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There is compelling evidence that L-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) glutamate receptors containing the

GluR1 subunit contribute to the molecular mechanisms associated with learning. AMPA GluR1 glutamate receptor knockout mice (KO)

exhibit abnormal hippocampal and amygdala plasticity, and deficits on various assays for cognition including Pavlovian fear conditioning.

Here we examined associative fear learning in mice with complete absence (KO) or partial loss (heterozygous mutant, HET) of GluR1 on

multiple fear conditioning paradigms. After multi-trial delay or trace conditioning, KO displayed impaired tone and context fear recall

relative to WT, whereas HET were normal. After one-trial delay conditioning, both KO and HET showed impaired tone and context recall.

HET and KO showed normal nociceptive sensitivity in the hot plate and tail flick tests. These data demonstrate that the complete absence

of GluR1 subunit-containing receptors prevents the formation of associative fear memories, while GluR1 haploinsufficiency is sufficient to

impair one-trial fear learning. These findings support growing evidence of a major role for GluR1-containing AMPA receptors in amygdala-

mediated forms of learning and memory.
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INTRODUCTION
L-Alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) recep-
tors are postsynaptic hetero-oligomeric proteins composed of one or
more glutamate receptor GluR1—GluR4 subunits (Shi et al., 2001).
There is compelling evidence that AMPA receptors containing the GluR1
subunit play a critical role in the mediation of synaptic plasticity
(Collingridge et al., 2004; Lledo et al., 1998; Malinow and Malenka, 2002).
There are currently no pharmacological compounds to probe the specific
function of individual AMPA receptor subunits. However, studies with
GluR1 knockout mice (KO) demonstrate impairments in certain forms of
synaptic plasticity, including long-term potentiation, a putative molecular
mechanism for learning (Hoffman et al., 2002; Mack et al., 2001;
Zamanillo et al., 1999), and deficits in learning and memory performance
on a range of behavioral tasks (Johnson et al., 2005; Mead et al., 2005;

Mead and Stephens, 2003; Reisel et al., 2002; Schmitt et al., 2003;
Schmitt et al., 2004a; Schmitt et al., 2004b; Schmitt et al., 2005;
Zamanillo et al., 1999).

Pavlovian fear conditioning is a commonly used paradigm for
assessing associative learning and memory in rodents (Fanselow and
Poulos, 2005; LeDoux, 2000). GluR1-containing AMPA receptors are
highly expressed in rodent brain regions mediating fear learning including
the amygdala and hippocampus (McDonald, 1996; Zamanillo et al., 1999).
There is strong evidence of a critical role for GluR1-containing AMPA
receptors in the formation of fear memories using the Pavlovian
conditioning paradigm (Hu et al., 2007; Rumpel et al., 2005; Yeh et al.,
2006). Recently, Humeau and colleagues reported that GluR1 KO exhibited
impairments in LTP in the basolateral amygdala and deficient fear
conditioning using a multi-trial tone-shock protocol (Humeau et al., 2007).

In the present study, we sought to extend these findings by comparing
mice completely lacking GluR1 (KO) and mice with GluR1 haploinsuffi-
ciency (heterozygous, HET) on various forms of fear conditioning. In
addition to a standard multi-trial delay conditioning paradigm (Kim and
Fanselow, 1992), a one-trial paradigm was employed based on evidence
that pharmacologic and genetic inactivation of glutamate receptors can
preferentially impair learning following one-trial leaning (Bast et al., 2005;
Bonini et al., 2003; Cravens et al., 2006; Day et al., 2003; De Leonibus
et al., 2003; Dere et al., 2007; Nakazawa et al., 2003). Trace fear
conditioning was also tested. This is a hippocampal-mediated form of
associative fear learning (Kim et al., 1995; Misane et al., 2005) sensitive
to glutamate receptor inactivation (Huerta et al., 2000; Wanisch et al.,
2005). Previous work has shown that GluR1 KO mice are impaired on
hippocampal-mediated tasks, such as spatial learning in the T-maze (for
review, see (Bannerman et al., 2006).
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MATERIALS AND METHODS
Subjects
GluR1 mutant mice were generated as previously described (Zamanillo
et al., 1999). For the present behavioral study, GluR1 KO, HET, and WT
mice (�75% C57BL/6J) were littermates bred from HET� HET parents at
The Jackson Laboratory (Bar Harbor, ME) and transported to NIH at
�8 weeks of age in littermate groupings (Weidholz et al., 2007). Mice
were housed in same-sex littermate groupings in a temperature- and
humidity-controlled vivarium under a 12 hours light/dark cycle (lights on
0600 hours) and given 2-week acclimation before testing. Testing was
conducted during the light phase between 0900 and 1700. Separate
cohorts of mice were tested for multi-trial and one-trial delay conditioning
and multi-trial trace conditioning. Hot plate and tail flick testing was
conducted in a subset of mice. Males and females were used. The number
of animals tested is given in the figure legends. All experimental
procedures were performed in accordance with the National Institutes of
Health Guide for Care and Use of Laboratory Animals and were approved
by the local Animal Care and Use Committee.

