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A number of theories have been put forward to explain the 
neural mechanisms underlying imitative facilitation. These the-
ories fall into two categories, specialist and generalist (Brass and 
Heyes, 2005). Specialist theories of imitation, such as the active 
inter-modal mapping (AIM) theory (Meltzoff and Moore, 1977), 
propose that a special-purpose imitation system is engaged during 
the observation of human actions. Data from recent experiments 
suggests that the IFG does indeed play a specifi c role in the imitation 
of biological movements (Heiser et al., 2003). Generalist theories, 
such as associative sequence learning theory (ASL), assume that 
imitation is based on general-purpose learning and motor control 
mechanisms (Heyes, 2001; Brass and Heyes, 2005). While consistent 
with the generalist perspective, other recent experiments have failed 
to show preferential activation of the IFG during observation of 
human actions (Jonas et al., 2007). One way to examine the validity 
of these two theories is to compare responses to external cues which 
can evoke motor resonance (e.g. biological stimuli such as hands) 
to those that cannot (e.g. non-biological stimuli, such as geometric 
shapes), while disrupting processing in the IFG.

Here, we combined an imitation grasping paradigm with an 
online ‘virtual lesion’ approach (Walsh and Rushworth, 1999) to 
examine the role of the IFG in the facilitation of actions triggered by 
biological and non-biological cues (Figure 1). TMS pulses  delivered 
over the left and right IFG transiently disrupted the coupling between 
observed and executed actions. We predicted that stimulation of the 
IFG would disrupt action planning. Furthermore, we investigated 
the validity of specialist and generalist based explanations of imita-
tive facilitation by comparing the pattern of responses in biologically 

INTRODUCTION
A well-studied phenomenon in the motor literature is that humans 
are faster to execute a movement after observing another actor make 
the same movement even in cases where the observed action is 
irrelevant to the task (Brass et al., 2000, 2001; Sturmer et al., 2000; 
Craighero et al., 2002). In the typical experiment of this variety, 
participants observe a simple fi nger/hand movement being made by 
an actor and then respond by either generating the same (congru-
ent) or a different (incongruent) action. Reaction times following 
presentation of congruent stimuli are normally found to be faster 
than those following presentation of incongruent stimuli. Results 
from neuroimaging and virtual lesion experiments suggest that 
the mirror neuron system (MNS), particularly the inferior frontal 
gyrus (IFG), plays an important role in perception–action coupling 
proposed to underlie imitation in general (Iacoboni et al., 1999, 
2001; Kilner et al., 2003, 2009; Buccino et al., 2004; Molnar-Szakacs 
et al., 2005). More recent experiments have linked activity in the 
IFG to response facilitation (Heiser et al., 2003; Newman-Norlund 
et al., 2007) as well as stimulus–response compatibility and spatial 
attention effects which are thought to, in some cases underlie this 
phenomenon (Dassonville et al., 2001). Despite numerous stud-
ies on the topic, the exact neural mechanisms underlying imita-
tive facilitation still remain unclear (Brass et al., 2005; Makuuchi, 
2005; Hurley, 2008). In particular, there is some controversy about 
the exact functional role of the IFG in translating perception into 
subsequent actions (Jacob and Jeannerod, 2005; Makuuchi, 2005; 
Hamilton and Grafton, 2008), as well as possible functional differ-
ences between its left, right, dorsal and ventral subdivisions.
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and non-biologically cued trials. While specialist theories predict 
superior reaction times in response to biological stimuli, generalist 
theories would be consistent with either (i) superior reaction times to 
biological stimuli (this might result from associative learning) or (ii) 
statistically similar reaction times to biological and non- biological 
stimuli. We show that the delivery of TMS pulses to the IFG during 
movement preparation disrupts the typical imitative facilitation in 
both biologically and non-biologically cued conditions.

