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models that represent number via pools of neurons preferentially 
activated by specifi c numerosities (Dehaene and Changeux, 1993; 
Zorzi and Butterworth, 1999; Grossberg and Repin, 2003; Verguts 
and Fias, 2004; Nieder, 2005; Verguts et al., 2005). Such models 
naturally account for performance in discrimination tasks of both 
dot arrays and Arabic numerals, and suggest that the logarithmic 
widening of VIP neuron tuning curves gives rise to Weber’s Law 
for numerical discrimination.

By contrast, neurons in the lateral intraparietal area (LIP) were 
recently shown to represent the number of dots in a visual array 
in a graded, monotonic fashion (Roitman et al., 2007). Notably, 
there were separate populations of LIP neurons that increased fi ring 
with increasing numerosity and decreased fi ring with increasing 
numerosity. Similar reciprocal neuronal coding of somatosensory 
stimuli has previously been observed in somatosensory cortex 
for vibration frequency (Miller et al., 2003; Machens et al., 2005). 
These analog codes provide a physiological basis for alternative 
models of magnitude discrimination, including number, without 
the need to invoke explicit neuronal representations of specifi c 
values (Gibbon, 1977, 1981; Gibbon and Church, 1981; Gibbon 
and Fairhurst, 1994).

INTRODUCTION
For one-dimensional quantities like number, time, length, and 
brightness that possess a natural linear order (Moyer and Landauer, 
1967; Stevens, 1986), discrimination behavior is characterized by 
the distance and magnitude effects: discrimination improves as 
the difference in stimuli along the perceptual dimension increases, 
but suffers as the absolute magnitudes grow (Moyer and Landauer, 
1967; Brannon and Terrace, 1998; Nieder and Miller, 2003). More 
generally, such quantities obey Weber’s Law: the just-noticeable 
difference in a magnitude is proportional to the magnitude itself.

In the last several years, single unit recordings and fMRI stud-
ies have implicated neurons in the intraparietal sulcus in coding 
one of these quantities – number (Nieder et al., 2002; Nieder and 
Miller, 2003, 2004a,b; Nieder, 2005; Nieder and Merten, 2007; 
Roitman et al., 2007). Moreover, neurons in the ventral intrapa-
rietal area (VIP) show preferential fi ring to specifi c numerosities, 
with tuning curve widths scaling as the logarithm of the preferred 
number (Nieder et al., 2002; Nieder and Miller, 2003; Nieder and 
Merten, 2007). fMRI repetition suppression studies have largely 
confi rmed these observations (Piazza et al., 2004). As a result, most 
recent theoretical work on numerical cognition has focused on 
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Such analog models, proposed initially for interval timing, 
 typically rely on one of two underlying neural codes for magnitudes. 
In linear models, magnitudes are represented by linearly increasing 
fi ring rates, with noise that grows in proportion to the fi ring rate 
itself. Comparisons between magnitudes are performed by taking 
ratios of these linear representations, with the result that discrimi-
nations between magnitudes become easier as distances between 
them grow (the distance effect) and harder to distinguish (for fi xed 
difference between them) as their absolute values increase (the 
magnitude effect). Moreover, the assumption of a noisy internal 
representation with standard deviation proportional to the mean 
(constant coeffi cient of variation), dubbed the “scalar property,” 
gives rise to a discriminability parameter proportional to the differ-
ence in magnitudes divided by their absolute size, reproducing the 
Weber-Fechner discrimination law (Gibbon, 1977, 1981; Gibbon 
and Church, 1981; Brannon et al., 2001).

In the second class of models, magnitudes are represented by 
fi ring rates that scale with the logarithm of the underlying quantity 
(Gibbon, 1977, 1981; Gibbon and Church, 1981) (not to be con-
fused with the logarithmically widening tuning curves of numeros-
ity-selective neurons). Comparisons in these models are performed 
by subtraction, a linear operation equivalent to taking the ratio 
of the original magnitudes. In addition, constant variance in the 
logarithmically compressed internal representation corresponds 
to a log-normal variance in the original quantity, with a standard 
deviation proportional to that quantity, thus reproducing the scalar 
property from the linear models. Thus, in contrast to population 
code models, which represent numerosity via pools of neurons 
selective for each number (“cardinal codes”), these models repre-
sent numerosity in graded fashion in a single neuronal fi ring rate 
(“ordinal codes”).