Pavlovian fear conditioning
Multi-trial delay fear conditioning. Multi-trial delay fear conditioning
was conducted as previously described (Hefner and Holmes, 2007; Kim
and Fanselow, 1992). The apparatus was a 27� 27� 11 cm3 chamber
with transparent walls and a metal rod floor. The chamber was cleaned
between subjects with a 79.5% water/19.5% ethanol/1% vanilla extract
solution. After an initial 120 seconds acclimation period, the mouse
received four pairings (60–120 seconds interval after each pairing)
between a 30 seconds, 80 dB, 3 kHz tone and a 2 seconds, 0.6 mA
scrambled footshock, in which the tone was presented during the last
2 seconds of the shock. The presentation of stimuli was controlled by the
San Diego Instruments Freeze Monitor system (San Diego Instruments,
San Diego, CA). Twenty-four hours later, tone recall was tested in a
different room from training in a novel chamber with black/white-
checkered walls and a solid-Plexiglas, opaque floor cleaned between
subjects with a 50% ethanol/50% water solution. After a 180 seconds
acclimation period, the tone was continuously presented for 180 seconds.
Twenty-four hours later, context recall was tested by returning the mouse
to the training chamber for 5 minutes. Freezing during recall was defined
as the absence of any visible movement except that required for
respiration, and scored at 5 seconds intervals by an observer blind to
genotype. The number of observations scored as freezing were converted
to a percentage ([number of freezing observations/total number of
observations]� 100) for the analysis.

Multi-trial trace fear conditioning. Multi-trial trace fear conditioning
was conducted using the same procedure as used for multi-trial delay fear
conditioning, with the exception that there was a 15 seconds ‘‘trace’’
interval between cessation of the tone and the onset of the shock. Trace
conditioning using this interval is disrupted by hippocampus lesions in
C57BL/6J mice (Misane et al., 2005).

One-trial delay fear conditioning. One-trial delay fear conditioning
was conducted using the same procedure as for the multi-trial delay
paradigm with the exception that there was only one tone-shock pairing
and the shock intensity was increased slightly to 0.8 mA.

Nociception
Given an earlier finding that GluR1 KO mice exhibit reduced acute
inflammatory hyperalgesia and abnormal nociceptive plasticity in vitro
(Hartmann et al., 2004), the hot plate and tail flick assays were used to
test for nociception in vivo (Boyce-Rustay and Holmes, 2006). The hot
plate (Columbus Instruments, Columbus, OH) was heated to 558C, and the
latency to show a hind paw shake or lick was timed by an observer, with a
maximum response latency of 30 seconds to prevent possible tissue
damage. For the tail flick test, the mouse was placed in a restrainer with

the tail exposed to an intense light beam (Columbus Instruments tail flick
monitor, Columbus, OH). The latency to show a tail flick reflex was
recorded automatically by a photobeam monitor, with a maximum
response latency of 10 seconds to prevent possible tissue damage.

Statistics
The effect of genotype on conditioned freezing, and hot plate and tail flick
response scores were analyzed using analysis of variance followed by
Newman–Keuls post-hoc tests. Statistical significance was set at
p< 0.05.

