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fi ne-tuning of fetal and early juvenile physiology and behavior by 
the environment is evolutionary conserved and therefore appar-
ently important (Seckl, 2004). Alterations in behavioral profi le 
caused by specifi c experiences in early life were suggested to rep-
resent adaptive maternal effects, meaning that the mothers adjust 
their offspring to the prevailing environment (Kaiser and Sachser, 
2005, 2009).

Concerning genetic factors, one mediator for susceptibility 
to anxiety disorders is the genetically encoded variation of the 
 serotonin transporter (5-HTT) (Lesch et al., 1996). The human 
5-HTT gene contains a repeat length polymorphism in the 
upstream regulatory region: the short variant is associated with 
a lower transcriptional effi ciency as compared to the long gene 
variant, resulting in a reduced amount of 5-HTT proteins. The 
5-HTT is one key regulator of serotonergic neurotransmission, 
transporting serotonin (5-HT) from the synaptic cleft back into the 
presynaptic neuron and thereby terminating the serotonergic signal 
transmission. Serotonin is produced in brainstem raphe nuclei and 
is widely distributed throughout the brain. 5-HT signaling is a 
major modulator of emotional behavior and a central role of the 
5-HTT in the control of social behavior has been suggested (Canli 

INTRODUCTION
Anxiety is a common emotional phenomenon and normally emerges 
as an adaptive response to various stressors (Clément et al., 2002). 
However, when occurring excessively and without any adequate 
elicitor, anxiety-like emotions have lost their adaptive value. In its 
pathological form, anxiety can severely interfere with normal life 
and has been classifi ed into various forms of disorders (Belzung and 
Griebel, 2001; Gross and Hen, 2004). A growing body of evidence 
indicates that anxiety as well as anxiety disorders can be infl uenced 
by both environmental as well as genetic factors (Clément et al., 
2002; Gross and Hen, 2004; Lesch, 2004).

Concerning environmental infl uence, the risk for emotional 
disorders is increased in individuals who experienced stressful 
life events during their childhood (Brown et al., 1999; Heim and 
Nemeroff, 2001). In line with these fi ndings, experiences during 
prenatal and early postnatal life infl uence the emotionality of 
rodents and consequently their future behavior persisting for the 
lifespan (Champagne and Curley, 2005; Kaiser and Sachser, 2005; 
Weinstock, 2005; Seckl, 2008). For instance the experience of pre-
natal stress can lead to increased anxiety-like behavior (Vallée et al., 
1997; Kofman, 2002; Maccari et al., 2003; Weinstock, 2008). Such 
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and Lesch, 2007). Furthermore, 5-HT is an important regulator of 
morphogenetic activities during early brain development and 5-HT 
system homeostasis is critical to the genesis, differentiation and 
maturation of neuronal cells (Lesch and Merschdorf, 2000; Lesch 
and Gutknecht, 2005). Individuals carrying at least one copy of the 
short 5-HTT gene variant display higher levels of neuroticism and 
harm-avoidance (Lesch et al., 1996) as well as a higher trait anxiety 
(Schinka et al., 2004) than homozygous carriers of the long variant. 
Consistently, 5-HTT knockout mice, which exhibit either reduced 
or completely absent 5-HTT expression (Bengel et al., 1998), dem-
onstrate a range of behavioral and endocrine abnormalities that 
resemble symptoms of mood and anxiety disorders in humans 
(Holmes et al., 2003a,b; Lesch, 2005; Zhao et al., 2006; Murphy 
and Lesch, 2008). Given the advantageous ability to control genetic 
background and environmental circumstances in rodent studies, 
the 5-HTT knockout mouse provides a valuable model system to 
study how genetic factors interact with environmental adversity in 
the development of behavioral profi le, in particular anxiety-related 
traits (Holmes et al., 2003b).

There is increasing evidence that gene × environment inter-
actions play a major role in shaping the etiology of anxiety dis-
orders and depression. For example, humans with two copies of 
the short 5-HTT allele suffer an increased risk of depression, but 
only when they have experienced adverse life events (Caspi et al., 
2003; but see also Risch et al., 2009). Rhesus monkeys carrying the 
low- functioning orthologue of the 5-HTT gene are not only more 
anxious but also seem to be more susceptible to behavioral pathol-
ogy when confronted with chronic adversity (Spinelli et al., 2007). 
After the experience of low maternal care, heterozygous 5-HTT 
knockout mice show a more pronounced increase of anxiety-related 
behavior than wildtypes (Carola et al., 2008). However, exposure to 
repeated electric footshock in the second postnatal week failed to 
modify the altered phenotypes of 5-HTT knockout mice (Carroll 
et al., 2007). Possibly, the confrontation with electric footshock does 
not adequately resemble the adverse life events which may lead to 
depression in humans with a low 5-HTT expression (Caspi et al., 
2003). It could be argued that adverse early life experience should 
preferably be modeled using an ecologically relevant paradigm.

Therefore, in the present study species relevant adverse environ-
mental infl uences were applied to simulate a threatening habitat 
for a female mouse and her pups. Specifi cally, pregnant and lac-
tating females were exposed to the olfactory cues of unfamiliar 
adult males, which indicate the risk of infant killing (vom Saal and 
Howard, 1982; Elwood and Kennedy, 1991; Perrigo et al., 1993; 
Weber and Olsson, 2008). Unfamiliar male odor cues may even lead 
to pregnancy disruption shortly after fertilization (deCatanzaro 
et al., 1996, 2006); a phenomenon known as “Bruce effect” (Bruce, 
1959, 1960). By applying these species specifi c adverse stimuli we 
sought to create a paradigm with increased relevance, particularly 
from an ethological point of view.