Given either of these noisy internal analog representations of 
magnitude, signal detection theory provides a principled frame-
work for classifi cation (Green and Swets, 1989; Gibbon, 1981). In 
signal detection theory, not only do the statistics of the underly-
ing representation enter into the decision making process, but the 
costs and benefi ts of stimulus identifi cation do so as well. Thus, 
if a “yes” response to a question about an ambiguous stimulus is 
rewarded twice as much as a “no,” the optimal strategy (from a 
reward maximization standpoint) is to respond “yes” in all cases 
where the stimulus is equally likely to correspond to either, and 
even in many cases where it is more likely to correspond to “no.” 
Typically, this prediction is tested in a bisection paradigm, in which 
subjects are asked to provide a binary classifi cation of a quasi-
continuous range of stimuli (Church and Deluty, 1977; Meck and 
Church, 1983; Platt and Davis, 1983; Meck et al., 1985; Roberts, 
2005; Jordan and Brannon, 2006). Stimuli at either extreme of 
the range (the “anchors”) are each paired with a unique rewarded 
response, but intermediate stimuli are classifi ed freely. By measur-
ing the resulting choice function, the underlying decision process 
can be characterized.

Measurement of psychometric curves in the bisection paradigm 
results in two primary empirical fi ndings (Gibbon, 1981; Gibbon 
and Church, 1981; Gibbon and Fairhurst, 1994): First, points of 
subjective equality (PSE) for stimulus classifi cation – stimulus 
magnitudes for which subjects are equally likely to produce either 
response – are located at the geometric mean of the two anchor 

values. Second, when plotted as a function of stimulus magnitude 
divided by PSE (a PSE-relative scale), psychometric curves for dis-
tinct pairs of anchors superimpose. The latter may be seen as a 
consequence of the scalar property (for either linear or logarithmic 
encoding schemes), since Weber’s Law predicts that ratio-based 
discrimination should be invariant to magnitude rescaling.

Here, we demonstrate that a discrimination model based on 
observed numerosity tuning curves for LIP neurons, in the absence 
of explicit representation of numerical value, is suffi cient to repro-
duce the choice performance of macaques in a separate behavioral 
study of numerical bisection. We further predict departures from 
Weber’s Law at large numerosities that differentiate between linear 
and logarithmic encoding of numerosity. Furthermore, we show 
that simple reinforcement learning correctly sets the indifference 
point for numerical bisection in our model, without explicit knowl-
edge of either reward history or underlying tuning functions, with 
important implications for classifi cation performance in the case 
of unequally rewarded anchors. Together, our fi ndings demon-
strate that monotonic analog codes can support discrimination 
of abstract quantities like number, in addition to simple sensory 
stimuli like vibrotactile frequency (Machens et al., 2005).

MATERIALS AND METHODS
NEURONAL DATA: IMPLICIT DISCRIMINATION
We base our model on neurophysiological data published previ-
ously (Roitman et al., 2007). There, the authors characterized the 
responses of LIP neurons to arrays of dots in an implicit numerosity 
discrimination task (Roitman et al., 2007). Single units (n = 53) were 
isolated in area LIP, and their spatial receptive fi elds identifi ed, using a 
standard delayed-saccade paradigm. During the task, the animal was 
required to hold fi xation on a central cue. They were then presented 
with a saccade target in the hemifi eld opposite the receptive fi eld of 
the neuron. After a variable delay, a dot array of numerosity 2, 4, 8, 
16, or 32 (controlled for density, element size, and total pixels) was 
presented in the receptive fi eld for 400 ms. After another variable 
delay, monkeys shifted gaze to the target opposite the receptive fi eld. 
In each block, one numerosity was selected as standard and presented 
on 50% of trials. On the other half of trials, cue numerosities were 
randomly chosen from among the four remaining values. The animal 
received 100 ms of juice for successful saccades following standard 
cues, 150 ms for successful saccades following deviants. (Both sac-
cades were to the same location.) Since every trial resulting in a 
saccade was rewarded, animals did not need to attend to numerosity 
to maximize reward, though decreased reaction times for trials with 
deviant cues argue that they did so.

