cognitive processes and the use of cognitive strategies in motor
adaptation is presumably (un)conscious1 detection of an error
and its unexpectedness (surprise). Therefore, conceivably, the ANS
responses to movement errors can provide informative markers
of explicit cognitive processes during motor learning. Several
recent studies have begun to test this hypothesis directly by
measuring ANS indices during motor learning tasks (Nogami
et al., 2025; O’Bryan and Song, 2025; Pfalz et al., 2025; Yokoi
and Weiler, 2022). Consistent with the findings from cognitive
inference tasks (e.g., Nassar et al., 2012), these studies suggest
that phasic pupil dilation in response to movement errors reflects
sensory surprise, while tonic (baseline) pupil diameter likely

1 As discussed in the previous section, several studies have reported ANS
responses to errors show modulation by whether the participants were
aware of the error. For LC and pupil, clear responses to noxious stimuli
(e.g., foot shock) have been reported in anesthetized animals (Ohsawa et al.,
1997; Sugiyama et al., 2012), suggesting that conscious detection may not
always be required for some ANS responses. Therefore, there might be
a continuum of this process between conscious and unconscious error
detection. Nevertheless, it is certain that a large error elicits both of ANS
responses and conscious awareness.
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track subjective uncertainty about the task environment (Pfalz
et al., 2025; Yokoi and Weiler, 2022). The study also suggested
that the tonic pupil diameter may explain the degree to which
individuals were aware of environmental change (Yokoi and
Weiler, 2022). Additionally, a clear dose-dependency of phasic
ANS responses (pupil dilation, skin conductance change, and heart
rate deceleration) to different magnitudes of unexpected motor
errors were demonstrated (Nogami et al., 2025). These observations
strongly suggest that the large deviation from the expected sensory
outcome leads to strong activation of ANS and implies the
involvement of cognitive control process, possibly mediated by
CAN, during motor learning tasks. Taken together, although still
much research is needed, these findings underscore the potential
of ANS measurements as non-invasive information source to study
cognitive processes in human motor learning research.

What would be the “common cognitive processes” indexed
by ANS activity for cognitive and motor learning tasks? In
the rest of this perspective, we suggest that the contextual
inference (Heald et al., 2023a; Heald et al., 2023b) would be one
candidate for such cognitive computations. Contextual inference
has gained increasing attention as a unifying computational
principle that enables flexible behavior across domains. Rather
than relying on fixed mappings between stimuli and responses,
the brain appears to infer latent “contexts,” or hidden states of
the environment, to appropriately guide perception and decision-
making (Mante et al., 2013; Okazawa and Kiani, 2023), memory
updating (Gershman et al., 2014), and motor control and learning
(Heald et al., 2021). In the domain of motor learning, recent
work by Heald et al. (2018, 2021) demonstrated that humans
can learn and express multiple motor memories by inferring
which context is currently active. This framework is powerful
enough to account for a wide range of motor learning phenomena,
including spontaneous recovery, interference, savings, dynamic
learning rates, and the use of explicit strategies, that have been
previously treated as distinct features (Heald et al., 2021). The
creation and switching between multiple internal models based
on the current context estimate is somewhat consistent with
the reciprocal relationship between explicit strategy and implicit
learning component, as well as the rapid disengagement of explicit
strategy when instructed. Assuming the implicit learning system,
presumably in the cerebellum, as a “base model” within this array
of models (Oh and Schweighofer, 2019; Taylor and Ivry, 2014),
could also explain the suppression of the implicit learning by
explicit strategy (i.e., other model) through the process of context-
dependent expression/suppression of specific internal model.