We hypothesized that this modeling of a dangerous environment 
during early life would infl uence the offspring behavioral profi le 
signifi cantly, leading to increased anxiety-like behavior and reduced 
exploratory locomotion. We further hypothesized that the effects 
of this adverse environment on behavior would be modulated by 
5-HTT genotype, with 5-HTT knockout mice being more respon-
sive than wildtypes.

MATERIALS AND METHODS
ANIMALS AND GENERAL HOUSING CONDITIONS
The present experiment was performed with serotonin transporter 
(5-HTT) knockout mice (Bengel et al., 1998). Homozygous (−/−) 
and heterozygous (+/−) 5-HTT knockout mice as well as their 
wildtype littermates (+/+) were obtained by heterozygote crosses. 
All mice were housed in transparent standard Macrolon cages 
type III (38 cm × 22 cm × 15 cm) with sawdust as bedding mate-
rial (Allspan, Höveler GmbH & Co.KG, Langenfeld, Germany) 
and food and water provided ad libitum. The housing room was 
maintained at a 12 h light/dark cycle (lights on at 0700 hours) at 
a temperature of 22 ± 3°C.

The presented work complies with current regulations cover-
ing animal experimentation in Germany. The experiments were 
approved by the competent local authority as well as by the “Animal 
Welfare Offi cer” of the University of Muenster.

OLFACTORY STIMULATION OF MOTHERS
The estrous stages of 19 healthy virgin female 5-HTT +/− mice 
were determined by examining their vaginal smears. The smears 
were sampled by gently sweeping some smear off the interior of 
the vagina with a small plastic loop and the sample was diluted in 
a drop of tab water on a microscope glass slide. Subsequently, the 
smears were examined under a microscope (magnifi cation: 100×) 
and the cycle phases identifi ed according to the characterization 
of Allen (Allen, 1922). As soon as the females were proestrous or 
in an early stage of estrous, they were each mated with an adult 
5-HTT +/− male (experimental day 1). On experimental day 
5 the males were removed from the cage and the females were 
housed singly during gestation. After giving birth they were housed 
together with their offspring. During pregnancy and lactation 10 
of the mothers were treated with neutral bedding (neutral bedding 
treatment, NB) and 9 of the mothers were olfactorily stimulated 
with bedding stemming from the cages of unfamiliar adult males 
of the strains NMRI (three males) and TgCRND8 (four males) 
alternately (unfamiliar male bedding treatment, UMB). For the 
treatment 220 ml of the respective bedding material was inserted 
into the cage of the female in the corner opposite of the nest and 
left there until the next cage change. Cages were cleaned once a 
week, except in the period from 1 day before to 2 days after the 
birth of the pups. The mothers were treated every 2–3 days in the 
morning, starting on experimental day 8; a time when the prob-
ability of inducing pregnancy disruption was already relatively 
low (Chung et al., 1997). The dams received fi ve treatments in 
the gestation period and two to fi ve treatments during lactation 
(due to a high mortality of the dams the number of postnatal 
treatments was reduced in the course of the experiment in both 
NB and UMB females in the same way).

During the fi rst and the fi fth treatment the females’ latency to 
enter the quarter of the cage where the bedding had been placed 
was measured as well as the time they spent there during the 5 min 
following the treatment.

EFFECTS ON THE OFFSPRING
After weaning at age of 22 days the control and experimental mice 
were individually marked with fur cuts and placed in unisex sibling 
groups of two to fi ve animals. Individuals without any littermates 
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of the same gender were housed together with mice of the same 
age and sex. Altogether 36 NB males (6 +/+, 19 +/−, 11 −/−), 28 
NB females (13 +/+, 9 +/−, 6 −/−), 34 UMB males (10 +/+, 17 +/−, 
7 −/−) and 19 UMB females (7 +/+, 5 +/−, 7 −/−) were weaned and 
subsequently investigated.

Between postnatal days 50 ± 1 and 59 ± 3 the offspring were 
tested for their anxiety-like and exploratory behavior by means of 
the elevated plus maze (EPM) test, dark light test (DL) and open 
fi eld (OF) test. The test procedures were performed between 0900 
and 1100 hours. After each test session the apparatuses were cleaned 
with 70% ethanol. All experiments were performed by the same 
experimenter who was blind to the genotypes of the mice.

Since the applied behavioral tests are all based on the explora-
tory locomotion of the mice, some of the measured parameters can 
not unequivocally be interpreted as indicating the anxiety-related 
approach avoidance confl ict, but are also infl uenced by the basal 
locomotor activity and exploratory drive of the animals (Lister, 
1990; Holmes, 2001). Lesch (2005) states that anxiety-like behavior 
often appears to contrast with exploratory behavior, which indi-
cates that avoidance and curiosity or novelty seeking are biologi-
cally related and share common physiological mechanisms. Thus, 
a strong anxiety-like phenotype would be automatically associated 
with a low exploratory drive. In this case the intermingling of explo-
ration and anxiety in exploration-based tests for anxiety-like behav-
ior would not affect the interpretation of genotype or treatment 
effects, since both anxiety and exploration would be infl uenced. For 
clarity, we tried to classify the different testing parameters accord-
ing to their signifi cance for anxiety-like or exploratory behavior: 
We regard the parameters percentage of time spent on open arms 
(EPM), percentage of entries into open arms (EPM), latency to 
enter light compartment (DL), percentage of time spent in light 
compartment (DL) and percentage of time spent in center (OF) as 
indicating anxiety-like behavior and the parameters sum of entries 
into open and closed arms (EPM), and path length (OF) as indi-
cating exploratory activity. The parameter number of entries into 
light compartment (DL) is regarded as indicating both anxiety-like 
behavior and exploratory activity.

