
SPECIALTY GRAND CHALLENGE
published: 14 February 2019

doi: 10.3389/fdata.2019.00001

Frontiers in Big Data | www.frontiersin.org 1 February 2019 | Volume 2 | Article 1

Edited and reviewed by:

Jorge Lobo,

Catalan Institution for Research and

Advanced Studies, Spain

*Correspondence:

Murat Kantarcioglu

muratk@utdallas.edu

Specialty section:

This article was submitted to

Cybersecurity and Privacy,

a section of the journal

Frontiers in Big Data

Received: 24 July 2018

Accepted: 10 January 2019

Published: 14 February 2019

Citation:

Kantarcioglu M and Ferrari E (2019)

Research Challenges at the

Intersection of Big Data, Security and

Privacy. Front. Big Data 2:1.

doi: 10.3389/fdata.2019.00001

Research Challenges at the
Intersection of Big Data, Security and
Privacy

Murat Kantarcioglu 1* and Elena Ferrari 2

1Department of Computer Science, University of Texas at Dallas, Richardson, TX, United States, 2Department of Theoretical

and Applied Science, University of Insubria, Varese, Italy

Keywords: big data, security, privacy, cybersecurity, sharing, machine learning

1. OVERVIEW

As reports fromMcKinsey Global Institute (Mckinsey et al., 2011) and theWorld Economic Forum
(Schwab, 2016) suggest, capturing, storing and mining “big data” may create significant value in
many industries ranging fromhealth care to government services. For example,McKinsey estimates
that capturing the value of big data can create $300 billion dollar annual value in the US health
care sector and $600 billion dollar annual consumer surplus globally (Mckinsey et al., 2011). Still,
several important issues need to be addressed to capture the full potential of big data. As shown by
the recent Cambridge Analytica scandal (Cadwalladr and Graham-Harrison, 2018) where millions
of users profile information were misused, security and privacy issues become a critical concern.
As big data becomes the new oil for the digital economy, realizing the benefits that big data can
bring requires considering many different security and privacy issues. This in return implies that
the entire big data pipeline needs to be revisited with security and privacy in mind. For example,
while the big data is stored and recorded, appropriate privacy-aware access control policies need
to be enforced so that the big data is only used for legitimate purposes. On the other hand, while
linking and sharing data across organizations, privacy/security issues need to be considered. Below,
we provide an overview of novel research challenges that are at the intersection of cybersecurity,
privacy and big data.

2. STORING AND QUERYING BIG DATA

One of the ways to securely store big data is using encryption. Once data is encrypted, if the
encryption keys are safe, then it is infeasible to retrieve the original data from the encrypted data
alone. At the same time, encrypted data must be queried efficiently. Encrypted storage and querying
of big data have received significant attention in the literature (e.g., Song et al., 2000; Hacigumus
et al., 2002; Golle et al., 2004; Ballard et al., 2005; Chang and Mitzenmacher, 2005; Kantarcıoğlu
and Clifton, 2005; Canim and Kantarcioglu, 2007; Shi et al., 2007; Shaon and Kantarcioglu,
2016). Many techniques ranging from simple encrypted keyword searches to fully homomorphic
encryption have been developed (e.g., Gentry, 2009). Although there have been major progress
in this line of research, breakthroughs are still needed to scale encryption techniques for big data
workloads in a cost effect manner. In addition, more practical systems need to be developed for end
users. Recent developments that leverage advances in trusted execution environments (TEEs) (e.g.,
Ohrimenko et al., 2016; Chandra et al., 2017; Shaon et al., 2017; Zheng et al., 2017) offer muchmore
efficient solutions for processing encrypted big data under the assumption that hardware provides
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some security functionality. Still, the risks of using encrypted data
processing (e.g., access pattern disclosure Islam et al., 2012) and
TEEs need to be further understood to provide scalability for the
big data while minimizing realistic security and privacy risks.

