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Social media in general provide great opportunities for mining massive amounts of

text, image, and video-based data. However, what questions can be addressed from

analyzing such data? In this review, we are focusing on microblogging services and

discuss applications of streaming data from the scientific literature. We will focus on

text-based approaches because they represent by far the largest cohort of studies and

we present a taxonomy of studied problems.

Keywords: social media, data analytics, prediction model, forecasting, big data, computational social science,

scientometrics, data science

1. INTRODUCTION

The establishment of the World Wide Web (WWW) in the 1990s revolutionized the
communication between people in many different and profound ways affecting our professional
and social life alike. One particular consequence of theWWWhas been the creation of social media
that provide a forum for the direct exchange of digital information in the form of texts, photos, or
videos, e.g., via blogs, microblogs, photo sharing, video sharing, social bookmarking, virtual worlds,
social gaming, or social networking web pages. The top sites such as Twitter, Facebook, LinkedIn,
and Google+ are used by hundreds of millions of active users worldwide. In the following, we will
focus on text-based social networking services for microblogging that are publicly accessible. This
excludes Instagram (image-based) and Youtube (video-based) but also Whatsapp (not publicly
accessible chats) from our considerations.

Due to the relatively brief history of the WWW and the social networking services there is still
a severe lack of understanding what, e.g., the information provided by microblogs can be used for.
For this reason, we provide a review of the literature with a focus on application areas of prediction
models that have been developed so far for analyzing data from microblogging services.

By prediction models we mean methods that aim at forecasting new events rather than merely
summarizing or describing information contained in data. For instance, among the first studied
questions of social media were investigations related to the topological structure of social networks.
Specifically, the degree distribution, the community structure and motifs of acquaintance networks
representing the “friendships” among members of social networking services, corresponding to
nodes in such graphs, have been investigated (Java et al., 2007; Aparicio et al., 2015). Such studies
are more descriptive in nature. Instead, in this review we present an overview of the literature that
use social media data for classification, regression, or time series prediction problems.
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2. GENERAL APPLICATION FIELDS AND
NUMBER OF PUBLICATIONS

We are starting our review my demonstrating that the field
of social media analytics is of great interdisciplinary interest
occupying already today a large share in the literature.

In order to show this, we are using the Web of Science
(WoS) (Clarivate Analytics, 2009) database, which is an
online subscription-based citation indexing service operated by
Clarivate Analytics. WoS contains comprehensive information
about published scientific articles in all areas. We used WoS
searching for articles containing the name of a microblog either
in the title, abstract, or as a keyword we found: Twitter: 16614,
Facebook: 15483, Tumblr: 175, GNU social (previously known as
StatusNet and Laconica): 72, Plurk: 56. From this we conclude
that the by far most frequently investigated microblogs in the
literature are Twitter and Facebook. For this reason, we will focus
on these in the following.

In Figure 1A. an overview of scientific fields is shown as
tagged to published articles containing the keyword Twitter or
Facebook, either in the title, the abstract, or as a keyword. It is not
surprising that most publications are computer science or social
science related. However, also quite a large fraction of papers
comes from medicine, management & business, and even arts
& humanities. Interestingly, the fraction of psychology related
publications is rather low despite the fact that intuitively one
would name this field first due to the personal nature of tweets
and Facebook postings. One reason for this underrepresentation
may be related to computational obstacles psychologists need to
overcome when they want to analyze social media data because
available tools may not allow to tackle targeted research questions
as conceived by psychologists.

In Figure 1B, we show the number of published articles
containing the keywords Twitter, Facebook, “machine learning”
or “artificial intelligence.” For papers containing the words
Twitter or Facebook these numbers are total numbers, for
“machine learning” and “artificial intelligence” these numbers
are subtracted by the minimal number of published papers in
these fields between 2006 and 2016. For “machine learning”
this number is 3266 and for “artificial intelligence” it is
12560. By subtracting these numbers we shifted both curves
downward (baseline shift) to make all four curves comparable
with each other due to the fact that articles investigating
Twitter or Facebook commenced only around 2008 whereas
the work in machine learning and artificial intelligence goes
much further back. In this sense, the curves shown for machine
learning and artificial intelligence provide only information
about new research directions as started around 2008. From
this comparison we learn that the proportion of social media
related publications compared to all articles involving machine
learning or artificial intelligence is amazingly high, making it
about 1/4 in 2016. Another tendency we can observe is that the
number of Twitter related publications is overtaking Facebook
since 2013. We did not include the years 2017 and 2018 in
Figure 1B. because the counts in WoS are still incomplete but
also for these years we find this trend to continue (data not
shown).