Elevated plus maze test
At age of 50 ± 1 days the offspring were tested in the EPM (Lister, 
1990; Hogg, 1996; Holmes, 2001). The plus shaped apparatus was 
elevated 50 cm above the ground and illuminated by an overhead 
bulb (23 lux). The relatively low illumination level in this and the 
following tests was chosen in order to decrease the overall averse-
ness of the testing situation. The maze consisted of two opposing 
open arms and two opposing arms enclosed with 20 cm high walls, 
all four extending from a central platform. The platform meas-
ured 5 cm × 5 cm, whereas the arms were each 30 cm long and 
5 cm wide. After spending 1 min in an empty cage, each mouse 
was placed on the central platform of the EPM and was allowed 
to freely explore the apparatus for 5 min. The movements of the 
animals were recorded by a camera and analyzed by use of the com-
puter programs Optimas 6.5N (Media Cybernetics) and Tracking 
Analysis 1.1.1 (Lars Lewejohann1). The parameters measured by 
Tracking Analysis were the sum of entries into open and closed 

arms, the percentage of time spent on open arms and the  percentage 
of entries into open arms.

Dark light test
The offspring was tested in the DL (Crawley and Goodwin, 1980; 
Holmes, 2001) at age of 54 ± 2 days. The DL test apparatus con-
sisted of a modifi ed Macrolon cage type III, which was divided 
into two parts by a PVC plate. The fi rst part, designated as the dark 
compartment, comprised one third of the cage, was painted black 
and could be covered with a dark lid. The second part, the light 
compartment, consisted of two thirds of the cage, had transparent 
walls and was illuminated by a bulb hanging above the appara-
tus (13 lux). The two compartments were connected via a small 
sliding door inserted in the PVC plate. Each mouse was placed 
inside the dark compartment with lid and sliding door closed. The 
individual remained there for 1 min before the sliding door was 
opened and the mouse could freely explore the DL apparatus for 
5 min. The parameters analyzed for each animal were the latency 
to enter the light compartment, the number of entries into the 
light compartment and the percentage of time spent in the dark 
compartment.

Open fi eld test
At age of 59 ± 3 days the offspring were tested for their anxiety-
like and exploratory behavior in the OF (Treit and Fundytus, 1988; 
Holmes, 2001). The OF test apparatus was a white 80 cm × 80 cm 
box with walls 42 cm high that was illuminated by an overhead 
bulb (13 lux). After spending 1 min in an empty cage, each mouse 
was placed in the middle of the OF arena and was allowed to 
freely explore it for 5 min. The movements of the animals were 
recorded by camera and analyzed as described for the EPM. The 
parameters measured were the path length the mice traveled and 
the percentage of time they spent in the center of the OF (defi ned 
as the area of the OF being located at least 20 cm distant from 
the walls).

STATISTICAL ANALYSIS
Parts of the obtained data were not normally distributed and thus 
were transformed logarithmically. After transformation none of 
the data sets deviated signifi cantly from a normal distribution, 
as confi rmed by the One-sample Kolmogorov–Smirnov test. 
Univariate analysis of variance (ANOVA) was used to evaluate 
differences between more than two independent samples. More 
than two dependent samples were compared using a Repeated 
Measures ANOVA. In case of signifi cant variation proven by the 
ANOVA, pairwise comparisons between independent samples 
were performed using Independent Samples t-tests (two-tailed). 
Dependent samples were compared by means of Paired Samples 
t-tests. In case of multiple comparisons sequential Bonferroni cor-
rection was applied (Rice, 1989). P values given in the text are 
original P values as obtained from the t-tests since all P values did 
remain  signifi cant following sequential Bonferroni correction. For 
the pairwise comparisons the data of males and females were pooled 
in the parameters that did not differ between the sexes according to 
the ANOVA. Statistical signifi cance was set at P < 0.05. All tests were 
calculated using the software package SPSS (SPSS for Windows, 
Release 11.5.0., 2002).1http://www.phenotyping.com

http://www.phenotyping.com
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RESULTS
EFFECTS OF TREATMENT ON BEHAVIOR OF THE MOTHERS
Mothers were either treated with UMB during pregnancy and 
 lactation, or they received a control treatment with NB. The latency 
to enter the treatment quarter did neither differ between the two 
treatment conditions [ANOVA; F(1, 17) = 0.160, P = 0.694], nor 
between the fi rst and the fi fth treatment [ANOVA; F(1, 17) = 2.366, 
P = 0.142]. However, two-way ANOVA revealed a signifi cant main 
effect of type of treatment [F(1, 17) = 19.212, P < 0.0001] and time 
of treatment [F(1, 17) = 4.657, P = 0.046] on the mothers’ per-
centage of time spent in the treatment quarter (Figure 1). UMB 
mothers spent signifi cantly more time in the treatment quarter than 

 control mothers during the fi rst (t-test; t = −3.530, P = 0.003) as 
well as during the fi fth treatment (t = −3.735, P = 0.002). Whereas 
the percent of time spent in treatment quarter of UMB mothers did 
not differ between the fi rst and the fi fth treatment (paired-samples 
t-test; t = 0.496, P = 0.634), NB mothers spent signifi cantly less 
time in the treatment quarter during the fi fth than during the fi rst 
treatment (t = 2.922, P = 0.017).

