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Arguments against altruistic interpretations of experimentally 
observed behaviour include suggestions that individuals do not 
understand the rules of the game, are prone to misbelieve they (or 
their kin) will interact with opponents again in the future, or falsely 
infer they are being secretly observed and accordingly act to pre-
serve their reputation in the eyes of experimenters (Smith, 1976). 
However, the widespread observation of altruism (both rewarding 
and punishing) across cultures (Henrich et al., 2001), and within 
meticulously designed experiments conducted by behavioural 
economists provide compelling support for its presence as a clear 
behavioural disposition. Furthermore, in fMRI experiments, altru-
istic actions correlate with brain activity, suggesting that they derive 
from some sort of intended or motivated behaviour and are not an 
expression of mere ‘effector noise’ (i.e. decision error) (de Quervain 
et al., 2004).

The very existence of altruism raises the diffi cult question as to 
why evolution has allowed otherwise highly sophisticated brains 
to behave so selfl essly. This directs attention towards the decision-
making systems that subserve economic and social behaviour (Lee, 
2006, 2008; Behrens et al., 2009), and questions whether they are 
structured in such a way that yields altruism either inadvertently, 
or necessarily. The broader consequence is that if they do, then this 
reframes the question regarding the ultimate (evolutionary) causes 
of altruism towards the evolution of these very decision systems, 
and away from the phenomenological reality of altruism per se.

In this paper, we fi rst review the structure of distinct human 
decision-making systems by considering a goal-directed (cognitive) 
system, a habitual system, and an innate (Pavlovian) action system 
and their interactions. We consider how these systems might oper-
ate in social contexts where the key problem is how to make optimal 
decisions when outcomes depend on the uncertainty associated 
with other agents and their motives. In the face of such compu-
tational complexity, we then consider how optimal actions can 

INTRODUCTION
Many social interactions are self-benefi cial if we behave positively 
and pro-cooperatively towards others. Opportunities to benefi t 
from cooperation are widespread, and refl ect the extrinsic fact that 
the natural environment is often best harvested, insofar as rewards 
can be accrued and threats avoided, by working together. But the 
decision to cooperate is not always straightforward, as in some 
situations it leaves us vulnerable to exploitation by others.

Game theory specifi es a set of potential social interactions in which 
outcomes of cooperation and defection systematically differ, allowing 
both experimentalists and theoreticians to probe an individual’s pro-
pensity for cooperation in different situations (Camerer, 2003). These 
outcomes typically vary in the extent to which competitive actions 
may seem preferable and where a short-sighted temptation to exploit 
the cooperativeness of others has a capacity to subvert cooperation 
later. Fortunately, the ability to look beyond the immediate returns of 
defection towards longer-term cooperation allows humans to escape 
from otherwise competitive equilibria, and this can be viewed as a 
hallmark of rational, sophisticated behaviour.

However, humans appear to behave positively towards each 
other in situations in which there is no capacity to benefi t from 
long-term cooperation: for instance, when they play single games 
in which they never meet the same opponent again, and when their 
identities are kept anonymous (Fehr et al., 1993; Berg et al., 1995; 
Fehr and Fischbacher, 2003). This removes the capacity for both 
direct reciprocity (tit-for-tat) (Trivers, 1971; Axelrod, 1984), and 
the ability to earn a cooperative and trustworthy reputation that can 
be communicated by a third-party (Harbaugh, 1998; Bateson et al., 
2006; Ariely and Norton, 2007). Furthermore, they will do this even 
if it is costly to themselves (Xiao and Houser, 2005; Henrich et al., 
2006). From an economic perspective this appears to be genuinely 
altruistic, being strictly irrational since it incurs a direct personal 
cost with no conceivable long-term benefi t.
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be approximated by habit-based decision-making when outcomes 
are reliably predicted. In this context – through habits –  altruism 
emerges as a consequence of a net economy of computational 
cost. We also consider the problem of evaluating the best policy 
when the payoff matrix is unknown but where individuals have 
an opportunity to learn from others. Observational learning rests 
upon inferences that might utilise such conspicuous attributes as 
their personal wealth. We frame observation as an inverse reinforce-
ment learning problem, and consider value functions (including 
goals and subgoals) that are inferred from others actions, as well as 
by simpler strategies such as imitation. Notably, with incomplete 
information – a consequence of not being around to observe the 
long-term benefi ts of pro-cooperative behaviours, altruistic out-
comes may be inferred as surrogate goals. In this context, altruism 
arises through optimal inference with incomplete information.