3. APPLICATIONS

3.1. Specific Scientific Application Fields
The idea of utilizing data from social media for making
predictions has generated great interest (Kalampokis et al., 2013;
Schoen et al., 2013). The question is what can one predict based
on such data? Prominent examples for such studies are prediction
models that investigated the emotional constitution of people
(Fernandez et al., 2012; Kross et al., 2013; Ortigosa et al., 2014),
personal traits and characters (Kosinski et al., 2013), stockmarket
behavior (Bollen et al., 2011; Siganos et al., 2014), election results
(Alonso and Vilares, 2016; Tumasjan et al., 2011).

Further examples are consumer behavior (Ringelhan et al.,
2015) , public health (Sinnenberg et al., 2017), opinion flow
(Wu et al., 2014), sharing cascades (Kupavskii et al., 2012;
Cheng et al., 2014), account classification (Chu et al., 2010,
2012; Dickerson et al., 2014), conflicts among friends (Liu and
Weber, 2014), demographics of users (Culotta et al., 2015),
mental health (Guntuku et al., 2017), heart disease (Eichstaedt
et al., 2015), tourism (information search and decision-making
behaviors) (Zeng and Gerritsen, 2014), word-of-mouth (WOM)
or consumer reviews (Zhang et al., 2012), box-office revenue
of movies (Asur and Huberman, 2010), levels of rainfall
(Lampos and Cristianini, 2012), earthquakes (Sakaki et al., 2010),
theoretical implications introduced by social media (Kane et al.,
2014). In Table 1 we provide a comprehensive overview of many
important questions that have been studied using social media
data. We would like to note that here we emphasized the “What
to predict” aspect of these studies by highlighting the questions
that have been addressed.

As one can see fromTable 1 there aremany different questions
studied so far. In order to organize these publications, we
introduce a taxonomy to categorize these publications according
to a fewmajor variables. In Figure 1we give a graphical summary
of our taxonomy. Overall, these questions fall into seven different
fields (E, Economy; G, Geophysics; H, Health; M, Management;
S, Sociology; Ps, Psychology; Po, Politology) covering almost all
science areas. In this figure, we provide furthermore information
about four additional layers, namely (I) the time horizon of the
prediction (horizon) for making predictions about the future (F)
or the present (P), (II) the level of prediction (level) for macro
(Ma) andmicro (Mi) level predictions, (III) the time of prediction
(time) for batch (Ba) and real-time (Rt) predictions, and for (IV)
making spatial (Sp) or non-spatial (Ns) predictions. Each of these
layers will be discussed in the following sections.

One area missing from the above (see Figure 2) were
studies in humanities. By performing a WoS search looking
for articles containing the words Twitter/Facebook, humanities,
and prediction/forecast we found no results. However, we found
articles (54) searching for Twitter/Facebook and humanities.
Interestingly, these articles are descriptive rather than predictive
in nature. Examples for such studies are (Vainio and Holmberg,
2017). In Lee et al. (2017) and Vainio and Holmberg (2017) the
authors studied who tweeted scientific articles with at least one
Finnish author/co-author and that had high altmetric counts
on Twitter and in Lee et al. (2017) the use of Twitter by
scholars in the digital humanities was studied for informal
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FIGURE 1 | (A) Scientific fields of published articles investigating Twitter (TW) or Facebook (FB). (B) The number of published articles containing the keywords Twitter,

Facebook, “machine learning” (ML) or “artificial intelligence” (AI). The numbers ML = +3266 and AI = +12560 indicate the baseline shift for ML and AI. (C) Scatter

plot comparing articles containing the social media (SM) keyword Twitter or Facebook with articles containing additionally “prediction” or “forecast.” The shown

“forecast.” The shown percentages are for Twitter giving the fraction of prediction related publications referred to all publications. (D) Similar to (C), but now containing

additionally the keywords “cross validation” (CV) or “resampling”.

scholarly communication. Those and similar papers performed
a descriptive statistical analysis but no predictions were made.

3.2. Time Horizon of the Forecasting
There are two different types of prediction models used in the
literature with respect to the prediction itself. The first type
predicts the future and the second prediction type predicts
the present. The former type is naturally understood because
this is what is usually implied by a prediction or a forecast,
namely that it should tell us something about the near or far
future. For this reason, almost all of the above studies are
from this type. However, the second type is unconventional
because neither in classical statistics nor machine learning
such predictions are made. An example in our context is the
prediction of rainfall levels Lampos and Cristianini (2012). Here
the idea is to use Twitter users as sort of social sensors that
report real-world events instantaneously. Another example is the

prediction of earthquakes (Sakaki et al., 2010). In the literature
such predictions are called nowcasting or predicting the present
(Schoen et al., 2013).