EFFECTS OF TREATMENT ON LITTER SIZE AND SEX RATIO
Litters of the two treatment conditions did not differ signifi cantly 
concerning litter size (UMB: 7 ± 0.5, NB: 6.5 ± 0.3; t = −0.872, 
P = 0.396) or sex ratio (UMB: 56.8 ± 7.2% males, NB: 55.7 ± 6.4% 
males; t = 0.011, P = 0.991).

EFFECTS OF TREATMENT AND GENOTYPE ON OFFSPRING ANXIETY-LIKE 
BEHAVIOR AND EXPLORATION
Elevated plus maze test
Concerning the sum of entries into open and closed arms ANOVA 
detected a signifi cant main effect of genotype [F(2, 105) = 12.779, 
P < 0.0001; Figure 2A; Table 1]. Pairwise comparisons indicated 
that 5-HTT −/− mice entered fewer arms than 5-HTT +/− (NB: 
t = 2.742, P = 0.009; UMB: t = 2.900, P = 0.006) and wildtype mice 
(NB: t = 3.123, P = 0.005; UMB: t = 3.077, P = 0.005; Table 3). 
There were no signifi cant main effects of gender and treatment.

The parameter percentage of time spent on open arms 
(Figure 2B) was not signifi cantly infl uenced by gender, treatment or 
genotype. Similarly, regarding the parameter percentage of entries 
into open arms no main effects of gender, treatment or genotype 
were shown (Table 1).

Concerning all three behavioral measures no signifi cant interac-
tions could be found.

Dark light test
ANOVA revealed a signifi cant main effect of genotype on the latency 
to enter the light compartment [F(2, 105) = 4.878, P = 0.009; 
Figure 3A; Table 1] with homozygous individuals displaying longer 
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There was a signifi cant main effect of genotype (P < 0.0001). (B) Percentage of 
time spent on open arms. There were no signifi cant main effects.
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Table 1 | Main effects of gender, treatment and genotype.

Test Parameter  ANOVA (main effects)

  Gender Treatment Genotype

EPM Sum of entries into open and closed arms P = 0.249; F(1,105) = 1.341 P = 0.815; F(1,105) = 0.055 P < 0.0001; F(2,105) = 12.779

 Percentage of time spent on open arms P = 0.311; F(1,105) = 1.035 P = 0.700; F(1,105) = 0.150 P = 0.518; F(2,105) = 0.662

 Percentage of entries into open arms P = 0.280; F(1,105) = 1.177 P = 0.296; F(1,105) = 1.104 P = 0.248; F(2,105) = 1.411

DL Latency to enter light compartment P = 0.707; F(1,105) = 0.143 P = 0.017; F(1,105) = 5.889 P = 0.009; F(2,105) = 4.878

 Number of entries into light compartment P = 0.331; F(1,105) = 0.954 P = 0.002; F(1,105) = 10.066 P = 0.004; F(2,105) = 5.761

 Percentage of time spent in light compartment P = 0.202; F(1,105) = 1.648 P = 0.167; F(1,105) = 1.936 P = 0.015; F(2,105) = 4.375

OF Path length P = 0.554; F(1,105) = 0.352 P = 0.010; F(1,105) = 6.918 P < 0.0001; F(2,105) = 29.679

 Percentage of time spent in center P = 0.930; F(1,105) = 0.008 P = 0.831; F(1,105) = 0.046 P = 0.064; F(2,105) = 2.829

EPM, elevated plus maze test; DL, dark light test; OF, open fi eld test. Statistics: ANOVA. Green: P < 0.05; yellow: P < 0.1.
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FIGURE 3 | Dark light test. NB, neutral bedding; UMB, unfamiliar male bedding; 
+/+, +/−, −/−: 5-HTT genotypes. Data are shown as mean + SEM. Statistics: 
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(7 +/+, 5 +/−, 7 −/− mice). (A) Latency to enter light compartment. There was a 
signifi cant main effect of genotype (P = 0.009) and treatment (P = 0.017). (B) 
Number of entries into light compartment. There was a signifi cant main effect of 
genotype (P = 0.004) and treatment (P = 0.002). (C) Percentage of time spent in 
light compartment. There was a signifi cant main effect of genotype (P = 0.015).
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latencies than wildtype and heterozygous animals. This effect was 
most distinct in UMB mice, since pairwise comparisons indicated 
that UMB homozygotes entered the light compartment signifi -
cantly later than UMB heterozygotes (t = −2.942, P = 0.006) and 
UMB wildtypes (t = −2.724, P = 0.012), whereas NB homozygotes 
displayed a comparable latency to enter the light compartment as 
NB heterozygotes and wildtypes (Table 3). There was also a sig-
nifi cant main effect of treatment [F(1, 105) = 5.889, P = 0.017]. 
Particularly, homozygous UMB mice entered the light compart-
ment distinctly later than homozygous NB animals (t = −2.137, 
P = 0.041; Table 2). There was no signifi cant gender effect.