RESULTS
Multi-trial delay fear conditioning
Following multi-trial delay fear conditioning, there was significant effect of
genotype for freezing during tone recall (F 2,42¼ 74.60, p< 0.01) and
during context recall (F 2,42¼ 23.19, p< 0.01). Newman–Keuls
post-hoc tests showed that KO but not HET showed significantly less
than WT during tone (Figure 1A) and context (Figure 1B) recall.

Multi-trial trace fear conditioning
Following multi-trial trace fear conditioning, there was significant effect
of genotype for freezing during tone recall (F 2,21¼ 6.76, p< 0.01).
Post-hoc tests showed that KO but not HET showed significantly less than
WT during tone (Figure 1C).

One-trial delay fear conditioning
Following one-trial delay fear conditioning, there was significant effect of
genotype for freezing during tone recall (F 2,33¼ 24.79, p< 0.01) and
during context recall (F 2,33¼ 9.66, p< 0.01; Figure 2B). Post-hoc tests
showed that KO and HET showed significantly less than WT during tone
(Figure 2A) and context (Figure 2B) recall.

Nociception
GluR1 KO and GluR1 HET mice showed normal nociceptive responses in
the hot plate test (WT¼ 11.5� 0.9 seconds to respond, HET¼
12.5� 1.2, KO¼ 9.7� 0.9) and tail flick test (WT¼ 2.0�
0.1 seconds to respond, HET¼ 2.2� 0.2, KO¼ 1.8� 0.1).

DISCUSSION
The principle finding of the present study was impaired Pavlovian fear
conditioning in mice completely lacking or deficient in the AMPA GluR1
subunit across a range of protocols. Humeau and colleagues (Humeau
et al., 2007) recently reported impaired fear conditioning in GluR1 KO
using a protocol comparable to the multi-trial delay protocol used in the
current study, in which mice received multiple concomitant tone-shock
pairings. In both studies, GluR1 KO exhibited less conditioned freezing to
tone and context than WT controls. Although GluR1 KO show reduced
acute inflammatory hyperalgesia (Hartmann et al., 2004), fear learning
deficits in the KO mice were not explained by a loss of sensitivity to pain,
as demonstrated by normal nociceptive responses in the hot plate and tail
flick assays and by the observation that KO exhibited jumping and
vocalizing during footshock. It is also unlikely that reduced fear behavior
was caused by abnormally low levels of anxiety-like behavior, as GluR1
KO has been found to show modest increases in these behaviors on
certain tests (Bannerman et al., 2004). Rather, impaired fear conditioning
is consistent with previous studies showing cognitive and executive
deficits in GluR1 KO on a variety of tests taxing processes ranging from
spatial working memory and reversal to control over drug seeking (for
reviews, see (Bannerman et al., 2006; Stephens and Mead, 2003)).

Current models posit that the lateral nucleus of the amygdala serves as
a convergence site for sensory and aversive information that is relayed
either directly or via the basal nucleus to the major output center of the
amygdala, the central nucleus, to drive conditioned fear behaviors
(Fanselow and LeDoux, 1999; Maren and Quirk, 2004). Humeau et al.,
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found markedly impaired thalamo-amygdala and cortico-amygdala LTP in
GluR1 KO. This is consistent with earlier work showing that fear
conditioning in the rat led to incorporation of GluR1-containing subunits in
thalamo-amygdala synapses and that blockade of this process via
infection of neurons with a GluR1-blocking viral vector prevented fear
memory formation (Rumpel et al., 2005; Yeh et al., 2006). Extending these
findings, very recent data show that GluR1 phosphorylation also mediates
the ability of norepinephrine to promote fear memory (Hu et al., 2007).
Taken together, abnormal amygdala plasticity provides a plausible
physiological candidate for the fear conditioning deficits observed in
GluR1 KO.

GluR1 KO were impaired on a (multi-trial) trace fear conditioning
paradigm that is sensitive to hippocampal inactivation in mice (Misane
et al., 2005). GluR1 KO mice are impaired on hippocampus-dependent
tasks such as T-maze spatial learning (Bannerman et al., 2006). Because
KO of GluR1 impairs both trace conditioning and delay conditioning, and
both forms of conditioning are amygdala-mediated (Fanselow and Poulos,
2005; LeDoux, 2000), the trace fear deficit is most parsimoniously
explained as further evidence of abnormal amygdala function in these
mice. However, the contribution of a hippocampal deficit to the trace
conditioning impairment in these mice cannot be excluded and would in
fact be congruent with previously observed GluR1 KO impairments in
hippocampal synaptic plasticity and hippocampal-mediated forms of
learning such as spatial working and reference memory (Mack et al.,
2001; Schmitt et al., 2005; Zamanillo et al., 1999).