Even if the data is stored in an encrypted format, legitimate
users need to access the data. This implies that we need to
have effective access control techniques that allow users to
access the right data. Although the research community has
developed a plethora of access control techniques for almost all
of the important big data management systems (e.g., Relational
databases Oracle, 2015, NoSql databases Ulusoy et al., 2015a;
Colombo and Ferrari, 2018, social network data Carminati
et al., 2009) with important capabilities, whether the existing
techniques and tools could easily support the new regulatory
requirements such as the ones introduced by European Union
General Data Protection Directive GDPR (Voigt and Bussche,
2017) is an important question. For example, to address
new regulations such as right-to-be-forgotten where users may
require the deletion of data that belongs to them, we may
need to better understand how the data linked and shared
among multiple users in a big data system. For example,
multiple users that are tagged in the same picture may have
legitimate privacy claims about the picture. This implies that
access control systems need to support policies based on the
relationships among users and data items (e.g., Pasarella and
Lobo, 2017). These observations indicate that understanding
how to provide scalable, secure and privacy-aware access control
mechanisms for the future big data applications ranging from
personalized medicine to Internet of Things systems while
satisfying new regulatory requirements would be an important
research direction.

3. LINKING AND SHARING BIG DATA

In many cases, data that belongs to different sources need to

be integrated while satisfying many privacy requirements. For
example, a patient may visit multiple health care providers and
his/her complete health records may not be available in one
organization. As another example, passenger data coming from

airlines may need to be linked to governmental terrorist watch
lists to detect suspicious activity. To protect individual privacy,

only the records belonging to government watch lists may be
shared. Clearly, these types of use cases require linking potentially

sensitive data belonging to the different data controllers. Over
the years, private record linkage research has addressed many
issues ranging from handling errors (e.g., Kuzu et al., 2013)
to efficient approximate schemes that leverage cryptographic
solutions (e.g., Inan et al., 2008). Still, the scalability of these
techniques for multiple data sources with different privacy and
security requirements have not been explored. More research is
needed to make these recent developments to be deployed in
practice by addressing these scalability issues.

Once data is collected and potentially linked/cleaned, it may
be shared across organizations to enable novel applications and
unlock potential value. For example, location data collected
from mobile devices can be shared with city planners to better

optimize transportations networks. Unfortunately, privacy and
security issues may prevent such data sharing. Even worse, in
some cases such data may be distributed among multiple parties
with potentially conflicting interests. For example, different
organizations may not want to share their cybersecurity incident
data because of the potential concerns where a competitor may
use this information for their benefit. Therefore, many issues
ranging from security to privacy to incentives for sharing big data
need to be considered.

From a privacy point of view, novel privacy-preserving data
sharing techniques, based on a theoretically sound privacy
definition named differential privacy, have been developed (e.g.,
Dwork, 2006). These techniques usually work by adding noise to
shared data and may not be suitable in some application domains
where noise free data need to be shared (e.g., health care domain).
In addition, in some cases, these techniques require adding
significant amount of noise to protect privacy. This in return
may significantly reduce the data utility. On the other hand, some
practical risk–aware data sharing tools have been developed (e.g.,
Prasser et al., 2017). Unfortunately, these practical risk-aware
data sharing techniques do not provide the theoretical guarantees
offered by differential privacy. Therefore, better understanding
of the limits of privacy-preserving data sharing techniques that
balance privacy risks vs. data utility need to be developed.

In many cases, misaligned incentives among the data
collectors and/or processors may prevent data sharing. For
example, instead of getting lab tests conducted by another health
care provider, for a hospital, it may be more profitable to
redo the tests. To address this type of incentive issues, secure
distributed data sharing protocols that incentivize honest sharing
of data have been developed (e.g., Buragohain et al., 2003).
These protocols usually leverage ideas from economics and game
theory to incentivize truthful sharing of big data where security
concerns prevent direct auditing (e.g., Kantarcioglu and Nix,
2010; Kantarcioglu and Jiang, 2012). Still addressing incentive
issues ranging from compensating individuals for sharing their
data (e.g., data market places 1) to payment systems for data
sharing among industry players need to be addressed. More
research that integrates ideas from economics, and psychology
with computer science techniques is needed to address the
incentive issues in sharing big data without sacrificing security
and/or privacy.

4. ANALYZING BIG DATA

Another important research direction is to address the privacy
and the security issues in analyzing big data. Especially, recent
developments in machine learning techniques have created
important novel applications in many fields ranging from
health care to social networking while creating important
privacy challenges.