BEHAVIORAL DATA: NUMERICAL BISECTION
To verify that our model produces psychometric curves of the form 
measured in behavioral studies of bisection, we compare its output 
to the previously-published work of Jordan and Brannon in a sepa-
rate pair of monkeys (Jordan and Brannon, 2006) (note that the 
monkeys in the Roitman et al., 2007, study were numerically naïve 
and did not perform a bisection task). In Jordan and Brannon’s 
experiment, adult rhesus monkeys were fi rst trained to recognize 
the number of elements in a dot display in a delayed match-to-sam-
ple (DMS) paradigm using a touch-sensitive  monitor. Upon trial 
initiation, a stimulus consisting of a yellow rectangle  containing a 
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variable number of dot elements was presented, followed  afterward 
by two choice stimuli (match and distractor) and the animal’s 
response. Correct choices were rewarded by juice delivery, and sev-
eral confounding dimensions of the dot arrays (cumulative area, 
dot size, density) were controlled, ensuring that only numerosity 
remained a reliable guide to behavior.

Once animals were able to recognize individual numerosities, 
two stimuli (block type 1: 2 and 8, block type 2: 3 and 12) were 
selected as anchors and presented (with equal probability) as the 
cue stimulus. As in the DMS paradigm, a match and distractor 
were subsequently presented, always equal in numerosity to the 
anchor values. Correct trials of this type were again rewarded. 
However, on 30% of trials, an intermediate numerosity appeared 
as the cue (block type 1: 3–7, block type 2: 4–11), followed by dot 
array choices corresponding to the two anchors. This required the 
animal to classify a non-matching stimulus with one or the other 
of the two anchors. Though these trials were never rewarded, the 
animals nevertheless displayed systematic responses to the interme-
diate numerosity cues, transitioning from responses corresponding 
to the small anchor value to responses favoring the large anchor 
value as cue numerosity increased (Figure 1B).

MODELING
The most common paradigm used to study magnitude estimation 
and number judgment in rats, pigeons, and non-human primates 
is numerical bisection, in which a subject is required to classify 
the numerosity of a cue as one or the other of a pair of “standard” 
values (Church and Deluty, 1977; Meck and Church, 1983; Platt and 
Davis, 1983; Meck et al., 1985; Roberts, 2005; Jordan and Brannon, 
2006). Of tasks designed to quantify numerical capability, it remains 
the most direct, and gives the clearest demonstration of Weber’s 
Law behavior. We asked whether the observed response functions 
of numerosity-sensitive neurons in area LIP (Roitman et al., 2007) 
might function as a code capable of reproducing choice behavior 
in a similar bisection task.

We modeled behavior in an oculomotor version of the numeri-
cal bisection task. The oculomotor paradigm has been widely used 
to study response properties of LIP neurons (Snyder et al., 1997; 
Andersen and Buneo, 2002) and to probe the neural correlates of 
decisions in a wide variety of cognitive tasks (Platt and Glimcher, 
1999; Gold and Shadlen, 2000; Shadlen and Newsome, 2001; 
Roitman and Shadlen, 2002; Leon and Shadlen, 2003). Moreover, 
framing the experiment in this way allows us to make direct use of 
single-unit recordings from LIP in our model, as well as to make 
testable predictions about neuronal activity as task conditions are 
altered. In the task (Figure 1A), fi xation on the central cue is followed 
by the presentation of two targets (red and green) in the hemifi eld 
opposite the receptive fi eld of a recorded neuron. This is followed 
by a variable delay, after which a dot array cue is presented in the 
neuron’s receptive fi eld. This is followed by another variable delay, 
after which the animal is free to shift gaze to either the green (“small” 
response) or red (“large” response) target. Figure 1B presents behav-
ioral data from a similar bisection paradigm (Jordan and Brannon, 
2006), along with fi ts produced by our models (see below).

In order to extrapolate differences in model predictions to high 
numerosity, we fi t neuronal responses of LIP during the 400 ms of 
stimulus presentation with both linear and logarithmic response 

models, each of which contained neurons that increased and 
decreased fi ring in response to increasing numerosity. (Clearly, for 
numerosities within the range of the measured response curves, 
no fi tting is necessary.) In the fi rst model, these responses followed 
linear-hyperbolic tuning curves:

f an b+ = +  
(1a)

f
c

n
d− = +

 
(1b)

while in the second, they followed logarithmic tuning curves:

f a n b+ = +log  (1c)

f c n d− = − +log  (1d)
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FIGURE 1 | Numerosity bisection task. (A) Schematic showing modeled 
oculomotor bisection task. Following fi xation, two saccade targets appear: red 
for “small” and green for “large.” After a variable delay, a dot array is briefl y 
presented in the recorded neuron’s response fi eld. Following a second 
variable delay, the fi xation target extinguishes, and the animal makes an eye 
movement to either choice target in the hemifi eld opposite the neuron’s RF. 
(B) Choice behavior and model fi ts to a touch screen version of the 
numerosity bisection task (after Jordan and Brannon, 2006). Data points 
represent probability of choosing the response associated with the “large” 
anchor value. Red and black lines indicate fi ts based on families of choice 
curves derived from the linear-hyperbolic and logarithmic encoding models. 
Anchor values are 2 and 8 for the left set of curves, 3 and 12 for the right.
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Chi-squared values for fi ts to the measured mean response 
curves were calculated according to:

