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Ensuring the safety of new drugs is critically important to regulators, pharmaceutical

researchers and patients alike. Even so, unexpected toxicities still account for 20–30%

of clinical trial failures, in part due to the persistence of animal testing as the primary

approach for de-risking new drugs. Clearly, improved methods for safety attrition that

incorporate human-relevant biology are needed. This recognition has spurred interest

in non-animal alternatives or new approach methodologies (NAMs) including in vitro

models that utilize advances in the culture of human cell types to provide greater clinical

relevance for assessing risk. These phenotypic assay systems use human primary and

induced pluripotent stem cell-derived cells in various formats, including co-cultures and

advanced cellular systems such as organoids, bioprinted tissues, and organs-on-a-chip.

Despite the promise of these human-based phenotypic approaches, adoption of these

platforms into drug discovery programs for reducing safety-related attrition has been

slow. Here we discuss the value of large-scale human cell-based phenotypic profiling for

incorporating human-specific biology into the de-risking process. We describe learnings

from our experiences with human primary cell-based assays and analysis of clinically

relevant reference datasets in developing in vitro-based toxicity signatures. We also

describe how Adverse Outcome Pathway (AOP) frameworks can be used to integrate

results from diverse platforms congruent with weight-of-evidence approaches from risk

assessment to improve safety-related decisions in early discovery.

Keywords: drug discovery, phenotypic assays, toxicity mechanism, reference database, data mining, toxicity

testing, new approach methodologies

INTRODUCTION

The use of “omics” profiling technologies (genomics, proteomics, metabolomics, etc.) and in
vitro methods in discovery toxicology has exploded in recent years and begun to advance our
understanding of toxicity mechanisms (Beilmann et al., 2019; Thomas et al., 2019). The field
is still young, however, as the molecular mechanisms underlying most human toxicities remain
unknown. Despite this, identified mechanisms reveal critical differences between humans and
animals commonly employed in safety tests (Jang et al., 2019). In addition to the well-appreciated
differences in gene and protein sequences, important influences of lifespan, environment, and
physical architecture on toxicity mechanisms are less often recognized and addressed.
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Lifespan: Whereas humans live for many decades
(∼70 years), rodents are short lived (∼2 years) with
comparatively limited regulatory mechanisms supporting
genome maintenance and integrity. Indeed, DNA mutation
rates are higher in mice than humans (Milholland et al.,
2017) and expression of DNA repair genes is lower (MacRae
et al., 2015). Humans also appear to be more reliant on
immune system surveillance to identify and eliminate cells
containing genomic mutations (Corthay, 2014). These lifespan-
related differences in DNA damage response mechanisms
are important to consider when assessing the relevance of
resource-intense and costly two-year animal carcinogenicity
studies, often performed for new product regulatory
submissions (Corvi et al., 2017).

Environment: Environmental factors contribute to the
many differences in immune system function described
between humans and research animals (Mestas and
Hughes, 2004; Seok et al., 2013). Humans live in the open
world exposed to a diverse array of chemical, microbial,
and infectious stressors over an extended timeframe. In
contrast, research animals are housed in small groups in
highly standardized, clean facilities with filtered water and
specialized food. Indeed, immune mechanisms appear to drive
a significant fraction of human-specific toxicity susceptibility
and are associated with increased risk of adverse effects
to drug exposure, including idiosyncratic liver toxicity
(Godoy et al., 2013). Cytokine release syndrome, the tragic
outcome in 2006 of the Phase I clinical trial of the CD28
super-agonist antibody TGN 1412, was an unpredicted
immune-system toxicity in humans not observed in preclinical
testing (Lee et al., 2014).

Physical Architecture: Toxicities are also influenced by
species-specific tissue and organ architecture—for example
the vascular system. Vascular beds in rodents are densely
arranged, with characteristically short distances between
the average tissue resident cell and the closest blood vessel
(Karbowski, 2011; Brissova et al., 2015). In contrast, the
vasculature in human tissues is less dense and contains larger
vessels that are subject to significantly higher vascular wall
shear stresses. Humans are more vulnerable than rodents
to blocks in blood vessel flow (heart attacks, pulmonary
thrombosis, stroke) and as a consequence, manifest additional
regulatory mechanisms to control hemostasis. Dogs, with
a higher degree of similarity to humans with regard to
cardiovascular system architecture, are often employed
in cardiovascular toxicity studies. These costly studies,
however, have had limited impact on reducing safety
attrition. Cardiovascular system-related toxicities continue
to be one of the leading causes of clinical failures (Cook
et al., 2014), emphasizing a critical need for NAMs that reflect
human-specific vulnerabilities.

Translational approaches that capture the biology and
mechanisms relevant to cell proliferation, immune, and
inflammatory responses and vascular biology are well placed
to reveal human-specific toxicity impacts. For these data to be
utilized effectively, organizational strategies that integrate data
from multiple platforms and capture mechanistic relationships

are needed. This in turn can expedite adoption of human-based
in vitro assays for safety de-risking in discovery.

ADVERSE OUTCOME PATHWAY
FRAMEWORKS FOR INTEGRATING ASSAY
PLATFORM RESULTS

The Adverse Outcome Pathway (AOP) approach provides a
particularly useful framework as it aligns platforms and data
types to key mechanistic steps. The use of AOPs to organize
knowledge in support of toxicity risk assessments has been
advanced by the OECD and the US EPA (Edwards et al., 2016;
https://www.oecd.org/chemicalsafety/testing/adverse-outcome-
pathways-molecular-screening-and-toxicogenomics.htm).
AOPs are applied in a weight-of-evidence approach for risk
assessment and used to connect molecular initiating events (e.g.,
target interactions) to adverse outcomes through a series of key
events at distinct levels of the biological hierarchy: pathway,
tissue, organ, organism, population. Figure 1 shows how the
AOP framework can be used to integrate data from target-
based platforms, phenotypic assays, more advanced complex
systems, and clinical studies. Assay platforms map to different
elements of the AOP framework, with important advantages and
disadvantages of each approach indicated.