Present data predict that loss of GluR1 function in amygdala neurons
would cause deficits in other cognitive tasks mediated by this brain region.
Interestingly in this context, Johnson and colleagues (Johnson et al.,
2005) reported that GluR1 KO failed to show reinforcer devaluation, a
phenomenon in which operant responding for a food reward is reduced by

sating the animal’s desire for the reward prior to testing (Balleine and
Dickinson, 1998). Reinforcer devaluation is impaired by basolateral
nucleus of the amygdala (BLA) lesions in rats (Hatfield et al., 1996).
Previous studies have also shown that GluR1 KO demonstrate intact
instrumental responding for reward, but are significantly slower to learn to
respond to a cue predictive of primary reward (Mead and Stephens, 2003).
Again, these behaviors are disrupted by lesions of the BLA (Everitt et al.,
2000) and by BLA-administration of the AMPA receptor antagonist CNQX
(Hitchcott and Phillips, 1997). Taken together, these findings provide
converging evidence of impairments in GluR1 KO across multiple forms of
amygdala-mediated learning. Further studies will be required, however, to
test fear conditioning in these mice under other conditions. For example, it
would be important to test whether the GluR1 KO deficit can be rescued by
overtraining (e.g., numerous or high shock conditioning trials), as has
been shown for other mutant fear conditioning deficits (e.g., (Bozon et al.,
2003; Jones et al., 2001; Kogan et al., 1997)).

An important finding was that GluR1 HET mice with GluR1
haploinsufficiency exhibited normal (WT levels) of tone and context fear
in both the multi-trial delay and trace fear conditioning paradigms, but
were significantly impaired on a one-trial delay fear conditioning
paradigm. The deficit was evident for both tone and context conditioning,
but lesser than that exhibited in GluR1 KO—indicative of a gene-dosage-
dependent phenotype. Thus, while complete loss of GluR1 severely
disrupts the formation of associative fear memories, partial loss of GluR1
appears to produce a more subtle fear-learning deficit that manifest after
a single learning event but which can be overcome when multiple learning
opportunities are available. Although the molecular underpinnings of such
a one-trial versus multi-trial dissociation are not clear, the relative lack of
a GluR1 in HET mice could be insufficient to permit the necessary rapid
synaptic incorporation of GluR1 during a one-trial learning event.

Figure 2. GluR1 KO and HET exhibit impaired one-trial delay fear conditioning. (A) KO and HET showed less freezing than WT during tone recall. (B) KO and
HET showed less freezing than WT during context recall. n¼ 10–13/genotype. Data are means� SEM. **p< 0.01, *p< 0.05 versus WT.

Figure 1. GluR1 KO but not HET exhibit impaired multi-trial delay and trace fear conditioning. (A) KO showed less freezing than WT during tone recall in the
multi-trial delay fear conditioning paradigm. (B) KO showed less freezing than WT during context recall in the multi-trial trace fear conditioning paradigm (n¼ 15/
genotype). (C) KO showed less freezing than WT during tone recall in the multi-trial trace fear conditioning paradigm (n¼ 6–12/genotype). Data are means� SEM.
**p< 0.01 versus WT.

GluR1 KO fear memory
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GluR1 KO rather than HET have been the focus of most studies in this
mutant line (Bannerman et al., 2006; Sprengel, 2006) and to our
knowledge, GluR1 HET mice have not previously been assessed for
cognitive function. Impaired one-trial fear conditioning in GluR1 HET is,
however, reminiscent of deficits in one-trial context fear conditioning in
mice lacking NMDA-NR1 receptors in the CA3 region of the hippocampus
(Cravens et al., 2006; Nakazawa et al., 2003). Interestingly, NR1-CA3 KO
mice also exhibit impairments in context fear conditioning when restricted
context-exposure forces the rapid formation of a mnemonic representa-
tion of the context (Cravens et al., 2006). A major question for future
studies therefore will be whether GluR1 HET are similarly impaired on
other tasks requiring rapid and memory formation.