Again differential privacy ideas have been applied to address
privacy issues for the scenarios where all the needed data is
controlled by one organization (e.g., McSherry, 2009). These
techniques usually require adding noise to the results. Still, it

1https://datum.org
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is shown that given large amount of data, these techniques can
provide usefulmachine learningmodels. To address the scenarios
where machine learning models need to be built by combining
data that belong to different organization, many different
privacy-preserving distributed machine learning protocols have
been developed (e.g., Clifton et al., 2003; Kantarcıoğlu and
Clifton, 2004; Vaidya and Clifton, 2005). Using cryptographic
techniques, these algorithms usually provide security/privacy
proofs that show nothing other than the final machine learning
models are revealed. Furthermore, these results suggest that
most of the privacy-preserving distributed machine learning
tasks could be securely implemented by using few basic “secure
building blocks” such as secure matrix operations, secure
comparison, etc. (Clifton et al., 2003). Still many challenges
remain in both settings. In the case of differential private
techniques, for complex machine learning tasks such as deep
neural networks, the privacy parameters need to adjusted
properly to get the desired utility (e.g., classifier accuracy Abadi
et al., 2016). The practical implications of setting such privacy
parameters need to be explored further. In the case of privacy-
preserving distributed machine learning techniques, except
few exceptions, these techniques are not efficient enough for
big data. Although leveraging trusted execution environments
showed some promising results, potential leaks due to side
channels need to be considered (Schuster et al., 2015; Costan
and Devadas, 2016; Shaon et al., 2017). Therefore, more
research is needed to scale these techniques without sacrificing
security guarantees.

Unfortunately, securely building machine learning models
by itself may not preserve privacy directly. It has been shown
that machine learning results may be used to infer sensitive
information such as sexual orientation, political affiliation
(e.g., Heatherly et al., 2013), intelligence (e.g., Kosinski et al.,
2013 ) etc. Although differential privacy techniques have shown
some promise to prevent such attacks, recent results have shown
that it may not be effective against many attack while providing
acceptable data utility (Fredrikson et al., 2014). These results
indicate the need to do more research on understanding privacy
impact of machine learning models and whether the models
should be built in the first place (e.g., machine learning model
that tries to predict intelligence).

5. ACCOUNTABILITY ISSUES IN BIG DATA

As machine learning algorithms affect more and more aspects
of our lives, it becomes crucial to understand how these
algorithms change the way decisions are made in today’s
data-driven society. The lack of transparency in data-driven
decision-making algorithms can easily conceal fallacies and risks
codified in the underlying mathematical models, and nurture
inequality, bias, and further division between the privileged
and the under-privileged (Sweeney, 2013). Although the recent
research tries to address these transparency challenges (Baeza-
Yates, 2018), more research is needed to ensure fairness,
and accountability in usage of machine learning models and
big data driven decision algorithms. Understanding the data

provenance (e.g., Bertino and Kantarcioglu, 2017) (i.e., how
the data is created, who touched it etc.) have shown to
improve trust in decisions and the quality of data used for
decision making.

In addition to increasing accountability in decision making,
more work is needed to make organizations accountable in
using privacy sensitive data. With the recent regulations such
as GDPR (Voigt and Bussche, 2017), using data only for the
purposes consented by the individuals become critical, since
personal data can be stored, analyzed and shared as long as
the owner of the data consent the data usage purposes. At the
same time, it is not clear whether the organizations who collect
the privacy sensitive data always process the data according
to user consent. An example of this problem is reflected in
the recent Cambridge Analytica scandal (Cadwalladr and
Graham-Harrison, 2018). In this case, it turns out that the
data collected by Facebook is shared for purposes that are not
explicitly consented by the individuals which the data belong. As
more andmore data collected, making organizations accountable
for data misuse becomes more critical. It is not clear whether
purely technical solutions can solve this problem, even though
some research try to formalize purpose based access control and
data sharing for big data (e.g., Byun and Li, 2008; Ulusoy et al.,
2015b). Legal and economic solutions (e.g., rewarding insiders
that report data misuse) need to be combined with technical
solutions. Research that addresses this interdisciplinary area
emerges as a critical need.