Similar principles apply in cognition, where behavior depends
on integrating current sensory input with beliefs about hidden
environmental states and their transitions (Heald et al., 2023a).
Computational models such as the Hierarchical Gaussian Filter
(HGF) (Mathys et al., 2011, 2014), the Volatile Kalman Filter
(VKF) (Piray and Daw, 2020), and the Dirichlet Process Kalman
Filter (DP-KF) (Gershman et al., 2014) formalize this process by
representing beliefs not only about the current state but also about
the latent state as well as its volatility, enabling dynamic modulation
of learning rates and behavioral flexibility. Despite differences in
implementation across these models, the problems of hierarchical
inference they aim to solve are highly similar, making the contextual
inference framework a potential candidate for a domain-general
computational principle in the brain. Also important is that in

the absence of a priori sensory cues that indicate specific context,
the (large) prediction error is the critical cue for context change,
making room for ANS to take part in this process.

Crucially, as discussed in the previous section, several key
regions of the central autonomic network (CAN) (Beissner et al.,
2013), including the ACC, AIC, orbitofrontal cortex (OFC), and
the LC, are consistently implicated in higher-order processes such
as the computation of prediction errors (i.e., surprise), uncertainty,
and state transitions (Aston-Jones and Cohen, 2005; Behrens et al.,
2007; Chan et al., 2021; Critchley et al., 2001; Preuschoff et al.,
2008; Schuck et al., 2016; Singer et al., 2009; Soltani and Izquierdo,
2019). As repeatedly proposed (Bouret and Sara, 2005; Sara, 2009;
Sara and Bouret, 2012), the LC is well-positioned to receive
surprise and uncertainty signals from CAN areas and broadcast
interrupt signals to multiple systems across the brain, including the
hippocampus and cerebellum. The LC receives input from medial
prefrontal regions such as the ACC and subcortical structures like
the amygdala, and projects broadly, including to the hippocampus
(Joshi and Gold, 2020; Szabadi, 2013), making it a core node for
complex hidden-state learning, such as estimating environmental
changes (De Berker et al., 2016; Nassar et al., 2012) or identifying
episodic memory boundaries, through the hippocampus (Clewett
et al., 2020, 2025). While several researchers have studied the
effect of LC projection (NA) on motor learning in rodents (Heron
et al., 1996; Tan et al., 1991; Watson and McElligott, 1984), a clear
mechanistic view of how LC-NA system affects motor learning is
still missing (Waterhouse et al., 2022).

Taken together, these bodies of evidence suggest that the CAN
may support computations essential for contextual inference across
cognitive and motor domains. By continuously integrating external
sensory input with internal belief states, these regions enable the
brain to form predictions about latent environmental structures
and adjust behavior accordingly. Thus, ANS indices may offer an
informative window into latent computational variables relevant
to the contextual inference process in both cognitive and motor
learning. In this context, revisiting prior ANS findings through the
lens of the Bayesian contextual inference framework may be fruitful
(Zénon, 2019).

Conclusion and future directions

In this perspective, we have provided a brief overview of studies
investigating ANS-tagged internal states during cognitive tasks
and suggested their possible link to recent evidence for cognitive
contributions to motor adaptation. While the proposed similarity
may initially appear superficial, the concurrent rise of hierarchical
inference models in both cognitive and motor neuroscience
suggests that similar computational processes operate across these
domains. As one of such cognitive computational processes, we
further suggested that the framework of contextual inference may
provide a unifying perspective to understand learning in both fields,
which emphasizes conscious error detection, inference about latent
task states, and selection of appropriate actions based on inferred
context. The overlap between CAN and brain regions involved in
hierarchical inference process further highlights the importance
of ANS signals to probe these processes. Thus, we propose that
the ANS can be useful for motor learning study to look closer
into such process.
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Box 1 Experimental paradigms to probe autonomic contributions to context formation in motor learning.

The autonomic nervous system (ANS) may serve as a key interface linking cognitive and motor learning processes. We propose that the formation of
context boundaries and the creation of new motor memories depend on ANS-tagged novelty or surprise signals. To test this “ANS–context–motor”
hypothesis, coordinated efforts across human and animal studies are essential.