CONCLUSION
In summary, the present study confirms and extends evidence of
impairments in the formation of associative fear memories following
disruption of GluR1-containing AMPA receptors. Complete loss of GluR1
led to a severe deficit in tone and context forms of delay and trace fear
conditioning. GluR1 haploinsufficiency produced a selective deficit on
one-trial delay conditioning. These data add support to the broader
hypothesis that the molecular mechanisms subserving learning and
memory involve GluR1-containing AMPA receptors (Collingridge et al.,
2004; Malinow and Malenka, 2002). A better understanding of the role of
GluR1 in the formation of emotional memory could ultimately have
important implications for understanding the pathophysiology and
therapeutic alleviation of neuropsychiatric disorder states ranging from
affective illness to addiction.
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(2007). A pathway-specific function for different AMPA receptor subunits in
amygdala LTP and fear conditioning. J. Neurosci. 27, 10947–10956.

Johnson, A. W., Bannerman, D. M., Rawlins, N. P., Sprengel, R., and Good, M. A. (2005).
Impaired outcome-specific devaluation of instrumental responding in mice with a
targeted deletion of the AMPA receptor glutamate receptor 1 subunit. J. Neurosci.
25, 2359–2365.

Jones, M. W., Errington, M. L., French, P. J., Fine, A., Bliss, T. V., Garel, S., Charnay, P.,
Bozon, B., Laroche, S., and Davis, S. (2001). A requirement for the immediate early
gene Zif268 in the expression of late LTP and long-term memories. Nat. Neurosci. 4,
289–296.

Kim, J. J., and Fanselow, M. S. (1992). Modality-specific retrograde amnesia of fear.
Science 256, 675–677.

Kim, J. J., Clark, R. E., and Thompson, R. F. (1995). Hippocampectomy impairs the
memory of recently, but not remotely, acquired trace eyeblink conditioned
responses. Behav. Neurosci. 109, 195–203.

Kogan, J. H., Frankland, P. W., Blendy, J. A., Coblentz, J., Marowitz, Z., Schutz, G., and
Silva, A. J. (1997). Spaced training induces normal long-term memory in CREB
mutant mice. Curr. Biol. 7, 1–11.

LeDoux, J. E. (2000). Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184.
Lledo, P. M., Zhang, X., Sudhof, T. C., Malenka, R. C., and Nicoll, R. A. (1998).

Postsynaptic membrane fusion and long-term potentiation. Science 279, 399–403.
Mack, V., Burnashev, N., Kaiser, K. M., Rozov, A., Jensen, V., Hvalby, O., Seeburg, P. H.,

Sakmann, B., and Sprengel, R. (2001). Conditional restoration of hippocampal
synaptic potentiation in Glur-A-deficient mice. Science 292, 2501–2504.

Malinow, R., and Malenka, R. C. (2002). AMPA receptor trafficking and synaptic
plasticity. Annu. Rev. Neurosci. 25, 103–126.

Maren, S., and Quirk, G. J. (2004). Neuronal signalling of fear memory. Nat. Rev.
Neurosci. 5, 844–852.

McDonald, A. J. (1996). Localization of AMPA glutamate receptor subunits in
subpopulations of non-pyramidal neurons in the rat basolateral amygdala. Neurosci.
Lett. 208, 175–178.

Mead, A. N., and Stephens, D. N. (2003). Selective disruption of stimulus-reward
learning in glutamate receptor gria1 knock-out mice. J. Neurosci. 23, 1041–
1048.

Mead, A. N., Brown, G., Le Merrer, J., and Stephens, D. N. (2005). Effects of
deletion of gria1 or gria2 genes encoding glutamatergic AMPA-receptor subunits
on place preference conditioning in mice. Psychopharmacology (Berl) 179, 164–
171.

Misane, I., Tovote, P., Meyer, M., Spiess, J., Ogren, S. O., and Stiedl, O. (2005). Time-
dependent involvement of the dorsal hippocampus in trace fear conditioning in mice.
Hippocampus 15, 418–426.