THE ARCHITECTURE OF DECISION-MAKING
Studies of decision-making in behavioural neuroscience and psy-
chology have tended to concentrate on elemental decision-making 
problems, such as reward accrual in simple, stochastic, non-social 
environments. This enterprise has been very successful and has 
combined ingenious experimental designs with more classical focal 
brain lesion paradigms to yield insights into the underlying struc-
ture of decision-making systems. One key emerging insight is the 
likelihood that there is no singly monolithic decision-making sys-
tem in the brain. Indeed, the best evidence suggest there are at least 
three distinct decision-making systems comprising a goal-directed, 
habitual, and innate (Pavlovian) system – with behavioural control 
being an admixture of cooperation or independence (Dickinson 
and Balleine, 2002; Dayan, 2008).

Goal-directed decision-making systems function by building an 
internal model of the environment. In the simplest case this may 
simply involve representing the identity of the expected outcome. 
In more complicated instances, it involves detailed knowledge 
of the structure of the environment and one’s position within it. 
Although a goal-directed system may subsume several distinct 
sub- mechanisms, a wide variety of evidence suggest it localises 
to prefrontal cortex (Daw et al., 2006; Kim et al., 2006; Valentin 
et al., 2007), hippocampus (Corbit and Balleine, 2000; Kumaran 
and Maguire, 2006; Lengyel and Dayan, 2007) and dorsomedial 
striatum (Balleine and Dickinson, 1998; Corbit et al., 2003; Yin 
et al., 2005).

Habits, on the other hand, lack specifi c knowledge of the outcome 
of their decisions. In the parlance of computer science their values 
are ‘cached’, and represent only a scalar quantity which describes how 
good or bad an action is (Daw et al., 2005). In animal learning, such 
values are characterised by their insensitivity to devaluation: changes 
in state (e.g. moving from hunger to satiety) do not alter the value 
of the action, since there is no access to the new value of the goal 
(Dickinson and Balleine, 1994; Daw et al., 2005). Habits are acquired 
through experience, and ‘rationalised’ on account of their reliability 
in predicting rewarding outcomes. This effi ciency derives entirely 
from the way in which they learn: rewards reinforce actions that are 
statistically predictive of their occurrence, with reinforced actions 
acquiring value through simple associative learning rules (Rescorla 
and Wagner, 1972; Holman, 1975; Adams and Dickinson, 1981). 
These are well described by Reinforcement Learning  algorithms (such 

as Q learning and SARSA; Sutton and Barto, 1998), and  localise to 
dorsolateral striatum (O’Doherty et al., 2003; Tricomi et al., 2009) 
and dopaminergic projections from substantia nigra.

Control over decisions is often dynamic and frequently transfers 
from goal-directed mechanisms (early in a task) to a habit-based 
system (late in a task). Indeed, this transfer can be manipulated by 
selective lesions to the neural substrates that underlie each of these 
systems (Balleine et al., 2009). In formalising accounts of how these 
systems interact current views centre on the idea of control being 
mediated by the respective uncertainties with which each system 
predicts outcomes, a view that provides a reasonable normative 
account of experimental fi ndings (Daw et al., 2005). At a broader 
level, the evolutionary rationale for such a dual system is based on 
computational cost, since habits are vastly less resource demanding 
than goal-directed mechanisms.