Regarding the number of entries into the light compartment 
there was a signifi cant main effect of genotype [F(2, 105) = 5.761, 
P = 0.004; Figure 3B; Table 1] with homozygous individuals show-
ing fewer entries than heterozygous and wildtype animals. Pairwise 
comparisons revealed a signifi cant difference between homozy-
gotes and wildtypes in both treatment conditions (UMB mice: 
t = 2.695, P = 0.012; NB mice: t = 2.754, P = 0.009; Table 3). There 
was also a difference between UMB heterozygotes and homozygotes 
(t = 2.227, P = 0.033), but NB heterozygotes did not differ from 
NB homozygotes. There was a signifi cant main effect of treatment 
[F(1, 105) = 10.066, P = 0.002] with UMB mice entering the light 
compartment distinctly less frequently than NB mice. According 
to the pairwise comparisons UMB wildtypes displayed a signifi -
cantly lower number of entries into the light compartment than 

control wildtypes (t = 2.696, P = 0.011) and UMB homozygotes 
showed a trend to enter the light compartment less often than 
control homozygotes (t = 1.737, P = 0.093; Table 2). Heterozygous 
animals did not differ signifi cantly between the treatments. There 
was no signifi cant main effect of gender.

Concerning the parameter percentage of time spent in light 
compartment there was a signifi cant main effect of genotype [F(2, 
105) = 4.375, P = 0.015; Figure 3C; Table 1] with homozygotes 
spending least time in the light compartment. Pairwise compari-
sons revealed a signifi cant difference between UMB wildtypes and 
homozygotes (t = 2.859, P = 0.008; Table 3). There were no signifi -
cant main effects of gender and treatment condition.

Concerning all three behavioral measures no signifi cant interac-
tions could be found.

Open fi eld test
There was a signifi cant main effect of genotype on the parameter 
path length [ANOVA; F(2, 105) = 29.679, P < 0.0001; Figure 4A; 
Table 1] with homozygous mice covering distinctly shorter dis-
tances than both heterozygous and wildtype mice. Pairwise com-
parisons revealed signifi cant differences between the genotypes for 
both UMB mice (wildtypes–homozygotes: t = 3.824, P = 0.001; 
heterozygotes–homozygotes: t = 6.586, P < 0.0001) and NB mice 
(wildtypes–homozygotes: t = 4.769, P < 0.0001; heterozygotes–
homozygotes: t = 5.817, P < 0.0001; Table 3). There was also a 

Table 2 | Pairwise comparisons between treatment groups. Direction of signifi cant differences see text.

Test Parameter NB versus UMB

  +/+ +/– –/–

DL Latency to enter light compartment P = 0.280; t = −1.098 P = 0.946; t = −0.068 P = 0.041; t = −2.137

 Number of entries into light compartment P = 0.011; t = 2.696 P = 0.153; t = 1.451 P = 0.093; t = 1.737

OF Path length P = 0.123; t = 1.580 P = 0.085; t = 1.762 P = 0.428; t = 0.804

DL, dark light test; OF, open fi eld test; NB, neutral bedding; UMB, unfamiliar male bedding; +/+, +/−, −/−: 5-HTT genotypes. Statistics: T-test. Green: P < 0.05; yellow: 
P < 0.1.

Table 3 | Pairwise comparisons between genotype groups. Direction of signifi cant differences see text.

Test Parameter +/+ versus +/– +/– versus –/– +/+ versus –/–

  NB UMB NB UMB NB UMB

EPM Sum of entries into open P = 0.428;  P = 0.621;  P = 0.009;  P = 0.006;  P = 0.005;  P = 0.005; 

 and closed arms t = −0.799 t = −0.499 t = 2.742 t = 2.900 t = 3.123 t = 3.077

DL Latency to enter light P = 0.269;  P = 0.978;  P = 0.429;  P = 0.006;  P = 0.105;  P = 0.012; 

 compartment t = 1.119 t = −0.028 t = −0.799 t = −2.942 t = −1.672 t = −2.724

 Number of entries into P = 0.119;  P = 0.696;  P = 0.158;  P = 0.033;  P = 0.009;  P = 0.012; 

 light compartment t = −1.591 t = −0.394 t = 1.438 t = 2.227 t = 2.754 t = 2.695

 Percentage of time spent P = 0.716;  P = 0.202;  P = 0.408;  P = 0.101;  P = 0.251;  P = 0.008; 

 in light compartment t = −0.366 t = −1.299 t = 0.835 t = 1.688 t = 1.168 t = 2.859

OF Path length P = 0.654;  P = 0.367;  P < 0.0001;  P < 0.0001;  P < 0.0001;  P < 0.001; 

  t = 0.451 t = 0.912 t = 5.817 t = 6.586 t = 4.769 t = 3.824

EPM, elevated plus maze test; DL, dark light test; OF, open fi eld test; NB, neutral bedding; UMB, unfamiliar male bedding; +/+, +/−, −/−: 5-HTT genotypes. Statistics: 
T-test. Green: P < 0.05.
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signifi cant main effect of treatment [F(1, 105) = 6.918, P = 0.01] 
with UMB animals covering distinctly shorter distances than con-
trol individuals. According to the pairwise comparisons particularly 
heterozygous NB mice showed a trend to travel larger distances than 
heterozygous UMB mice (t = 1.762, P = 0.085; Table 2). There was 
no signifi cant main effect of gender.