MATERIALS AND METHODS
Sixteen right-hand dominant (Oldfi eld, 1971) healthy adults 
(19–27 years, mean = 21.5; six males) with normal or corrected-
to-normal vision participated in the experiment. Prior to the start 
of the experiment participants provided their written informed 
consent and were screened to rule out any history of neurologi-
cal, psychiatric and medical illness, or contra-indications to TMS. 
Participants were selected from an initial pool of 27 candidates 
which had been invited for a pre-test session. During the pre-test we 
assessed their active motor threshold and their subjective sensitivity 
to TMS pulses delivered over the IFG. For the actual experiment, 
we selected the sixteen subjects with the lowest active motor thresh-

olds. The purpose of the pre-test was two-fold. First, we ensured 
that subjects were comfortable with our TMS stimulation protocol 
before exposing them to extensive testing. Second, we minimized 
the potentially confounding effect of facial muscle twitches typically 
observed during IFG stimulation (Pobric and Hamilton, 2006). The 
protocol was approved by the local ethics committee in accordance 
with the declaration of Helsinki. Volunteers were compensated for 
their participation at the rate of 17 € per hour.

TESTING PROCEDURE
Participants were seated at a table facing a computer monitor 
mounted on a wall bracket at a distance of approximately 70 cm. A 
chin rest was used to minimize subjects’ head movements through-
out the experiment. A centrally located response-box, fi xed on the 
table in front of the participant, served as a starting position for 
their right index fi nger. In front of the response-box, at a distance of 
approximately 27 cm, a custom made touch-sensitive manipulan-
dum van Schie et al. (2008), was secured to the table. The manipu-
landum consisted of a small cylinder (r = 0.8 cm, height = 1.80 cm) 
on top of a larger cylindrical base (r = 3.00 cm, height = 8.00 cm) 
that could be grasped in two possible ways. The small and large 

FIGURE 1 | (A) Experimental setup. Participants viewed stimuli presented on a 
screen directly in front of them. Responses were made using the right hand 
only. (B) Examples of stimuli used in the biological and non-biological conditions. 
Biological stimuli consisted of still photographs in which an actor grasped the 
manipulandum with their right hand using either a precision or a power grip. 

Actions in the non-biological condition were cued by the presentation of a red 
dot on the aspect of the large or small cylinder. In congruent trials, participants 
copied the grip and gripped the cylinder with the red dot respectively. In 
incongruent trials, participants performed the opposite grip or gripped the 
cylinder without a dot respectively.
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cylinders could be grasped with a precision and power grip, 
 respectively. All stimuli were presented using Presentation software 
version 11.3 (Neurobehavioral Systems, Davis, CA, USA), running 
on a Pentium IV PC. Both the response-box and the manipulandum 
were connected to the PC to detect in each trial: (i) the precise time 
at which the start button was released following presentation of the 
imperative stimulus, (ii) the time at which the object was grasped, 
and (iii) the end-position of the grasp. From this information we 
were able to calculate reaction time (RT), movement time (MT) 
and the manner in which the object was grasped (power or preci-
sion grip).

Participants performed eight blocks of forty trials each. These 
blocks constituted a 2 (congruent, incongruent) × 4 (control sites: 
sham and vertex, IFG sites: right and left) design in which partici-
pants performed incongruent and congruent actions while receiv-
ing TMS at each of the four stimulation sites. In the congruent task 
block, participants were instructed to grasp the part of the manipu-
landum indicated by the target stimulus. In the incongruent task 
block, they were asked not to grasp the part of the manipulandum 
indicated by the target stimulus (i.e., to grasp the other part). The 
order of these blocks was counterbalanced across subjects using a 
Latin squares design. Every block consisted of twenty trials of each 
cue type (biological, non-biological).

Each trial started with the participant’s right index fi nger press-
ing down on the start button of the response-box. First, a fi xation 
cross appeared on the screen which served as a temporal jitter 
(3000–5000 ms) followed by a 1000 ms warning stimulus show-
ing the torso and upper arms of an actor in a resting position fac-
ing the manipulandum (see Figure 2). Then, the target stimulus 
appeared and remained on until the computer recorded a grasp-
ing response. The target was chosen pseudo-randomly from the 
two biological and two symbolic stimuli. Biological target stimuli 
consisted of static pictures of the hand appearing on the manipu-
landum. Presentation of these stimuli resulted in apparent motion 
and the perception that the hand moved towards and grasped the 
manipulandum. The observed grip was either a precision grip or 
a full grip. Symbolic target stimuli consisted of a red dot which 
appeared either on the small top cylinder or the larger cylindri-
cal base. In order to prevent on-line switches in their movement, 
participants were instructed to only initiate the movement when 

they were certain that the planned grasp was the correct one. All 
movements were made with the right hand. Following movement 
execution, participants returned their hand to the start position 
for the next trial.