Lastly, animals including humans have an innate, ‘hard-wired’, 
decision system. This is often referred to as a Pavlovian system, 
characterised by the expression of values and responses acquired 
through simple state-based associative learning. Unconditioned 
and conditioned Pavlovian responses represent an evolutionarily 
acquired behavioural repertoire that refl ect basic, reliable knowl-
edge gleaned from an organisms evolutionary history: embodying 
such knowledge structures that approaching sweet tasting fruit and 
withdrawing from bitter tasting fruit are inherently useful responses 
to enact. But whereas, on average, this inbuilt knowledge struc-
ture is enormously valuable to a naïve individual, it may also be a 
curse in the (usually) uncommon situations in which it is incorrect. 
The competitive (inhibitory) interaction between decisions based 
on experience (instrumental habit and goal-directed mechanisms) 
and those based on Pavlovian impulse localises to brain regions 
such as the amygdala and ventral striatum (Cardinal et al., 2002; 
Seymour and Dolan, 2008). This interaction refl ects the classic ten-
sion between apparently emotional irrational and rational cognitive 
systems whereby the emotional expresses an apparent irrationality 
by way of some peculiarity of the environment.

DECISION-MAKING IN GAMES
A challenge for decision neuroscience is to understand how basic 
decision-making systems operate within socially interactive envi-
ronments. Consider the game in Table 1: the repeated Prisoner’s 

Table 1 | An example payoff matrix of two-player Prisoner’s dilemma 

game in which each player can choose either to ‘cooperate’ or ‘defect’. 

The Left-side numbers represent the payoffs for the fi rst player and the 

right-side numbers represent the payoffs for the second. Payoffs are 

symmetric, and chosen so that the sum of the payoffs is greatest when both 

choose cooperate and least when both players choose defect. However, 

each player earns the most if he chooses to defect when the other 

cooperates. Thus, the unique subgame perfect Nash Equilibrium of this 

game is for both players to defect.

 Player 2

 Cooperate Defect

Player 1 Cooperate 10/10 0/15

 Defect 15/0 1/1
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dilemma. Subjects must choose between one of two actions: 
 cooperate or defect, and their payoff depends on this and the choice 
of the opponent. Now consider a goal-directed, cognitive  decision-
 making policy in the game, which has the ability to consider multi-
ple future hypothetical scenarios (Figure 1A). If you neither know, 
nor care, what the other player does then the best strategy is to defect 
on the fi rst round, since the outcome is always better regardless of 
what the other player does. For the same reason, even if you know 
what he/she will do, it is still better to defect.

However, it is also clear that in the long run, both players are 
better off if they cooperate: this mutually prescribes the best 
exploitation of environmental resources. Clearly, you need some 
way of both knowing that your opponent is committed to coop-
eration as well as a means of signalling to him/her your intention 
to  cooperate. That is, you need to know that she is sophisticated 
enough to realise that cooperation is worthwhile, and you yourself 
need to be sophisticated enough to realise this. There is nothing 
truly altruistic about this, since you are both just trying to max-
imise your own payoff in an environment that contains another 
intelligent agent.

Thus, the existence of another intelligent agent in the environ-
ment makes the problem more complex than simpler decision-
making problems that exploit inanimate environments. In the latter, 
the payoff probability usually depends fully on the observable states 
(they are ‘fully observable Markov decision problems’; Bellman, 
1957). That is, although the payoff may be probabilistic (either 
involving risk or ambiguity or both), your predictions depend in 
no way on how you came to arrive at that state in the fi rst place. In 
social interactions, this assumption does not apply because out-
comes depend on what the state thinks about you. If you have 
recently behaved uncooperatively, then this history negatively infl u-
ences the payoff you expect to receive. That is, the outcome depends 
on unobservable states in the environment (making the problem 
‘partially observable’). If you fi nd yourself in a seemingly identical 
state to a previous occasion, for instance playing opponent x in the 

game y, then the expected payoffs are not independent of how you 
got there, since opponent x may have a memory of you.

Consequently, social decision-making benefi ts greatly from 
constructing some sort of internal model of the key aspects of 
the environment. In social games this model needs to capture the 
intentions of the other player (a component of ‘Theory of Mind’). 
Indeed, your model should also include your opponent’s estimate 
of your intentions: with this model, you can strategically plan to 
signal to your opponent your intention to cooperate, knowing that 
it will change their model of you (Figure 1B). Accordingly, they 
should then be more willing to cooperate with you, and you will 
both be better off in the long run.