Human paradigms
Although invasive neural manipulation in humans is limited, behavioral flexibility enables systematic examination of how autonomic arousal relates
to context transitions during motor learning. Forward- and back-translation of paradigms, such as reach adaptation involving contextual inference,
and reversal learning, allow quantification of how trial-by-trial changes in ANS activity accompany the emergence of new internal models. Causal
manipulations of autonomic state are accessible through physiological means (e.g., cold pressor test (Antov et al., 2015), isometric handgrip),
pharmacological modulation of adrenergic or cholinergic tone (Jepma et al., 2016, 2018), transcutaneous vagus nerve stimulation (tVNS) (Kilgard
et al., 2025), or voluntary biofeedback (e.g., pupil-size training) (Meissner et al., 2024). When combined with simultaneous ANS monitoring and
non-invasive neural recordings (EEG, MEG, fMRI), these approaches can test whether autonomic activation precedes or gates neural signatures of
context re-encoding.

Animal paradigms
In animal models, circuit-specific manipulation techniques (optogenetics, chemogenetics) allow causal probing of ANS–context interactions at
cellular resolution. Motor learning tasks such as reach adaptation in rodents (Mathis et al., 2017) or marmosets (Ebina et al., 2018, 2024) provide
quantitative readouts of boundary formation. AI-based kinematic tracking, such as the DeepLabCut (Nath et al., 2019) enables simultaneous
assessment of movement adaptation and peripheral ANS signals, including contactless indices such as nasal temperature (Kuraoka and Nakamura,
2022; Nakayama et al., 2005). Direct autonomic manipulations, including pharmacological, implanted vagus nerve stimulation (Collins et al., 2021;
Mridha et al., 2021), or locus coeruleus photostimulation (Glennon et al., 2019; Grimm et al., 2024; McBurney-Lin et al., 2022), can determine
whether perturbing ANS-linked arousal circuits alters the delineation of motor contexts.

Cross-species integration
Aligning task structures and ANS metrics across species will reveal whether autonomic signals merely co-vary with, or actively define, the cognitive
boundaries that segment motor memories.

As already mentioned, to what degree the consciously
unperceived error and corresponding ANS responses have an
impact on the above inference process is still elusive. Although,
clearly, the size of prediction error is an essential factor for
hierarchical inference, regardless of the awareness to the error
(Gershman et al., 2014; Heald et al., 2021; Mathys et al., 2011; Piray
and Daw, 2020), the role of conscious awareness and ANS states
in the hierarchical inference about task environment needs to be
tested in the future.

Another important future question is whether the ANS is mere
a leaking signal of “higher” cognitive computational processes,
or it has a bidirectional influence on the cognitive processes.
Converging evidence suggests that within ANS the LC-NA system
is “causally” involved in task performance. Rodent studies have
shown that optogenetic LC activation can shift global cortical
excitability in a stimulation specific manner (i.e., tonic or phasic)
(Grimm et al., 2024) and improve cognitive flexibility (Glennon
et al., 2019; McBurney-Lin et al., 2022). In parallel, human studies
have also demonstrated that manipulation of pupil-linked arousal
by task-unrelated surprizal stimuli influenced the learning rate in
an inverted-U manner (Nassar et al., 2012) and that self-regulation
of pupil-linked arousal through biofeedback affected oddball
detection (Meissner et al., 2024). This line of evidence supports
the idea that LC-NA system (and ANS) is functionally engaged
in regulating cognitive functions, such as cognitive flexibility and
novelty detection, rather than a simple readout of the control
process. This is also critical to the question of how we can test the
hypothetical relationship between cognitive contribution in motor
learning (e.g., contextual inference) and ANS in more direct way
(see Box 1). Also, although we did not cover the possibility of ANS
directly affecting the implicit learning in the current manuscript,
direct modulation of the cerebellar complex spike rate possibly
through the noradrenergic input from the LC has been reported
(Carey and Regehr, 2009; Sun et al., 2019). This topic is open for
future research.

In summary, on top of its bodily functions, ANS signals could
allow us to better understand flexible, adaptive human behavior in
an uncertain world.
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