3.3. Macro- vs. Micro-Level Predictions
Another distinction in the predictions is with respect to the level
of the prediction. The majority of articles makes predictions on
a macro-level for which individual Twitter or Facebook users are
irrelevant. Instead, what is important is the aggregation of users
into categories. Examples for this is, e.g., predicting outcome of
elections or box-office success of movies (Asur and Huberman,
2010; Alonso and Vilares, 2016; Tumasjan et al., 2011). In
contrast, predictions on the micro-level make predictions for
Twitter or Facebook users themselves. Examples are predicting
the personality (Golbeck et al., 2011; Quercia et al., 2011; Hughes
et al., 2012; Youyou et al., 2015) or human mobility (Jurdak et al.,
2015).
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TABLE 1 | An overview of questions addressing “What do predict” with social

media data.

“What to predict” References

Bot detection (account

classification)

Chu et al. (2010, 2012); Dickerson et al. (2014)

Box-office revenue of

movies

Asur and Huberman (2010)

Company value Luo and Zhang (2013)

Conflicts among friends Liu and Weber (2014)

Consumer behavior Ringelhan et al. (2015)

Crime incidents Gerber (2014); Aghababaei and Makrehchi (2016)

Demographics of users Culotta et al. (2015)

Earthquakes Sakaki et al. (2010)

Election results Alonso and Vilares (2016); Tumasjan et al. (2011)

Emotional constitution

of people

Fernandez et al. (2012); Kross et al. (2013); Ortigosa

et al. (2014)

Epidemic of infection

disease

Santillana et al. (2015)

Fake news Gupta et al. (2013); Conroy et al. (2015)

Heart disease Eichstaedt et al. (2015)

Mental health De Choudhury et al. (2013); Guntuku et al. (2017)

Popularity of news Bandari et al. (2012)

Movie ratings Oghina et al. (2012)

Opinion flow Wu et al. (2014)

Personal traits and

characters

Kosinski et al. (2013)

Public health Robillard et al. (2013); Sinnenberg et al. (2017)

Sharing cascades Kupavskii et al. (2012); Cheng et al. (2014)

Stock market behavior Bollen et al. (2011); Siganos et al. (2014)

Rainfall levels Lampos and Cristianini (2012)

Suicide rates Won et al. (2013)

Tourism Zeng and Gerritsen (2014)

Word-of-mouth (WOM)

or consumer reviews

Zhang et al. (2012)

3.4. Batch vs. Real-Time Predictions
The difference between batch and real-time models is that in the
former case data are gathered off-line and then one prediction
is made. In the latter case this process is iterated multiple times
and data are generated on-line. Examples for batch predictions
are election forecasts whereas real-time predictions forecast
the political opinion continuously (Alonso and Vilares, 2016;
Tumasjan et al., 2011). In general, the need for developing a real-
time model depends on the application one is aiming at. For
instance, if one intends to predict the outbreak of an epidemic of
an infection disease this needs to be done in a real-time manner
because there is not one scheduled event to occur one wants to
predict but there is all the time a possibility for the outbreak to
happen (Robillard et al., 2013; Santillana et al., 2015). Another
example is the prediction of stock market values (Bollen et al.,
2011; Siganos et al., 2014).

3.5. Non-spatial vs. Spatial Predictions
A final distinction of prediction models relates to non-spatial
vs spatial predictions. A non-spatial prediction makes a forecast

for the population as a whole, e.g., the outcome of an election
(Alonso and Vilares, 2016; Tumasjan et al., 2011). In contrast,
a spatial prediction makes a forecast for, e.g., all municipalities
of a country. In this sense predictions in the former case can
be considered as scalar whereas in the latter case they are
multivariate. In order to accomplish a spatial prediction, usually
information about the geolocation of the users is utilized. This
information may be either directly available, or needs to be
inferred from the content of the microblogs.

4. DISCUSSION

As we have shown in Figure 1B, the interest in studying data
from social media increases every year. However, also the
proportion of prediction related publications increases every
year. In order to see this we show Figure 1C. In this scatter
plot we show results we obtained from a WoS search for articles
containing the social media (SM) keyword Twitter or Facebook
(x-axis) and for articles containing additionally the keywords
“prediction” or “forecast” (y-axis). The fraction of the values
on the y-axis to the values on the x-axis, i.e., yi/xi, gives the
percentage of prediction related publications compared to all
publications. In Figure 1C. the shows values are for Twitter
(values for Facebook are similar). Due to the fact that the
number of publications increases every year, as can be seen
from Figure 1B,the x-axis in this figure is proportional to the
publication year and, hence, one can see that the fraction of
prediction related publications increases over the years reaching
currently well over 60%.