It can be seen that this sort of model of others’ intentions, and 
their model of your intentions, captures features of reciprocity, 
trust, and reputation formation. Indeed maintaining cooperation 
is in everyone’s selfi sh interest in repeated games when the end of 
play is not in sight. It does, however, require players to be able to 
resist the short-term temptation to exploit this mutual reciprocity 
by the treachery of defection.

Of course, there is no reason why an internal representation of 
an other-agent’s belief model need stop at a knowing the represen-
tation of your intentions in their mind. At the next level, it could 
include your understanding that they know that you know that they 
know your intentions, and so on. That there are infi nite levels of 
embedded beliefs that make any perfect decision-policy intractable, 
has inspired models of strategic behaviour that either bound the 
upper limit of reciprocal beliefs (an example of ‘bounded ration-
ality’) (Camerer et al., 2004a; Hampton et al., 2008), or estimate 
the level of reciprocal belief in their opponent directly (Yoshida 
et al., 2008).

Experimental evidence indicates that in repeated games with 
the same opponent, people reliably cooperate, as theory predicts. 
Critically, however, the theory predicts that people shouldn’t coop-
erate towards the end of repeated exchanges, when they play people 
that they will never meet again and who can’t communicate with 
others that can. The observation that people do cooperate in these 
situations suggests something is either incorrect about the goal-
directed model, or as we suggest, other decision-making systems 
compete to bias behaviour.

HABITISATION
In simple environments, habits allow you to navigate towards goals 
and avoid harm with speed and computational effi ciency. Habits 
operate by allowing recently experienced rewards to reinforce 
actions that are statistically predictive of them. If an outcome is reli-
ably predicted by an action, then the value of that action becomes 
high. The action set available to an individual at any one time is 
elicited by the confi guration of cues and contexts in the environ-
ment, which represents the current ‘state’. Importantly, habits don’t 
themselves have access to any specifi c representation of their out-
come, they merely know their value on an ordinal value scale.

Now consider action control in social games. Imagine you are 
playing a selfi sh but sophisticated opponent in endless rounds of 
the Prisoner’s dilemma. Early in the game, your model-based system 
has the ability to consider multiple future rounds of the game, in 
which mutual cooperation is evaluated as valuable, since you know 
your opponent also knows this. Accordingly, mutual cooperation is 

FIGURE 1 | Goal-directed learning of Prisoner’s dilemma. (A) In 
goal-directed learning, players learn the probability of other player’s action: 
cooperation (C) or defection (D) based on the history of their actions (H) as 
p(C|H) and p(D|H). They estimate the value of their own actions: V(C) and V(D) 
using the prediction from the learned model and the expected reward from 
the pair of actions. (B) In social games, the model of others leads a recursive 
process: my model of your action includes a model of your estimate of my 
actions, and so on. Cooperation in the Prisoner’s dilemma depends on these 
recursive representations; since when I decide to cooperate this time, I must 
estimate that you are going to cooperate next time as you believe that I am 
going to cooperate with you.
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rewarded as the game dictates. After a few rounds, actions associated 
with ‘cooperate’ begin to reliably predict rewarding outcomes, and 
so the habit learning system, operating concurrently with goal-
orientated systems, acquires greater predictive certainty. As this 
accrues, control is transferred to the habit system, and the compu-
tational cost of considering multiple future rounds is relieved. In 
simple terms, cooperation becomes more ‘automatic’.

The critical feature of this type of habit learning is what defi nes 
the state by which the habit can be elicited. In animal learning 
theory, this is termed the ‘discriminative stimulus’, and is typically 
experimentally determined by the presence of a cue (Mackintosh, 
1983). However, the discriminative stimulus in social games is 
more complex, and in principle could be determined by the nature 
of the game being played (Prisoner’s dilemma, stag-hunt and so 
on) or by the identity of the opponent. Below, we consider both 
possibilities:

Imagine that you ignore the identity of your opponent, and by 
good fortune play the prisoners dilemma with multiple coopera-
tive opponents: i.e. you exist within a population of sophisticated 
cooperators (Figure 2A). Different types of social interaction will 
have distinct payoff matrices: some will benefi t cooperation, oth-
ers will not. If you know which game you are playing when you 
engage in an action, then if your action (e.g. to cooperate) is reli-
ably rewarded it will be accessible to acquisition by a habit learning 
system that simply encodes that in a given game, cooperation or 
competition is reliably benefi cial.