�χ
νσ

2

2

2
=

−[ ]∑ f n fi i

ii

( )

 
(2)

where f
i
 are the measured fi ring rates, subscripts indicate positively 

(+) and negatively (−) monotonic responses, f(n
i
) are the model pre-

dictions, σ
i
 are the standard errors, and ν is the number of degrees 

of freedom. Noise was well fi t by a Poisson process (Figure 2D) and, 
for simplicity, subsequently modeled as Gaussian with equivalent 
fi rst and second moments:

f f N f= + ( , )0  
(3)

with f  the tuning curve (either + or −) and N the normal distribu-
tion with variance f . (Thus, although a real Poisson process will 
show deviations from this assumption, those deviations will only 
affect higher moments of the distribution.)

Choices were made by randomly sampling from both positive 
and negative tuning curves and taking differences in fi ring rates. 
As explained in the “Results” section, this fi ring rate difference was 
subsequently fed into a softmax choice model:

P n
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with P
L
 the probability of choosing the option corresponding to 

the larger anchor, δf the difference in fi ring rates, β a parameter 
refl ecting the variability of the animal’s choice, and a a maximum 
choice preference for the option with higher fi ring. Indifference 
results when δf = 0.

We simulated distinct pairs of anchor values by shifting the 
relative baseline fi ring rates (bias input) of the positive and 
negative tuning curves, as detailed in the “Results” sections. 
This resulted in a one-parameter family of psychometric choice 
curves, differing in their points of subjective equality (PSE). For 
ease of  computation, we parameterized this family of choice 
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FIGURE 2 | Single neurons in LIP monotonically encode the number of 

visual objects. (A) Averaged single neuron (n = 15) fi ring rate during the cue 
presentation for fi ve different numerosities (after Roitman et al., 2007; see 
Materials and Methods). Standard and deviant trials were averaged. Data are fi t 
to a straight line. Inset shows PSTH of an example neuron for fi ve different 
numerosities. Colors in the PSTH correspond to data points in the main plot. (B) 
Average fi ring rate (n = 17) for negatively monotonic neurons in LIP. Inset shows 
the PSTH for an example neuron. Data were fi t to a hyperbolic decay. Colors are 
as in (A). (C) 2 goodness-of-fi t comparison between linear-hyperbolic and 

logarithmic models for single neurons. Black line represents equally good fi ts. 
Black squares are positively monotonic neurons, red circles negatively 
monotonic. Smaller χ2 values represent better fi ts. More symbols above the 
black line than below indicate the superiority of the linear-hyperbolic model as a 
fi t to the data. (D) Coeffi cient of variation (mean/standard deviation) of fi ring 
rates as a function of fi ring rate during the 400-ms delay period following 
numerosity cue presentation in the implicit number task (see Materials and 
Methods). Each circle represents one trial for one neuron. Red line is a fi t to the 
prediction of Poisson fi ring rates.
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curves by two different functional forms (our results did not 
depend on the choice). We fi t model-generated curves with both 
logistic:
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and Gompertz
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functions. As before, a represents a maximum preference level for 
the large option, while n

*
 represents the PSE and σ is a measure 

inversely related to discriminability. Once again, the fi tting is a 
computational convenience, and the specifi c form of the param-
eterization does not matter. Results are unaffected if the direct 
outputs of the model are used instead. We fi xed β and a in Eq. 4 by 
fi tting our family of psychometric choice curves to the measured 
bisection behavior of monkeys in a separate experiment (Jordan 
and Brannon, 2006) (Figure 1B).