TRANSCRANIAL MAGNETIC STIMULATION PROTOCOL
The MNI coordinates (41, 15, and 32) for the right IFG stimulation 
site were determined using data from a previous fMRI experiment 
that used the same grasping paradigm as the current experiment 
(Newman-Norlund et al., 2007). Activation from the statistical 
parametric map (SPM) based on a random effects analysis of 19 
subjects indicated a common reliance of S–R coupling for con-
gruent and incongruent actions on the IFG (Newman-Norlund 
et al., 2007). This statistical map was reverse normalized to indi-
vidual subject’s high resolution T1 scans obtained prior to the 
TMS session. The stimulation site for the left IFG site was deter-
mined by fl ipping the coordinates of the right IFG along the y 
axis. Additionally, we used two TMS control conditions. Sham 
stimulation was used to control for the clicking sound produced 
by the TMS pulses. For the sham condition, the coil was placed 
4–5 cm above the primary motor cortex, resulting in the same 
sound as during IFG stimulation, but without cortical effects of 
the pulses. To control for any general, non-specifi c effects of TMS 
application we chose the vertex site, defi ned on individual bases 
as the meeting point of the post-central gyri from the both hemi-
spheres (Ruff et al., 2006).

TMS was delivered using a 70 mm fi gure-of-eight coil connected 
to a Magstim Super Rapid Stimulator (Magstim, Whitland, UK). At 
the beginning of each block the coil was positioned over one of the 
four target sites using the subject’s T1 scans in combination with 
a frameless stereotaxy system (Brainsight TMS, Rogue Research; 
Montreal, Canada). The coil was held tangential to the scalp with 
its handle pointing backwards and fi xed with a mechanical arm. 
During the experimental blocks the coil position was monitored 
continuously and adjusted whenever its distance to the target posi-
tion exceeded 5 mm.

On each trial a triplet of TMS pulses was applied. The pulses 
were spaced at an interval of 100 ms and were delivered at 30–130–
230 ms following target stimulus onset. This timing of this pulse 
train was designed to maximally impair movement preparation. 
Based on the assumption that the effect of single TMS pulses within 
a triplet lasts less than 100 ms (Sack et al., 2005), it is unlikely that 
the stimulation protocol infl uenced movement execution. Pulse 
intensity was set to 100% of the subject’s active motor threshold. 
The active motor threshold was determined from the fi rst dorsal 
interosseus muscle while the subject maintained a slight voluntary 
contraction. Active motor threshold was defi ned as the lowest level 
of stimulation that produced at least three motor-evoked potentials 
of > 200 µV, out of fi ve consecutive stimulations. The stimulation 
intensities used during the actual experiment ranged from 37% to 
52% (average 44.7%) of maximum stimulator output (2.0 T).

RESULTS
TRIAL EXCLUSION
From the original 5120 trials from sixteen subjects, 5.8% were 
excluded due to erroneous responses (1.6% start button error, 
4.2% incorrect responses). From the remaining 4822 trials with 

FIGURE 2 | Time course of a single trial in the current experiment. 

Participants began with their fi nger on a centrally located start button. 
Following presentation of a critical go-cue (biological or non-biological), 
participants prepared and executed the appropriate movement. TMS pulses 
were delivered 30, 130 and 230 ms post-stimulus. After gripping the 
manipulandum participants returned their fi nger to the start button and 
awaited presentation of the subsequent trial.
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the correct responses, 2.2% were excluded as outliers (0.3% due 
to reaction times and MTs less than 100 ms and greater than 
1200 ms; 1.9% due to reaction times and MTs 2.5 SD cutoff 
for each subject for each individual block). The remaining cor-
rect trials were subjected to a three way (2 × 2 × 2) repeated-
 measures ANOVA on mean reaction times and mean movement 
times. Because the effects of sham and vertex stimulation were 
statistically indistinguishable, these conditions were collapsed 
into a single ‘control’ condition. We used cue type (biological, 
non- biological), TMS stimulation (IFG, control) and action 
congruency (congruent, incongruent) as within subjects’ fac-
tors. Analysis of MTs results did not yield any signifi cant inter-
actions and showed only a signifi cant main effect of cue type 
(F