Indeed even if the payoff matrix is not known, for instance in a 
novel game in an uncertain environment, a reasonable strategy may 
be to play by trial and error. This entails exploring different actions 
and seeing what the outcome is, in which case actions can be rein-
forced directly by habit systems. Simulation studies demonstrate 
how readily cooperative equilibria can be reached by simple asso-
ciative algorithms (such as Q learning) without any model-based 

control at all (Littman, 1994; Claus and Boutilier, 1998; Hu and 
Wellman, 2004).

Alternatively, you may choose to ignore the payoff matrix of the 
game, but concentrate instead on the identity of your opponent 
(Figure 2B). For instance, if you play a specifi c opponent in a variety 
of games, and she reliably cooperates with you to your benefi t, then 
you may learn the habitual action to cooperate whenever you play 
her. In this way, she becomes a positive discriminative stimulus that 
evokes actions that engage pro-cooperatively with her.

The above mechanisms may acquire control of behaviour if 
several criteria are satisfi ed: the state and/or opponent are clearly 
discernable; the game (i.e. its payoff matrix) is relatively static (or 
changes slowly) allowing equilibria to be reached; and your internal 
preferences are stable. However, habit mechanisms are less reliable 
in the face of perceptual uncertainty, in which case an internal 
belief model of possible states may be required; if there are sudden 
changes in the environment that require rapid new learning, or a 
search for causal antecedents; or if your motivational state changes 
substantially (cooperation for food becomes less valuable when 
you are sated). Note that there is no evidence that habit systems 
‘switch off ’ in situations in which they behave poorly, rather their 
infl uence on control diminishes when their predictions become 
unreliable (Daw et al., 2005).

Although providing a plausible mechanism for social decision-
making it turns out that, to date, evidence for habitised control 
of social behaviour is largely indirect. First, simple reinforcement 
learning algorithms do a remarkably good job at predicting behav-
iour in experiments across a variety of games (Erev and Roth, 1998, 
2007). Second, neuroimaging studies show opponent-specifi c value-
related responses accruing according to opponents’ cooperativity/
competitiveness in games (Singer et al., 2004). Third, neuroimaging 
studies have also identifi ed dynamic reinforcement learning-like 
(prediction error) signals during games (King-Casas et al., 2005). 
Fourth, in single neuron recordings from non-human primates, 
lateral inter-parietal sulcus neurons in monkeys appear to encode 
value signals predicted by reinforcement learning in mixed-strategy 
games (Seo et al., 2009), which adds to previous observations that 
neurons in dorsolateral prefrontal and anterior cingulate cortex 
encode quantities related to choice and reinforcement history, 
respectively (Barraclough et al., 2004; Seo and Lee, 2008).

In reality, humans might be expected to habitise their actions 
in the context of state information that incorporates both oppo-
nent and game type. Although a diversity of subtly different payoff 
matrices may be common in experiments, it is likely that social 
interactions in different scenarios represent a relatively discrete set 
of payoff matrices. When there are small differences between differ-
ent games, habit systems may generalise across salient features that 
have characteristic predictive power for benefi cial outcomes.

OBSERVATIONAL LEARNING
One especially important social scenario arises when a person 
interacts with others who are signifi cantly more expert at social 
interaction. This can occur for a number of reasons: if the payoff 
matrix that defi nes the interaction is unknown to us but known 
to others – either through their experience or private information; 
because information about other players is known to them but not 
to us – again through either experience or their own  vicariously 

FIGURE 2 | Habitual learning of Prisoner’s dilemma. (A) Habit learning in 
specifi c games. An agent plays an action a when in a particular state that is 
defi ned by the game type, e.g. game y1. If the outcome is rewarded, then the 
action is reinforced, and is more likely to be emitted when the same state is 
encountered again. (B) Habit learning with specifi c opponents. An agent 
(in green) plays action a (cooperate) when interacting with a particular agent 
(who defi nes the state, or discriminative stimulus SD as x1, for example). If the 
outcome is rewarding, then the reward reinforces action a, such that it’s value 
V(x1,a) increases, and is more likely to be chosen again in the same state in 
future.
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acquired knowledge; of if they are more sophisticated – for instance 
they are more mature or intellectually able. In these situations, 
you have the choice to engage in interactions and acquire the 
information directly through your own experience or, better, to 
observe apparently successful social agents and vicariously acquire 
knowledge.