Regarding the percentage of time spent in the center of the 
OF there was a trend towards a main effect of genotype [F(2, 
105) = 2.829, P = 0.064; Figure 4B; Table 1] with wildtypes spend-
ing most time in the center and homozygotes least time. There were 
no signifi cant main effects of gender and treatment.

Concerning both behavioral measures no signifi cant interac-
tions could be found.

DISCUSSION
EFFECTS OF TREATMENT ON BEHAVIOR OF THE MOTHERS
Mothers were either treated with NB or UMB, which contained 
urine and feces of adult males. By investigating the urine of 
 conspecifi cs, mice can gain information on individuality and sex 
of the scent mark owner both through the main and accessory 
olfactory systems (Hurst, 2009; Keller et al., 2009). The key infor-
mation is conveyed in involatile components which are detected by 
direct contact with a scent source through the vomeronasal system; 
a procedure that is generally thought necessary to elicit the Bruce 
effect (see Introduction; Brennan, 2009; Hurst, 2009). Thus, it is not 
surprising that NB and UMB females did not differ concerning their 
latencies to enter the treatment quarter. Interestingly, both during 
the fi rst and fi fth treatment UMB females stayed in the treatment 
quarters longer than NB females, suggesting that the odor cues 
left by adult males prolonged the time the pregnant females spent 
exploring this quarter of the cage. Providing information about 
the males’ physiological state and infanticidal potential (Mandillo 
and D’Amato, 1997), the odor cues contained in UMB were highly 
relevant for the females. Consistently, the time UMB females spent 
in the treatment quarter did not differ between the fi rst and the 

fi fth treatment, whereas NB females habituated to the treatment 
procedure. Taken together, these fi ndings indicate that the UMB 
dams were aware of the relevance of the odor cues, which simu-
lated the presence of potentially infanticidal males and the resulting 
risk of infant killing. Hence, it can be assumed that a threatening 
environment was created.

EFFECTS OF TREATMENT ON OFFSPRING ANXIETY-LIKE BEHAVIOR AND 
EXPLORATION
In summary, the appliance of our newly developed paradigm had 
a profound effect on the offspring behavioral profi le in adult-
hood: The treatment with UMB during pre- and early postnatal 
life increased levels of anxiety-like behavior in the DL test (latency 
to enter light compartment/number of entries into light compart-
ment) and decreased measures of exploratory activity (number of 
entries into light compartment/path length) in the OF test and DL, 
as indicated by the main effects of the ANOVA. Paired comparisons 
of the specifi c subgroups could not always locate the treatment 
effects to one specifi c genotype group. Only UMB wildtypes were 
found to enter the light compartment of the DL less often than NB 
wildtypes and UMB 5-HTT −/− individuals entered the light com-
partment later than NB 5-HTT −/− individuals. The main effects 
of treatment on the other parameters seem to be caused by slightly 
increased anxiety-related behavior and decreased exploratory loco-
motion in mice of all three genotypes, rather than by pronounced 
differences between the treatment groups in mice of a specifi c 
genotype. Admittedly, the main effects of treatment could not be 
found in all parameters, especially not in the EPM test. This could 
be due to the low illumination level applied in the EPM, since the 
behavior in the EPM seems to be strongly dependant upon lighting 
conditions (Clément et al., 2002).

There have been earlier attempts to apply olfactory cues in early 
phases of life in order to shape offspring behavioral profi le. But as 
far as we know, we are the fi rst to achieve increased anxiety-like 
behavior and reduced exploratory locomotion in the offspring by 
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FIGURE 4 | Open fi eld test. NB, neutral bedding; UMB, unfamiliar male 
bedding; +/+, +/−, −/−: 5-HTT genotypes. Data are shown as mean + SEM. 
Statistics: ANOVA, post hoc testing: Bonferroni corrected t-tests: 
***P < 0.001, **P < 0.01. Data were obtained from 36 NB males (6 +/+, 
19 +/−, 11 −/− mice), 28 NB females (13 +/+, 9 +/−, 6 −/− mice), 34 UMB males 

(10 +/+, 17 +/−, 7 −/− mice) and 19 UMB females (7 +/+, 5 +/−, 7 −/− mice). 
(A) Path length. There was a signifi cant main effect of genotype (P < 0.0001) 
and treatment (P = 0.010). (B) Percentage of time spent in center. There were 
no signifi cant main effects, but a trend towards a main effect of genotype 
(P = 0.064).
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confronting mothers with odor cues. For example, Moles et al. 
placed dams in cages containing male soiled bedding for 15 min 
daily during the fi rst 2 weeks of lactation, resulting in decreased 
anxiety-like behavior in the male offspring (Moles et al., 2004, 
2008). However, the same effect was found when mothers were 
instead placed in cages containing clean bedding (Moles et al., 
2008), indicating that the reduced anxiety-like behavior of the sons 
was probably due to an unspecifi c handling effect. Coutellier et al. 
applied an apparatus consisting of a nest cage and a foraging cage 
(Coutellier et al., 2008). However, the simulated threat of predation, 
indicated by rat odor in the foraging cage, failed to exert a main 
effect on the anxiety-related behavior of the offspring.