(1, 15)
 = 4.78; P < 0.05) indicating shorter MTs for biologically 

cued movements (mean = 504, SD = 97) as compared to non-
biologically cued movements (mean = 510, SD = 94). In the 
following we focus mainly the RT results and do not discuss 
MT results in greater detail due to our predictions being on the 
level of response times and the fact that we found no signifi cant 
interaction effects in the MT results.

REACTION TIMES ANOVA
The main effect of cue type was signifi cant (F

(1, 15)
 = 22.80; P < 0.001), 

indicating faster reaction times for non-biological (mean = 468, 
SD = 61) as compared to biological targets (mean = 484, SD = 60). 
The main effect of action congruency also showed a signifi cant 
effect (F

(1, 15)
 = 5.39; P < 0.05), with participants showing an overall 

faster reaction as compared to the congruent trials (mean = 470, 
SD = 66) than in the incongruent trials (mean = 483, SD = 57). 
The main effect of TMS stimulation failed to reach signifi cance 
(F

(1, 15)
 = 2.96; P = 0.11).

Our exploration of two-way interactions revealed a signifi cant 
interaction effect between TMS stimulation and action congru-
ency (F

(1, 15)
 = 6.81; P < 0.05). Specifi cally, this indicated that TMS 

stimulation of IFG abolished the RT facilitation effect observed in 
congruent trials with control TMS stimulation (Figure 3, Figure S1 
in Supplementary Material). We found no interaction between TMS 
stimulation and cue type (F

(1, 15)
 = 0.14; P = 0.72), indicating no 

differential effect of TMS on condition (biological, non- biological). 
Furthermore, we found no signifi cant interaction between cue type 
and congruency (F

(1, 15)
 < 1; P = 0.97) demonstrating that biological 

and non-biological cues did not differentially infl uence the pat-
tern of reaction times observed in the congruent and incongruent 
conditions.

In order to further specify the effects of TMS on action con-
gruency we ran post hoc t-tests comparing reaction times in the 
congruent and incongruent trials separately for the biological 
and non- biological conditions. Analysis of biologically cued tri-
als revealed a signifi cant facilitation of responses by 28 ± 7.4 ms 
(mean ± SEM; t

15
 = −3.75; P < 0.005) for congruent trials relative 

to incongruent trials during control TMS. Similarly, the results 
from the non- biological condition also revealed a facilitation effect 
of 25 ± 6.0 ms (mean ± SEM; t

15
 = −4.18; P < 0.005) for congru-

ent trials as compared to the incongruent trials during control 
TMS. Crucially, this reaction time advantage disappeared during 
stimulation of the IFG in both the biological (t

15
 < 1; P = 0.80) and 

non-biological conditions (t
15

 < 1; P = 0.97; Figure 3).

DISCUSSION
SPECIALIST VERSUS GENERALIST THEORIES OF 
PERCEPTION–ACTION COUPLING
The major goal of the current experiment was to examine the 
neural and functional mechanisms underlying imitative response 
facilitation. Here, we explicitly tested the validity of two classes of 
theories, specialist and generalist, which have been proposed to 
explain this phenomenon. Consistent with the experiments indi-
cating a critical role of the left and right IFG in perception–action 
coupling (Iacoboni et al., 2001; Buccino et al., 2004; Aziz-Zadeh 
et al., 2006; Newman-Norlund et al., 2007) triple-pulse TMS over 
both the left and right IFG sites abolished the imitative facilitation 
effect. Critically, we demonstrate that the IFG is equally involved 
the preparation of responses following observation of both bio-
logical and non- biological stimuli. This was evident from the same 
general pattern of reaction times we observed in biologically and 
non- biologically cued trials. The fact that the processing of bio-
logical and non-biological stimuli was not differentially effected 
by disruption of IFG argues strongly against specialist theories of 
imitation and is more compatible with theories positing a more 
fl exible role of MNS in perception–action coupling required for 
the preparation of movements cued by external stimuli.