As long as success is discernable, as a hallmark of social exper-
tise, then observational learning is likely to yield useful informa-
tion. The computational problem becomes how to interpret the 
actions of others, and use observed actions to optimise your own. 
Computationally, inverse reinforcement learning describes this 
problem of how to reverse engineer observed actions to evalu-
ate their values and goals, and is particularly diffi cult in situa-
tions in which actions do not immediately lead to their benefi ts. 
Unfortunately social interactions often display exactly this property: 
the benefi ts of cooperation are often long-term, through reputation 
formation and establishment of trust, and unless an observer has 
observational access to extended sequences of actions and their 
ultimate outcomes, the problem becomes even harder.

In general, there are two broad classes of solution. The fi rst is 
simply to imitate others (Price and Boutilier, 2003). Imitation is the 
observational twin of habit learning, insofar as the resulting action 
has no specifi c representation of the outcome: it simply learns that a 
particular action is reliably performed in state s. The actions it bears 
are habit-like, elicited by a discriminative state that represents the 
environment in which they were learned. Accordingly, the ease of 
imitation depends on the discernability of the state of the observer. 
In Figure 3A, we illustrate this for a situation in which the state is 
defi ned by the game type: as long as it is clear to the subject that 
they are playing, say Game y = Prisoners Dilemma, then the imi-
tated action will be ‘cooperate when playing game y’. The imitated 

state-action pair could equally well be defi ned by the identity of 
the opponent. In this case, the resulting action will be ‘cooperate 
when playing opponent x’. Note that the values of the actions can 
also be inferred by the frequency with which they are elicited by 
observation, allowing imitation to encode action values, and not 
just stimulus-responses.

The second strategy is more complex, and involves trying to 
reverse engineer actions so as to evaluate their value or actual out-
come (Ng and Russell, 2000). This requires constructing some sort 
of internal model of the action. For sequential actions, a compu-
tationally useful strategy is to represent subgoals – intermediate 
outcome states that appear to be reliable pre-requisites to eventual 
success (Abbeel and Ng, 2004). In the case of cooperative games, 
these subgoals ought to include the welfare of the other coopera-
tors, since this is a powerful determinant of future cooperation. For 
example, in a repeated Prisoner’s dilemma, sophisticated coopera-
tors will themselves predict reward when their opponents cooperate 
with them, since they have a forward model of future benefi cial 
interactions. Assuming their reward-predicting state is discernable 
by observations of their emotional state s (their happiness), then 
this state becomes a statistically reliable subgoal. That is, it follows 
that the inference that eliciting the state of happiness in another 
player is a valid predictor of an agent’s success (Figure 3B).

Although in the case of the agent being observed this is merely 
an intermediary state in ultimately selfi sh reciprocal interactions, 
this information (and its selfi shness) is not available to the observer. 
Even so, it is still valuable knowledge as long as the observer is 
fortunate enough to use the information in situations in which 
it actually is benefi cial: i.e. in repeated social exchanges. As long 
as repeated social exchanges outnumber un-repeated exchanges, 
then observational inference is likely to be a better strategy than 
ignoring others.

Observational learning in games, and especially putative inverse 
reinforcement learning, remains relatively under-explored. It is well 
known that humans use both model-free (imitative) and model-
based (inverse-inference) strategies when learning non-social 
actions through observation (Heyes and Dawson, 1990). Recent 
imaging evidence shows that people learn values through instruc-
tion using similar neural mechanisms involved in personal expe-
rience based learning (Behrens et al., 2008), and make inferences 
about values by pure third-party observation (Klucharev et al., 
2009). Furthermore, pro-social feelings towards others (empathic 
reward), and it’s neural representation, have been shown to be 
modulated by perceived similarity with that person (Mobbs et al., 
2009), as one might predict from perspective-taking theories of 
social observation (Wolpert et al., 2003).