Nakazawa, K., Sun, L. D., Quirk, M. C., Rondi-Reig, L., Wilson, M. A., and Tonegawa, S.
(2003). Hippocampal CA3 NMDA receptors are crucial for memory acquisition of
one-time experience. Neuron 38, 305–315.

Reisel, D., Bannerman, D. M., Schmitt, W. B., Deacon, R. M., Flint, J., Borchardt, T.,
Seeburg, P. H., and Rawlins, J. N. (2002). Spatial memory dissociations in mice
lacking GluR1. Nat. Neurosci. 5, 868–873.

Rumpel, S., LeDoux, J., Zador, A., and Malinow, R. (2005). Postsynaptic receptor
trafficking underlying a form of associative learning. Science 308, 83–88.

Feyder et al.

4
Frontiers in Behavioral Neuroscience | December 2007 | Volume 1 | Article 4



Schmitt, W. B., Deacon, R. M., Seeburg, P. H., Rawlins, J. N., and Bannerman, D. M.
(2003). A within-subjects, within-task demonstration of intact spatial reference
memory and impaired spatial working memory in glutamate receptor-A-deficient
mice. J. Neurosci. 23, 3953–3959.

Schmitt, W. B., Arianpour, R., Deacon, R. M., Seeburg, P. H., Sprengel, R., Rawlins, J. N.,
and Bannerman, D. M. (2004a). The role of hippocampal glutamate receptor-
A-dependent synaptic plasticity in conditional learning: the importance of
spatiotemporal discontiguity. J. Neurosci. 24, 7277–7282.

Schmitt, W. B., Deacon, R. M., Reisel, D., Sprengel, R., Seeburg, P. H., Rawlins, J. N., and
Bannerman, D. M. (2004b). Spatial reference memory in GluR-A-deficient mice using
a novel hippocampal-dependent paddling pool escape task. Hippocampus 14, 216–
223.

Schmitt, W. B., Sprengel, R., Mack, V., Draft, R. W., Seeburg, P. H., Deacon, R. M.,
Rawlins, J. N., and Bannerman, D. M. (2005). Restoration of spatial working
memory by genetic rescue of GluR-A-deficient mice. Nat. Neurosci. 8, 270–
272.

Shi, S., Hayashi, Y., Esteban, J. A., and Malinow, R. (2001). Subunit-specific rules
governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons.
Cell 105, 331–343.

Sprengel, R. (2006). Role of AMPA receptors in synaptic plasticity. Cell Tissue Res. 326,
447–455.

Stephens, D. N., and Mead, A. N. (2003). What role do GluR1 subunits play in drug abuse?
Trends Neurosci. 26, 181–182; Author reply 182–183.

Wanisch, K., Tang, J., Mederer, A., and Wotjak, C. T. (2005). Trace fear conditioning
depends on NMDA receptor activation and protein synthesis within the dorsal
hippocampus of mice. Behav. Brain Res. 157, 63–69.

Weidholz, L. M., Owen, A. M., Horton, R. E., Feyder, M., Karlsson, R. M., Hefner, K.,
Sprengel, R., Ceikel, T., Daws, L. C., and Holmes, A. (2007). Mice lacking the AMPA
GluR1 receptor exhibit striatal hyperdopaminergia and ‘schizophrenia-related’
behaviors. Mol. Psychiatry DOI:10.1038/sj.mp.4002056.

Yeh, S. H., Mao, S. C., Lin, H. C., and Gean, P. W. (2006). Synaptic expression of
glutamate receptor after encoding of fear memory in the rat amygdala. Mol.
Pharmacol. 69, 299–308.

Zamanillo, D., Sprengel, R., Hvalby, O., Jensen, V., Burnashev, N., Rozov, A., Kaiser, K.
M., Koster, H. J., Borchardt, T., Worley, P., Lubke, J., Frotscher, M., Kelly, P. H.,
Sommer, B., Andersen, P., Seeburg, P. H., and Sakmann, B. (1999). Importance of
AMPA receptors for hippocampal synaptic plasticity but not for spatial learning.
Science 284, 1805–1811.

GluR1 KO fear memory

5
www.frontiersin.org