For both parameterizations of our family of choice curves, 
Weber’s Law predicts:

σ ∼ kn*  
(7)

with k a constant.
We modeled the process of learning the indifference point for 

bisection via a reinforcement learning algorithm that tracked the 
values of each of the two responses and updated these along with a 
“bias input” favoring either the “large” or “small” response. In this 
case, we parameterized our tuning functions as:

f a n n B+ = − +( )*  
(8a)
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for the linear-hyperbolic case and
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in the logarithmic case, with n
*
 clearly equal to the point of sub-

ject equality (adjusted by the learning algorithm) and B a constant 
baseline fi ring rate common to both types of neurons. On each trial, 
either the large or small anchor was presented with equal probability, 
and the system made its response according to the output of the 
current decision model for the current value of n

*
. As in the standard 

bisection task, only correct answers were rewarded. Subsequent to 
reward, the system performed the following updates for the action 
values corresponding to the two choices and the PSE:
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with Q
L
 the action value of choosing “large,” Q

S
 the action value of 

choosing “small,” R the reward outcome (either 0 or 1, for incorrect 
or correct) and α and λ learning rates. Note that only the value cor-
responding to the chosen action is updated, though the PSE changes 
each trial. In this way, the PSE is adjusted upward (biasing toward 
the “large” response) if Q

L
 > Q

S
 – in other words, in the direction 

of choosing the more profi table option. Clearly, equilibrium cor-
responds to equality of the two action values, at which point the 
animal should be indifferent, and reward is maximized. We report 
simulations performed for 15000 trials with both α and λ equal to 
0.05. The initial value of the indifference point was set to the arith-
metic mean of the anchors, though choosing either extreme worked 
equally well. Learning for most pairs of anchor values converges 
within 2000 trials, though mean PSEs and standard deviations were 
calculated over the last 4000 trials of simulation to ensure that 
learning had reached asymptote.

RESULTS
THE MODEL PREDICTS BISECTION BEHAVIOR IN THE ABSENCE OF 
EXPLICIT NUMEROSITY CODES
To model the response properties of neurons in LIP, we made use 
of single-unit neural activity recorded during an implicit numer-
osity discrimination task (see Materials and Methods). As shown 
in Figures 2A,B, fi ring rates in these neurons varied in both posi-
tively (n = 15/53) and negatively (n = 17/53) monotonic fashion 
with cue numerosity. Following previous theories of magnitude 
discrimination, we fi t these neural response functions to two mod-
els (Figures 2A,B): In the fi rst, the increasing response is mod-
eled as linear (f+ = an + b, a = 1.14, b = 45.2, χ2 = 1.38), while the 
decreasing response is fi t to a hyperbolic function (f− = c/n + d, 
c = 30.7, d = 37.5, χ2 = 1.18). This hyperbolic coding, not previ-
ously proposed for number, resembles that observed in primate 
superior colliculus when multiple, equally likely saccade targets 
are presented, and suggests, at least in part, an effective compres-
sion of one-half the internal representation of large numerosities 
(Basso and Wurtz, 1997).

In addition, we fi t neuronal responses as logarithmically encod-
ing numerosity (f+ = a logn + b, a = 9.01, b = 40.20, χ2 = 7.40; 
f− = − c logn + d, c = 5.34, d = 54.6, χ2 = 1.26). Clearly, both models 
reproduce the negatively monotonic curve well, though the logarith-
mic fi t in the case of the increasing response function is somewhat 
less convincing (Figure 2C). However, since the logarithmic model 
possesses a number of interesting theoretical features and serves 
as an important contrast to the behavior of the linear-hyperbolic 
model, we report the results of our decision model in both cases. It is 
also important to note that such fi ts are only for computational con-
venience and the extrapolation of our predictions to high numeros-
ity. Direct use of the empirical tuning curves produces equivalent 
behavior in our model over the range of numerosities tested. We also 
examined the variability of neuronal responses. As shown in Figure 
2D, fi ring rates across the population were well fi t by an assumption 
of Poisson noise (R2 = 0.92), providing evidence against the scalar 
variance assumption of linear models for magnitude encoding.