DISCUSSION
We have argued that consideration of the neurobiological mecha-
nisms of learning and decision-making in humans can yield an 
explanatory account of true altruism. At the heart of this account 
are the learning systems that allow the brain to optimise reward 
and effi ciency in complex environments. Critically, since evolution 
is likely to operate primarily over learning and decision mecha-
nisms, and not the content of those systems – how they learn, not 
what they learn, the ensuing altruistic behaviours are perfectly per-
missible, despite the fact that they may in some instances become 

FIGURE 3 | Observation learning of Prisoner’s dilemma. Observers learn 
the strategy from the observation of other players playing a game. (A) Imitation 
learning. An observer estimates the value of action a from other players’ 
actions and simply imitates an action which maximises the payoff in a particular 
environment, which can be defi ned by game or opponent (or both). Here we 
show an example in which the environment is ‘game = y’ and it does not take 
into account the opponent’s type (x) who they are playing with. (B) Inverse 
reinforcement learning. An observer estimates the players’ value from their 
actions, for example using subgoals. This means the observer assumes that 
the players using a model-based learning; i.e. they have a forward model of 
their opponents. For example, in a repeated Prisoner’s dilemma, cooperative 
actions (a1) will predict a state of the other players’ happiness (s1) which leads 
mutual cooperation in the future. The value of action a is calculated as the value 
of state (e.g. other player’s emotional state), V(s), multiplied by the probability 
of occurrence of the state followed by the action, p(s|a).
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strictly irrational. This is strengthened by the fact that habit-based 
and observational learning systems have uses way beyond social 
 decision-making per se. The latter, for instance, is elegantly utilised 
in complex behaviours such as food preparation, tool use, and even 
language. Hence evolutionary selection for such mechanisms may be 
driven by a much broader range of decision-making problems than 
purely social interaction. Accordingly, such learning based accounts 
may offer both proximate and ultimate explanations for altruism.

The value of the inherent fl exibility of learning systems is that 
it allows them to adapt to a wide range of potentially new and 
unexpected situations, appropriate for the diversity of the natural 
environment. But this fl exibility carries the cost of inadvertently 
allowing individually economically disadvantageous actions to 
emerge, albeit rarely. However, we propose that on average these 
costs are heavily outweighed by benefi ts. Part of this supposition 
incorporates the fact that an innate representation of the caveats 
of fl exible learning in social decision-making (for instance: don’t 
cooperate in one-shot, anonymous exchanges in large groups) 
is itself cripplingly complex and maladaptive to novelty (it itself 
becomes a form of impulsivity). In other words, any social  decision-
making system that attempted to capture the enormous range of 
possible encounters and interactions, and individually specify opti-
mal policies, would impair rather than augment decision-making 
under uncertainty. As such, effi cient learning based systems are 
likely to be selected in the course of evolution.

Learning based accounts differ from the conventional approach 
of studying cooperation in behavioural economics, which often 
considers static, heuristic decision-policies, such as ‘tit-for-tat’, 
‘cooperate and punish’, and ‘free-ride’. Such models typically suc-
cumb to free-riders, including sophisticated (higher-order) free-
riders that cooperate but don’t enforce or encourage cooperation 
in others. However, a valuable insight of these models has been 
the recognition that resistance to free-riders can be provided by 
acquisition (and defence) of cultural norms of behaviour (Boyd 
and Richerson, 1988; Boyd et al., 2003; Bowles and Gintis, 2004). 
Key underlying components of norm-abidance are likely to be 
observational learning and inference based mechanisms, since these 
form simple elements of cultural learning. The current paucity 
of biologically implemented algorithmic models and mechanisms 
of observational and cultural learning is therefore likely to be an 
important area of future research. In particular, the relative privacy 
of culturally acquired information within specifi c groups is likely to 
be an important factor in the development of parochialism, which 
may further allow group-based selection of altruistic behaviour 
(Bernhard et al., 2006; Choi and Bowles, 2007).