4.1. Gaps in the Literature
When collecting the articles for this review we noticed that
despite the fact that all considered publications utilize prediction
models, only a small fraction of these make an attempt to ensure
the statistical soundness of the models. As a simple indicator for
this omission we searched the WoS for articles containing the
keywords Twitter or Facebook and for articles that contain the
keywords Twitter and cross validation or Twitter and resampling
(similarly for Facebook). The result of these searches is shown
as a scatter plot in Figure 1D. The shown pairs correspond
to the same publication year and y-axis label SM & CV is an
abrieviation for our second search query. This figure confirms
our perception indicating that only a small fraction of all articles
applies resampling methods in order to quantify the uncertainty
in the data and to guard against overfitting. Given the fact that
the analyzed social media data are “big,” resampling methods can
always be applied. Overall, this indicates a possible problem that
would require further analysis.

4.2. Potential Future Developments
4.2.1. Data Integration
The vast majority of studies analyzed only data from social
media. However, a combination of such data with external
data would allow to address further questions. For instance,
health related studies could benefit from integrating data from
disease databases, e.g., Online Mendelian Inheritance in Man
(OMIM) (OMI, 2007), Gene Ontology (Ashburner et al., 2000),
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FIGURE 2 | Taxonomy of questions that have been investigated so far by prediction models. Overall, these questions fall into seven different applications. E,

Economy; G, Geophysics; H, Health; M, Management; S, Sociology; Ps, Psychology; Po, Politology. In addition, distinctions are made regarding the horizon, level,

time, and spatial nature of the predictions (see main text for details).

or DrugBank (Wishart et al., 2007). This approach enables also
in a natural way the extension of text mining approaches because
the external information may be utilized in form of dictionaries,
e.g., lists of words from a specific category, that can be used to
perform a guided sentiment analysis.

Support for our argument for using external information
is provided by Ciulla et al. (2012). The authors found that
information provided by tweets alone is not sufficient in order to
predict the outcome of a social event (the winner of American
Idol) but tweets need to be complemented with information
about the geographic location of the tweets.

Another purpose for data integration could be for increasing
prediction accuracy and reducing prediction errors. This could
be accomplished by utilizing different, independent sources of
social media data. In this way one could also naturally obtain
quantitative estimates for the variability in the data.

4.2.2. Social Networks
A further direction to explore could be the utilization of social
networks (Wasserman and Faust, 1994). An example area where
this could be of relevance is studies about infectious outbreaks.
The reason for this is that an infection can only spread by
human contacts. However, usually, this human contact network
is not known. As an approximation for such a human contact

network one could utilize data from social media to infer such
a network. The simplest way to do this could be by utilizing
the information “who is a follower of whom” which can be
directly extracted from Twitter. However, one can go beyond
these follower networks by also constructing semantic networks.
The semantic networks could be constructed from estimating
the similarity, e.g., among Twitter users based on the content
of their tweets and conditioned on metadata. As a result, the
information from these different networks could be integrated
leading to characteristic spatial scores of the twitter activity and
content in specific area.

4.2.3. Deep Learning
Finally, it will be interesting to see if new machine learning and
artificial intelligence methods, above all deep learning methods
(Hinton et al., 2006; Bengio et al., 2009; LeCun et al., 2015),
e.g., deep neural networks, deep decision trees or deep belief
networks, will change the type of questions addressed with social
media data. So far, deep learning methods have found ample
applications in image recognition, audio classification, genomics
and text mining, e.g., (Lee et al., 2009; Alipanahi et al., 2015; Jiang
et al., 2015; He et al., 2016), however, for social media mining
we cannot observe from the current literature that new “What
to predict” questions have emerged. Instead, familiar questions
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are studied with these new methodologies focusing on “How
to predict.” Maybe, more experience is needed until scientists
find new questions that can be raised with such computer- and
data-intense approaches.

5. CONCLUSIONS

In this paper we surveyed the literature of prediction models
for social media with a focus on the questions that have
been addressed so far. Since we are observing a transition
from descriptive to predictive studies in the last years (see
Figure 1C) a taxonomy of such questions is a natural first
step in understanding the capabilities of social media. We
anticipate this trend to continue and the diversity of question

to increase. However, a necessity for the latter is a better
comprehension of the data social media provide by exploring
their limitations and possibilities with respect to statistical
models.
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