Other attempts have been made to modify adult behavior by 
modeling an adverse environment during early phases of life. 
During the prenatal phase pregnant females were exposed to 
stressors such as daily handling, repeated saline injections, light 
and/or noise, forced swimming and repeated restraint (Archer and 
Blackman, 1971; Vallée et al., 1997; Ward et al., 2000; Kofman, 2002; 
Maccari et al., 2003; Chung et al., 2005; Richardson et al., 2006; 
Weinstock, 2008). In rats these paradigms mostly caused increased 
anxiety-like behavior and decreased locomotion in the young, 
whereas in mice the treatment does not seem to affect the offspring 
in a consistent way. In other studies adverse experience during the 
early postnatal phase was created by exposing the offspring to low 
maternal care (Caldji et al., 1998; Carola et al., 2006, 2008) or by 
experimentally inducing maternal separation (MS) (Huot et al., 
2001; Pryce and Feldon, 2003; Romeo et al., 2003; Millstein and 
Holmes, 2007; Parfi tt et al., 2007; Veenema et al., 2007). Whereas 
increased  anxiety-like behavior can often, but not always, be shown 
in MS treated animals, low maternal care reliably leads to enhanced 
anxiety-like behavior in the offspring. In summary, adverse early 
life experience often increases offspring anxiety-like behavior and 
decreases exploratory locomotion. The effects of a dangerous envi-
ronment during pre- and early postnatal life in this study confi rm 
this general fi nding.

Compared to most stressors applied to induce adverse experi-
ences, the confrontation with olfactory cues of unfamiliar males 
appears to be a rather mild intervention; although confi rmation 
from stress hormone analysis is not yet at hand. Thus, at fi rst sight, 
it seems surprising that this procedure is capable of permanently 
affecting offspring behavioral profi le. Presumably, the newly devel-
oped paradigm owes its notable infl uence on offspring behavior 
to its strong ecological relevance: In accordance with current evo-
lutionary theory the effects of early life environmental stimuli on 
behavioral traits can represent adaptive maternal effects (Mousseau 
and Fox, 1998; Qvarnström and Price, 2001; Dufty et al., 2002; 
Kaiser and Sachser, 2005, 2009), that is, mothers try to maximize 
their own Darwinian fi tness by adjusting their offspring effi -
ciently to the  current or future environmental conditions. The 
 confrontation with bedding material from several male individu-
als of different strains, alternating every treatment, simulates an 
environment populated by a high number of potentially infanticidal 
males, and thus a threatening environment for a female and her 
young (see Introduction). When living in a dangerous habitat, it is 
highly adaptive for a mouse to behave careful and unobtrusively. 
Thus, it would be advantageous for mothers in such an environ-
ment to program their offspring to exhibit high  anxiety-like and 

low exploratory behavior. Therefore, the behavioral alterations 
measured in UMB offspring could indeed represent adaptive 
effects. It should be noted, however, that this conclusion is so far 
supported only as a proof-of-principle with the 5-HTT knockout 
mouse model in this study.

Whether these modulations of offspring behavioral profi le 
are mediated by intra-uterine mechanisms during gestation (e.g., 
Kaiser and Sachser, 2005), by physiological or behavioral maternal 
factors during lactation (e.g., Meaney, 2001) or by direct experience 
of the pups during the pre-weaning period remains to be examined. 
In order to decipher possible mechanisms, in an ongoing study 
we currently investigate whether the simulation of a threatening 
environment takes effect during the prenatal, postnatal, or both 
phases. In this context we are also studying the corticosterone stress 
response of mothers to the different olfactory treatments as a poten-
tial mediator of the observed treatment effects. Since maternal care 
has been suggested to be an important mediator of the effects of 
environmental adversity on neural development in the offspring 
(Meaney, 2001), it might also be interesting to evaluate the maternal 
behavior of the dams under different treatment conditions.

EFFECTS OF GENOTYPE AND GENOTYPE × TREATMENT INTERACTIONS 
ON OFFSPRING ANXIETY-LIKE BEHAVIOR AND EXPLORATION
As a general fi nding, homozygous 5-HTT knockout mice showed 
increased measures of anxiety-like behavior [latency to enter light 
compartment/number of entries into light compartment/percent-
age of time spent in light compartment/percentage of time spent in 
center (trend)] in the DL and OF as well as decreased locomotory 
activity in the EPM, DL and OF (sum of entries into open and closed 
arms/number of entries into light compartment/path length) as 
compared to heterozygous and wildtype animals.

This result confi rms earlier fi ndings in 5-HTT −/− mice (Holmes 
et al., 2003b,c; Lesch, 2005; Zhao et al., 2006; Kalueff et al., 2007). In 
contrast to previous studies, the differences in anxiety-like behavior 
did not prove to be signifi cant in the EPM. This is, however, most 
likely due to methodological differences in testing procedures. For 
instance the applied test apparatuses and illumination level differed 
clearly between the named studies, the latter ranging in the EPM 
between 200 lux (Holmes et al., 2003c) and 13 lux in this study. 
Generally, it is known that results of behavioral tests can differ 
between laboratories, even when the same testing procedures are 
used (Crabbe et al., 1999; Clément et al., 2002; Lewejohann et al., 
2006).