A schematic for our decision model is presented in Figure 3A. 
We treat the decision process as a competition between two repre-
sentations, one with positive response function, one with negative, 
to a dot array stimulus. Similar to models of interval discrimination 
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(Gibbon, 1977, 1981; Gibbon and Fairhurst, 1994), we sample from 
Poisson distributions of fi ring centered about these response curves, 
calculating the difference in fi ring between them. In this framework, 
high fi ring rates in positively monotonic neurons give evidence for 
a large encoded numerosity (and thus argue for a “large” response), 
whereas high fi ring in negatively monotonic neurons argues for a 
small numerosity in the stimulus. The difference between these two 
pieces of evidence then becomes the overall bias toward the “large” 
response. Mathematically, this is given by the difference in the two 
tuning curves (see Eqs. 8a,b in Materials and Methods):

Bias
linear-hyperbolic

logarithmic

=
− +

−

⎧
⎨
⎪

⎩⎪

an
c

n

c a n

*
*

*( )log
 

(10)

where n
*
 is the PSE. Clearly, this number is negative for many values 

of n
*
, which case it represents either an inhibition of positively-

tuned neurons or an upward shift of the negatively monotonic 
tuning curve. Clearly, this difference is unaffected if both fi ring 
rate responses are increased by the same amount, though such an 
overall shift does affect the amount of Poisson noise (and thus the 
variability of the signal).

THE MODEL PREDICTS DEVIATIONS FROM WEBER’S LAW BEHAVIOR AT 
LARGE NUMEROSITIES
This rudimentary fi ring rate difference model, using only two neu-
rons, is capable of producing much less variable behavioral output 
than is typically observed in animals (Church and Deluty, 1977; Meck 
and Church, 1983; Platt and Davis, 1983; Meck et al., 1985; Roberts, 

2005; Jordan and Brannon, 2006). That is, observed psychometric 
choice curves in bisection paradigms are much wider than those 
produced by our neurometric model, implying poorer classifi cation 
performance than the LIP representation would necessitate.

Yet, it is not uncommon for animals to show much poorer asymp-
totic performance than discrimination models would predict. In fact, 
we argue that such noise is necessary to drive learning in the systems 
that are responsible for choice behavior (see below). As a result, we fed 
the results of the two-neuron comparison (the perceptual model) into 
a subsequent softmax action selection equation (the choice model) 
(Machens et al., 2005; Lo and Wang, 2006). This model incorporates 
both less-than-perfect asymptotic classifi cations of stimuli, as well 
as a substantial probability choices deviating from the underlying 
percept (for purposes of information-gathering about reward contin-
gencies). This combined model is capable of producing excellent fi ts to 
behavioral data [PSE = 3.62, 5.37, R2 = 0.98, 0.89 (linear-hyperbolic); 
PSE = 3.59, 5.43, R2 = 0.99, 0.97 (logarithmic); Figure 1B].

As expected, the model is indifferent between responding “large” 
or “small” when fi ring rates for the two response curves are equal, 
that is, at their point of intersection. Clearly, this point may be shifted 
by adding a constant bias fi ring rate to either curve, resulting in a 
family of choice curves with increasing PSEs and broadening slopes 
(Figures 3B,E). These broadening curves represent decreased sen-
sitivity to fi xed differences in numerosity as PSE increases, with 
broader curves indicating a wider variance in task performance 
near the indifference point. That is, as the bias input in Figure 3A 
increases, discrimination between the presented numerosity and the 
classifi cation threshold becomes poorer, as predicted by Weber’s Law. 
In fact, the width of the curves in Figures 3B,E is inversely related 
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FIGURE 3 | Two models for numerosity bisection. (A) In both models, positive 
and negative neuronal responses from LIP neurons enter as evidence for “large” 
and “small” cue classifi cations, respectively. In addition, a bias input represents an 
additional propensity to choose one response over the other. In the fi gure, black 
lines represent excitation, red lines inhibition. The bias input augments the 
probability of perceiving the cue as “large,” though in other cases it might favor a 
“small” outcome. Competition between the two tuning curves computes an 
effective difference in fi ring rates, which is passed on to a softmax choice model 
that apportions choices based on this difference (see Materials and Methods). (B) 
A family of choice curves generated by systematically decreasing the bias input in 
the model in (A). As bias decreases, the point of subjective equality (PSE) shifts 

rightward, and the transition region interpolating between “small” and “large” 
classifi cations widens. (C) Choice curves from (B), rescaled as a function of cue 
numerosity divided by PSE. Curves roughly overlap, indicating an approximate 
Weber’s Law behavior. (D) Width Parameter (width of the transition region, 
inversely related to discriminability) as a function of PSE. Red data points indicate 
parameters derived from fi tting choice curves with a Gompertz function, black 
points logistic fi ts (see Materials and Methods). Lines are fi tted to the fi rst four 
data points, and show a deviation from linearity at high PSE, predicting a departure 
from Weber’s Law. Slopes of lines are equal to Weber fractions calculated in the 
models. (E–G) Same as (B–D), except tuning curve inputs to (A) are modeled as 
positive and negative logarithms. As expected, Weber’s Law holds to all orders.
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tion: for a perfect classifi er, performance at the anchors is all but 
insensitive to PSE location, while the performance of a noisy clas-
sifi er depends heavily on the location of the indifference point. For 
this reason, and because choices in natural environments involve 
the classifi cation of intermediate numerosities, learning favors the 
introduction of additional noise into the choice process beyond 
that inherent in the perceptual mechanism.