One previous experiment using on-line repetitive TMS to disturb 
processing in the IFG during imitation found a differential effect 
of TMS stimulation on error rates for biologically and non-bio-
logically cued movements (Heiser et al., 2003). Specifi cally, they 

FIGURE 3 | (A) Reaction times to incongruent and congruent cues during 
stimulation of IFG and control sites. Reaction times were faster to congruent 
stimuli in control conditions. This effect was abolished following application of 
TMS to the IFG site. (B) The pattern of results was identical in non-biological 
trials. Notably, reaction times were, in general, faster in response to non-
biological as compared to biologically cued trials. Collapsed across cue type 
and congruency, responses following application of TMS to right IFG were 
signifi cantly slower than responses following TMS to a homologous area in 
the left hemisphere.
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found a greater error rate for biological trials following both left 
and right TMS in comparison to control TMS trials. This fi nding is 
entirely consistent with our reaction time results for biological trials 
indicating that normal IFG activity is crucial for perception–action 
coupling during imitation of biological actions. In contrast to our 
results, Heiser and colleagues found no differential effect of rTMS 
stimulation of the IFG on error rates in a non-biological condition. 
This led the authors to conclude that disruption of the IFG interfered 
with a mechanism specifi cally involved in imitation. However, it has 
been suggested that in explaining results of imitation paradigms the 
biological properties of a stimulus may be less important than task 
specifi c requirements which are embedded in the experimental con-
text (Pobric and Hamilton, 2006; Jonas et al., 2007). Consistent with 
this proposal, discrepancies between the current and previous fi nd-
ings could be explained by methodological differences between the 
two experiments. In their biological condition (imitation), Heiser 
et al. (2003) presented short video clips of two sequential fi nger 
presses which had to be imitated. In the non-biological condition 
(control) the participants had to respond to a red dot which would 
appear over a sequence of two keys. Here, the position of the dot 
was always spatially compatible with the moved fi nger. In the imita-
tion condition, participants were instructed to make their fi rst key 
press using the same fi nger used by the actor. In these trials, the 
location of the participants’ fi nger and the spatial location of the 
key being pressed on the keyboard were not always spatially compat-
ible. Arguably, this confound in the spatial congruency between the 
two conditions could account for the differential reliance on IFG 
processing found in imitation and control tasks. Furthermore, dif-
ferences between the present and previous fi ndings from Heiser et al. 
(2003) could be due to the exact location of TMS delivery within 
the IFG. We targeted the dorsal portion of pars opercularis which 
is thought to be the best candidate for translating visual to motor 
information, since it has been found to be active during both execu-
tion and observation of imitative actions (Molnar-Szakacs et al., 
2005). In comparison, Heiser et al. (2003) targeted a more ventral 
portion of pars opercularis which, in the same meta-analysis, did not 
exhibit mirror-like responses. Future experiments might evaluate 
the roles of different portions of pars opercularis by delivering TMS 
at multiple sites along the dorsal–ventral axis of pars opercularis 
during similar tasks.

While TMS clearly had an effect on reaction times to congruent 
stimuli, reaction times to incongruent stimuli in the TMS condi-
tions were not different from reaction times to incongruent stimuli 
in the control conditions. This is similar to results from Heiser 
and colleagues who found that TMS pulses delivered over left and 
right IFG impaired performance on an imitation task, but not on a 
comparable control task (Heiser et al., 2003). These results strongly 
imply that disruption of the IFG selectively impairs a neural mecha-
nism that is highly specifi c to imitation. The fact that incongruent 
trials were unaffected by TMS in the present experiment suggests 
that this imitation mechanism was not required for their success-
ful completion. This result may also be related to higher cognitive 
demands in the incongruent condition (refl ected in the RTs differ-
ence between the two conditions). Specifi cally, it may be the case 
that the top–down control processes engaged to overcome interfer-
ence arising during incongruent trials are responsible for the lack 
of effect (Badre and Wagner, 2006; Brass et al., 2009).