Learning based accounts do not negate innate mechanisms of 
altruism in the brain. Such mechanisms are thought to under-
lie many aspects of human impulsivity and irrationality, through 
their occasionally infl exible competition with instrumental actions 
(Dayan et al., 2006). If cooperation was so consistently advanta-
geous through human social evolution, that it is quite possible there 
might be some innate coding. Indeed, the environment in which the 
social brain evolved is likely to have had a much higher proportion 
of repeated interactions with the same individuals than our modern 
environment in which cooperation can occasionally be economi-
cally disadvantageous. Innate actions can be thought of as action 
priors over and above which more sophisticated goal-directed 

instrumental actions can assume control as experience accrues. 
Their Achilles heel, however, is the fact that they appear often dif-
fi cult to overcome (inhibit) completely: they have a residual and 
signifi cant weight that consistently biases actions in their favour. 
If such innate coding of cooperation exists in the human brain, 
then it follows that altruism would be akin to more basic forms 
of impulsivity.

We note that control by innate systems is characterised by the 
intrinsic (typically ‘emotional’) value of a stimulus, as well as by 
the action it elicits. Accordingly, the states associated with puta-
tively pro-social innate actions could include that following the 
act of sharing, generosity or generation of equity (Tomasello et al., 
2005). In this way, they become intrinsic internal rewards that, phe-
nomenologically, are elicited because they are personally satisfying 
(and akin to non-social innate behaviours such as novelty-seeking 
(Wittmann et al., 2008)).

The complexity of different putative accounts of human altru-
ism appeals to neuroscience as an arbitrator (Camerer et al., 
2004b). Distinguishing different decision systems purely on ana-
tomical grounds may be diffi cult, however: brain regions such as 
the striatum, orbitofrontal cortex, amygdala and hippocampus for 
instance, appear to be convergence areas for all decision systems. 
For example the observation of activation of striatum in a study 
on altruistic punishment (de Quervain et al., 2004), whilst provid-
ing a convincing illustration of the fact that such behaviour has a 
clear proximate basis, says little about the nature of that behaviour 
in terms of whether it is innate or learned. This underlines the 
importance for brain imaging techniques that have the ability to 
distinguish between competing models based on identifying coding 
of their underlying central parameters (O’Doherty et al., 2007), 
in situations in which behaviour alone is necessarily ambiguous 
(Yoshida et al., 2008).

Both habit-based and observation-based accounts of pro-social 
behaviour make specifi c experimental predictions. First, if the iden-
tities of others can act as discriminative stimuli, then cooperation 
should carry over between different games with the same individual. 
Second, if game types can act as discriminative stimuli, then coop-
eration should carry over between the same game with different 
individuals. Third, the duration of play should predict the degree 
of unfolding of cooperation towards the end of repeated games, 
since extended durations permit stronger habit formation and less 
susceptibility to anticipatory defection. Fourth, the operation of 
associative learning mechanisms should be determinable by the 
use of co-incident cues associated with previous cooperative or 
uncooperative players, which ought to bias individuals behaviour 
in future games: in fact evidence already exists for this (Vlaev and 
Chater, 2006; Chater et al., 2008). Fifth, observational learning 
can be studied directly by allowing individuals to passively watch 
interactions between others before engaging in similar games, or 
different games with the observed opponents. Indeed evidence does 
exist that previous observation has an infl uence on future social 
behaviour, in that people do seem to be biased towards the behav-
iour of others. What is more diffi cult to establish is exactly how 
this information is represented: either as a cached imitated value, 
or as a model-based representation.

Finally, we note that learning based accounts of altruism are 
by no means immune to exploitation by selfi sh and  intelligent 
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 learning agents. Any sophisticated model of other agents’ 
 behaviour can incorporate the fact that they are habit and obser-
vational learners. Consequently, highly sophisticated models of 
other agents could in theory incorporate representations of their 
different decision systems: thus knowing that people are habit 
learners gives predictive insight into what is likely to guide their 
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