Figure 4 depicts the results of a series of simulations conducted 
for both the linear-hyperbolic and logarithmic models. Figures 4A,B 
show example learning curves for learning bisection with anchor 
values 3 and 12. After about 2000 trials, the fi rst PSE (Figure 4A) 
converges to a mean value of around 5.3, just below the predicted 
value of 6, and in line with the slight deviation seen in Figure 1B. In 
Figure 4B, the PSE converges to the theoretical value of 6. In Figures 
4C,D, we plot PSE values for a series of simulations performed for 
fi xed values of the small anchor. If the PSE scales as the geometric 
mean of the anchor values, as theory predicts, the resultant curves 
should scale as the square root of the large anchor, which they do. 
However, the linear-hyperbolic model shows clear deviations from 
predicted behavior for large absolute differences between anchors, 
a refl ection of the fact that choice curves are asymmetric, with more 
accurate classifi cation of smaller numerosities. As a result, reward-
maximizing PSEs systematically undershoot geometric means as the 
distance between anchors grows, a trend consistent with that seen in 
experimental studies (Jordan and Brannon, 2006) for anchor pairs 
(2,8) and (3,12) (Figure 1B). In a similar vein, Figures 4E,F show 
results of simulations with fi xed ratio of small to large anchor values. 
In this case, theory predicts that the PSE should scale linearly as with 
the small anchor value, which approximately holds.

DISCUSSION
Our model of numerosity encoding in the bisection paradigm takes 
as its starting point the measured monotonic response functions 
and spiking statistics of neurons in LIP. Though these neurons con-
form to neither the linear/scalar variance nor logarithmic/constant 
variance models of graded numerosity encoding previously pro-
posed, we are able, using a simple decision rule in conjunction with 
a hypothesized bias input, to reproduce observed bisection behavior. 
In addition, we are able to predict adherence to Weber’s Law over 
a signifi cant range of anchor value pairs. However, the differences 
between our model and previous proposals are illuminating, and 
offer predictions for future experiments. In the case of our linear/
hyperbolic model (again, to be distinguished from the logarith-
mically widening preferred-numerosity responses in population 
coding models), we predict gradual deviations from Weber’s Law 
behavior at very large numerosities, corresponding to PSEs of 10 or 
more. In our logarithmic model, we expect to see increasing nonlin-
earity in neuronal responses for very large numerosities, though we 
do not expect increasing Poisson noise to disrupt the Weber’s Law 
property (see Supplementary Material). In both cases, we expect a 
constant relative shift in fi ring rates between the response curves for 
different pairs of task anchor values (and thus different PSEs), a key 
prediction of the model testable in future experiments.

In addition, we hypothesize that the disparity between measured 
task performance in animals and the classifi cation behavior of an ideal 
observer using our neuronal data is due, at least in part, to additional 
noise added in the response selection process. We argue that this 

to the discriminability of cue numerosity from the indifference 
point, and is expected to scale linearly with PSE. Figures 3B,E depict 
the resulting relationship between discriminability and PSE for a 
series of bias inputs to the network for both linear-hyperbolic and 
logarithmic response models. As predicted, the logarithmic model 
produces a precisely linear relationship between the two quantities, 
reproducing Weber’s Law at all numerosities (Figures 3F,G). In the 
case of the linear-hyperbolic model, the relationship is approxi-
mately linear for small numerosities, but falls well short of linearity 
as the PSE increases (Figure 3D). This results from higher effective 
variance in the encoded numerosity in the linear tuning curve of the 
model (again, the variance in the logarithmically-encoded numeros-
ity is constant), which results in a higher rate of misclassifi cations 
near the large anchor in Figures 3B,C. In principle, this violation 
of Weber’s Law behavior would allow one to distinguish between 
the two models experimentally. However, since observed indiffer-
ence points lie near the geometric means of anchor values, and 
since the largest measured PSEs to date are less than 8 (Jordan and 
Brannon, 2006), the anchor numerosities required to observe these 
predicted departures will necessarily be much higher than those 
thus far probed empirically. Most importantly, the model facilitates 
fl exible classifi cation behavior in the case of different anchor values 
by the adjustment of a single parameter, the PSE (see below).