BIOLOGICALLY VERSUS NON-BIOLOGICALLY CUED RESPONSES
In the current experiment, reaction times were faster for non-
 biologically as compared to biologically cued stimuli. Previous 
experiments in which movement execution was cued using biologi-
cal and non-biological cues found the opposite effect, with actions 
cued by natural stimuli eliciting signifi cantly faster reaction times 
(Brass et al., 2000; Jonas et al., 2007). The inconsistency between 
our results and prior behavioral results is mirrored in the con-
fl icting results of recent neuroimaging investigations comparing 
neural responses to biological and non-biological stimuli. Some 
data support the idea that biological movements bias the motor sys-
tem in a fundamentally different way than non-biological motions 
(Iacoboni et al., 1999; Stevens et al., 2000; Perani et al., 2001; Heiser 
et al., 2003; Kilner et al., 2003; Tai et al., 2004; Kessler et al., 2006). 
Other data, however, fi nd that observation of biological and non-
biological stimuli (e.g. robot actions) activates largely overlapping 
neural structures (Gazzola et al., 2007) with one experiment fi nding 
no differences in mirror areas when imitation was prompted by 
biological and non-biological cues (Jonas et al., 2007). Consistent 
with the latter view, a recent study by Jansson et al. (2007) suggests 
that many of the behavioral differences originally attributed to 
preferential processing of biological stimuli can be explained by 
physical differences between stimuli, including but not limited to 
differences in saliency and the degree of congruence between stimuli 
and response. In their study, when biological and symbolic action 
cues were carefully matched in the visual dimension, comparable 
cueing effects were found for both conditions (Jansson et al., 2007). 
Consistent with this line of reasoning, the red dots used in the non-
biological condition in the present experiment may have been more 
salient than the hands in the biological condition.

INTERPRETATIONAL CAVEATS
One obvious difference between the present study and previous 
empirical investigations of imitative facilitation, is that, here, we 
used a randomized design in which biological and non-biological 
cues were intermixed within a single experimental block. Previous 
experiments typically had both types of cueing in separate blocks. 
One possibility is that the strategy of selectively attending to spatial 
aspects of the symbolic cues infl uenced the distribution of spatial 
attention in the biological condition. That is, in the context of 
the present task hand-cues may have been be less effi cient than 
dot stimuli in directing attention to the location for grasping (e.g. 
because hands are less spatially confi ned). We cannot rule out the 
possibility that, had these conditions been run in separate blocks, 
alternative strategies may have developed.

A second possible issue regarding our interpretation of the cur-
rent data involves the nature of the facilitation effects we report. 
Previous experiments have distinguished between facilitation 
effects related to spatial congruency and movement congruency 
(Brass et al., 2000; Press and Heyes, 2008; van Schie et al., 2008). 
The primary concern here is that the facilitation effects observed 
in the current experiment may simply refl ect the spatial congru-
ency between stimulus and response, and thus not necessarily be 
related to movement imitation per se. This could explain why the 
results were similar in the biological and non-biological condi-
tions. Although one previous behavioral experiment using a 
similar gripping paradigm (van Schie et al., 2008) found evidence 
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consistent with the presence of both spatial and movement based 
 compatibility effects, the current experiment did not include the 
necessary conditions to make the same comparison. Indeed, it is dif-
fi cult to disentangle the neural representations of these congruency 
effects. One possibility, consistent with a recent proposal by Press 
et al. (2005), is that both types of compatibility effects result from 
the same associative learning process, a process in which, according 
to the present fi ndings, the IFG appears to play a critical role.

SUMMARY
In the present experiment we investigated the validity of two 
general classes of theories, specialist and generalist, capable of 
explaining imitative facilitation using a grasping paradigm in 
which participants produced congruent or incongruent actions 
in response to biological or non-biological cues. Facilitation of 
congruent actions was abolished by ‘virtual lesions’ of the IFG. 
Critically, this pattern of disruption was identical whether actions 
were triggered by biological or non-biological cues. This fi nd-
ing argues against theoretical models of imitation in which the 
IFG is hypothesized to play a special role in the processing of 

human stimuli. It is more consistent with the proposal that the 
IFG subserves the more general purpose of perception–action 
coupling (Liepelt et al., 2008). Overall, the present fi ndings stress 
the notion that the IFG supports a general perception–action 
coupling mechanism necessary for linking our own actions to 
events perceived in the environment, whether they are biological 
actions or not.
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