Although no signifi cant interaction between treatment and 
genotype could be found, there was some indication that the behav-
ioral differences between 5-HTT −/−, +/− and wildtype mice were 
intensifi ed when they experienced adverse early life circumstances: 
In the DL homozygous 5-HTT knockout mice of the UMB condi-
tion entered the light compartment signifi cantly later than UMB 
wildtypes and heterozygotes, whereas NB 5-HTT −/− mice did 
not behave differently from NB wildtypes and  heterozygotes (see 
Figure 3A). A similar pattern could be seen concerning the per-
centage of time spent in the light compartment of the DL (see 
Figure 3C). Furthermore, pairwise comparisons revealed that the 
increased anxiety-related behavior of 5-HTT −/− mice in the DL 
was most pronounced in UMB mice, indicating that the genetically 
induced behavioral alterations in 5-HTT −/− mice were enhanced 
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by an adverse early environment. Consistently, genetic  inactivation 
of the 5-HTT in mice leads to increased vulnerability to the anxio-
genic effects of predator stress (i.e., cat odor) (Adamec et al., 2006). 
Similarly, the experience of low maternal care led to increased 
anxiety and depression-related behavior in heterozygous 5-HTT 
knockout mice (Carola et al., 2008). Thus, changes in emotionality 
following exposure to adverse circumstances seem to be moderated 
by 5-HTT genotype.

The mechanisms underlying this phenomenon are not yet 
fully understood. Presumably the 5-HTT genotype infl uences the 
individual’s sensitivity to mild stressors and pathogenic effects 
of the environment (Kendler et al., 2005; Mandelli et al., 2007). 
Consistently, 5-HTT knockout mice display exaggerated pitui-
tary and adreno-medullary responses to stressors (Li et al., 1999; 
Murphy et al., 2001; Tjurmina et al., 2002). Electrical patterns of 
neural activity in the PFC-amygdala pathway are related to the 
retrieval and expression of conditioned fear (Seidenbecher et al., 
2003). Interestingly, in experiments with Pavlovian fear conditioning 
5-HTT −/− mice exhibit a signifi cant defi cit in fear extinction recall, 
that is, the long-term extinction of negative experience proceeds in 
a signifi cantly slower way than in wildtypes (Wellman et al., 2007). 
Furthermore, 5-HTT knockout mice show anatomical abnormali-
ties in the prefrontal cortex (Wellman et al., 2007). Concerning the 
molecular level, Carola et al. (2008) show selectively elevated levels 
of BDNF mRNA in the hippocampus of 5-HTT −/− mice exposed 
to low maternal care. They argue that 5-HT plays a similar role in 
modifying the long-term behavioral effects of rearing environment 
in diverse mammalian species and identify BDNF as a molecular 
substrate of this risk factor. In accordance with the fi ndings in mice, 
in humans 5-HTT-genotype related alterations in stress reactivity 
(Gotlib et al., 2008) as well as possibly inadequate regulation and 
integration of amygdala-mediated arousal (Pezawas et al., 2005) 
apparently increase the susceptibility to emotional disorders in the 
context of accumulating environmental adversity (Pezawas et al., 
2005; Canli et al., 2006; Canli and Lesch, 2007; Gotlib et al., 2008). 
The short 5-HTT allele has been associated with increased startle 
responses (Brocke et al., 2006) and greater activation in limbic and 
cortical brain regions in response to emotionally relevant stimuli 
(Dannlowski et al., 2007; Canli et al., 2008; Munafò et al., 2008).

The profi le of humans with two copies of the short 5-HTT allele 
is closely modeled by the 50% reduction of 5-HTT expression in 
5-HTT +/− mice (Bengel et al., 1998; Holmes et al., 2003b). Despite 
their diminished 5-HTT expression, heterozygous 5-HTT knockout 
animals usually behave similar to wildtype mice (Holmes et al., 
2003c; Lesch et al., 2003). Accordingly, 5-HTT +/− mice in this study 
did not exhibit pronounced behavioral differences from wildtype 
mice. Consistently, they were neither infl uenced by an early adverse 
environment in the same way as the homozygotes, but displayed 
the same behavioral phenotypes as the wildtype controls. It was 
assumed that the serotonergic dysfunction in 5-HTT +/− mice may 
only cause measurable behavioral abnormalities under challeng-
ing environmental conditions (Holmes et al., 2003c; Lesch, 2005). 
Maybe, the degree of adverseness of the environmental circum-
stances in our study was too low, allowing heterozygous 5-HTT 
knockout mice to compensate for their genetic defi ciency and 
to successfully cope with the situation. Possibly, more challeng-
ing treatment conditions, for instance direct contact between the 
mothers and unfamiliar males, would cause stronger behavioral 
effects in the heterozygotes. Alternatively, potentially present subtle 
behavioral differences could be made noticeable using different 
testing procedures.

CONCLUSIONS
By applying a new ecologically relevant paradigm we conclude: If 
5-HTT +/− mothers live in a dangerous world during pregnancy 
and lactation, their offspring behavioral phenotype will, in prin-
ciple, be shaped in an adaptive way. The decreased exploratory 
locomotion and increased anxiety-like behavior represent altera-
tions preparing the young for an adverse environment. This process 
is, however, modulated by 5-HTT genotype, bearing the risk that 
individuals with impaired serotonergic neurotransmission (5-HTT 
−/−) will develop an exaggerated, potentially pathological level of 
anxiety from gene × environment interactions.
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