REINFORCEMENT LEARNING DRIVES THE MODEL TO PSES AT THE 
GEOMETRIC MEAN, AS OBSERVED BEHAVIORALLY
To further investigate the adjusting bias model as a means of adapt-
ing to differing anchor values, we implemented a reinforcement 
learning algorithm designed to set the bias input (and thus the PSE) 
of the system based on maximizing reward. In our implementation, 
the animal learns three quantities: the values of both the “small” 
and “large” responses and the value of the bias input. The fi rst 
two are updated by a traditional reward prediction error delta rule 
(see Materials and Methods), while the last is updated based on 
the difference in updated values of the two options. In addition, 
because only the anchors are rewarded, the algorithm never relies 
on an explicit knowledge of the full choice curve, only the values 
associated with choosing the “small” or “large” options. Thus, rather 
than treating the task as a perceptual discrimination, our algorithm 
seeks to maximize reward, which allows it to generalize to cases 
in which correct responses are only probabilistically rewarded or 
responses to the options are rewarded unequally. Indeed, for these 
latter cases, we predict that PSEs will not remain at the geometric 
mean, but will shift in order to maximize the reward harvested by 
our decision model’s choice behavior.

Moreover, we note the importance of additional noise in our 
choice model for the convergence of the algorithm. Because we 
expect behavioral responses to anchor values to be dominated by 
the nonlinear “knees” of our choice curves, the convergence behav-
ior of our learning model will exhibit high sensitivity to the slopes 
of the curves in these regions. If the curves are virtually noiseless, 
transitioning abruptly from “small” to “large” responses, learning 
will plateau rapidly, since any PSE located between the anchors 
will produce near-perfect classifi cation of the extremes. Thus there 
is an inverse relationship between sensitivity of the choice curve 
(inversely proportional to its width parameter, σ, and proportional 
to the slope of its rise) and sensitivity of reward returns to PSE loca-
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noise, which often results in choices the animal should “know” are 
wrong, is needed by the reinforcement learning algorithm that learns 
the task’s reward contingencies and the location of the PSE. Because 
greater sampling from both options leads to better estimates of each 
option’s value, less accurate choice behavior, paradoxically, leads to 
grater optimality in choosing the location of the PSE that results in 
maximum reward. Indeed, we conjecture that this need for fl exible 
learning algorithms may explain similar discrepancies between ideal-
observer and measured animal behavior in other classifi cation tasks 
(Shadlen and Newsome, 2001). Finally, our algorithm is noteworthy 
in that it makes no use of “right” or “wrong” classifi cation behavior, 
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FIGURE 4 | A simple learning algorithm reproduces location of the PSE. 

(A) A sample learning curve for the fi rst 6000 trials of a bisection block with 
anchors 3 and 12. Dotted line marks the theoretical value of 6. Value learned by 
the algorithm with linear-hyperbolic inputs is around 5.3. (B) Same as (A) for the 
logarithmic model. Note that the mean PSE value is now equal to the 
geometric mean of the anchors. (C) PSE as a function of large anchor value for 
a series of small anchor values (different colors). Lines represent theoretical 

predictions based on the geometric mean formula. All series show increasing 
departures from Weber’s Law behavior at high numerosities, particularly for 
small anchor value 2. (D) Same as (C) for the logarithmic model. (E) PSE as a 
function of small anchor value for fi xed ratios of large to small anchor values 
(different colors). Simulated data are roughly in line with linear predictions 
based on the geometric mean formula over the range tested. (F) Same as (E) 
for the logarithmic model.

nor requires explicit knowledge of the underlying classifi cation rule. 
Choosers simply learn the average value of responses in the presence 
of stimuli, and update the internal model accordingly. As a result, 
task performance may be viewed through the lens of reward maxi-
mization, and our algorithm makes predictions for cases in which 
responses are differentially or probabilistically rewarded.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online 
at http://www.frontiersin.org/behavioralneuroscience/paper/10.3389/
neuro.08/001.2010/

http://www.frontiersin.org/behavioralneuroscience/paper/10.3389/neuro.08/001.2010/
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