6. BLOCKCHAINS, BIG DATA SECURITY

AND PRIVACY

The recent rise of the blockchain technologies have enabled
organizations to leverage a secure distributed public ledger where
important information could be stored for various purposes
including increasing in transparency of the underlying economic
transactions. The first application of Blockchain has been the
Bitcoin (Nakamoto, 2008) cryptocurrency. Bitcoin’s success has
resulted in more than 1000 Blockchain based cryptocurrencies,
known as alt-coins.

It turns out that blockchains may have important implications
for big data security and privacy. On the one hand, combined
with other cryptographic primitives, blockchain based tools
(e.g., Androulaki et al., 2018 ) may enable more secure
financial transactions (e.g., Cheng et al., 2018), data sharing
(e.g., Kosba et al., 2016) and provenance storage (e.g.,
Ramachandran and Kantarcioglu, 2018 ) . On the other hand,
the data stored on blockchains (e.g., financial transactions stored
on Bitcoin blockchain) may be analyzed to provide novel
insights about emerging data security issues. For example, it
seems that cryptocurrencies are used in payments for human
trafficking (Portnoff et al., 2017), ransomware (Huang et al.,
2018), personal blackmails (Phetsouvanh and Oggier, 2018), and
money laundering (Moser and Breuker, 2013), among many
others. Blockchain Data Analytics tools (Akcora et al., 2017) and
big data analysis algorithms can be used by law agencies to detect
such misuse (for Law Enforcement Cooperation, 2017).
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7. ADVERSARIAL ML AND ML FOR

CYBERSECURITY

Like many application domains, more and more data are
collected for cyber security. Examples of these collected data
include system logs, network packet traces, account login
formation, etc. Since the amount of data collected is ever
increasing, it became impossible to analyze all the collected
data manually to detect and prevent attacks. Therefore, data
analytics are being applied to large volumes of security
monitoring data to detect cyber security incidents (see discussion
in Kantarcioglu and Xi, 2016). For example, a report from
Gartner claims (MacDonald, 2012) that “Information security is
becoming a big data analytics problem, where massive amounts
of data will be correlated, analyzed and mined for meaningful
patterns.” There are many companies that already offer data
analytics solutions for this important problem. Of course, data
analytics is a means to an end where the ultimate goal is
to provide cyber security analysts with prioritized actionable
insights derived from big data.

Still, direct application of data analytics techniques to the
cyber security domain may be misguided. Unlike most other
application domains, cyber security applications often face
adversaries who actively modify their strategies to launch new
and unexpected attacks. The existence of such adversaries in
cyber security creates unique challenges compared to other
domains where data analytics tools are applied. First, the attack
instances are frequently beingmodified to avoid detection. Hence
a future dataset will no longer share the same properties as
the current datasets. For example, attackers may change the
spam e-mails written by adding some words that are typically

associated with legitimate e-mails. Therefore, the spam e-mail
characteristics may be changed significantly by the spammers
as often as they want. Secondly, when a previously unknown
attack appears, data analytics techniques need to respond to
the new attack quickly and cheaply. For example, when a
new type of ransomware appears in the wild, we may need
to update existing data analytics techniques quickly to detect
such attacks. Thirdly, adversaries can be well-funded and
make big investments to camouflage the attack instances. For
example, a sophisticated group of cyber attackers may create
malware that can evade all the existing signature-based malware
detection tools using zero day exploits (i.e., software bugs that
were previously unknown). Therefore, there is an urgent need
to protect machine learning models against potential attacks.
Although there is an active research directions for addressing
adversarial attacks in machine learning (e.g., Zhou et al.,
2012; Szegedy et al., 2013; Goodfellow et al., 2014; Papernot
et al., 2016; Zhou and Kantarcioglu, 2016), more research that
also leverages human capabilities may be needed to counter
such attacks.
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Kantarcıoğlu, M., and Clifton, C. (2004). Privacy-preserving distributed mining of

association rules on horizontally partitioned data. IEEE TKDE 16, 1026–1037.

doi: 10.1109/TKDE.2004.45
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