Target-based profiling platforms map to the first step in
the AOP, the molecular initiating event (MIE). Broad profiling
across diverse targets is a long-established approach for de-
risking lead compounds (Bowes et al., 2012). Key advantages
of target-based profiling include throughput for testing large
numbers of compounds and statistical robustness of the resulting
data, enabling quantitative differentiation of close analogs.
Assays tend to be simple and fast with comparatively limited
numbers of experimental variables. The disadvantages of target-
based profiling include the limited numbers of targets available,
restrictions on modes of action covered (e.g., some platforms
do not differentiate between activators and inhibitors, or capture
allosteric mechanisms), and potential for assay interference (i.e.,
frequent hitters, fluorescent compounds). Most importantly,
target-based platforms simply do not capture many of the
regulatory mechanisms controlling the outcome of drug-target
interactions in vivo, such as pathway feedback mechanisms or
processes that dictate drug concentration and localization in
target tissues (e.g., ADME properties of absorption, deposition,
metabolism and excretion).

Standard cell-based (e.g., 2D) assays map to the next
step of the AOP framework, the pathway level. These assays
capture some mechanisms relevant to in vivo activity including
cell uptake and the ability to assess target function in
the presence of intracellular pathway feedback mechanisms,
depending on culture conditions. Feedback mechanisms relevant
to human responses are preferentially retained by human
primary or stem-cell-derived cells. These cell types more
closely reflect cell behaviors in human tissues than do
immortalized cell lines. Phenotypic 2D assays are scalable,
with moderate to high throughput, and can achieve reasonably
good statistical performance. These features are key for
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FIGURE 1 | Mapping assay platforms to the Adverse Outcome Pathway framework.
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development of reference databases and analytical tools to run
the comparative analyses that provide important mechanistic
interpretation of phenotypic assay results. Disadvantages of
2D format assays include limited culture periods and lack
of physiologically relevant 3D architecture and competence
for drug metabolism. Past efforts have used individual organ-
specific cell types (e.g., cardiomyocytes or hepatocytes) to
predict organ-specific toxicity, with cell function or cytotoxicity
as proxy endpoints (Godoy et al., 2013; Dragovic et al.,
2016; Magdy et al., 2018). The performance of these assays
in predicting organ-specific toxicity (hepatocytes for liver
toxicity; cardiomyocytes for cardiovascular system toxicity) has
been unsatisfactory as organ toxicity can be caused by a
number of mechanisms involving additional cell types, such
as immune cells or the vasculature. Limited performance
of these assays (Dragovic et al., 2016) has led researchers
toward more advanced cellular systems that incorporate diverse
cell types and capture complex aspects of tissue and organ-
level biology.

Organoids, bioprinted tissues, and organs-on-a-chip
represent advanced cellular systems that incorporate additional
physiologically relevant features such as 3D architecture,
metabolic competence, and tissue level functions (Horvath
et al., 2016). The key advantage of these platforms is the
ability to reflect higher level tissue functions, including drug
metabolism and its impacts. Therefore, these approaches map
to the tissue and organ levels of the AOP (Figure 1). While
these systems hold promise in safety de-risking, confidence
in their use and adoption into the drug discovery process
has lagged, tempered by lack of throughput and limited
validation data. Low assay throughputs (whether technical
or economical) preclude development of reference standards
databases—large scale data sets are needed to truly assess
platform robustness, assay reproducibility, and data predictivity.
Scale and throughput have advanced somewhat for organoids
and 3D cultures with interesting emerging results, albeit with
only moderately sized data sets (Sirenko et al., 2019). As the
complexity of advanced cellular systems grows with larger
numbers of experimental variables and longer culture times,
data variability inevitably increases and may become the limiting
factor in their utility and adoption. Without capabilities for large
scale comparative analyses, these systems and platforms provide
limited mechanism of action, so may best support further
exploration of well-characterized drug leads already tested for
target selectivity in large panels and evaluated for effects on
diverse cellular pharmacology.

PHENOTYPIC PROFILING FOR
HUMAN-RELEVANT TOXICITY
MECHANISMS

In isolation, no single phenotypic assay or platform provides
sufficient predictive power for safety-related decisions.
Integrating information from diverse sources in a weight-
of-evidence approach for assessing risk is needed. As touched on
above, each assay technology has advantages and disadvantages,

including applicability domains, statistical and reproducibility
limitations, validation to clinical results, reference database
availability for data mining and analytics, and sensitivity to
artifacts. However, phenotypic platforms that can connect target
mechanisms to tissue context may be preferentially useful.

The BioMAP R© platform of human primary cell-based systems
(Eurofins Discovery) was successfully used by the EPA for
the ToxCastTM program [(Houck et al., 2009; Kleinstreuer
et al., 2014a) and data available through the website: https://
comptox.epa.gov/dashboard], and by various pharmaceutical
researchers for characterization of new drug leads (reviewed
in Berg, 2017). Systems of the BioMAP platform represent a
broad range of tissue biology (vascular, respiratory, immune,
tumor microenvironment and skin) in individual and co-
culture formats; protein biomarkers with established clinical
annotations serve as measured translational biology endpoints.
The platform addresses biology relevant to human-specific
toxicity mechanisms and includes proliferation endpoints to
enable detection of cell type selective mechanisms, particularly
important for assessing the safety of oncology drugs where
discrimination between tumor and normal host cells is critical
for minimizing adverse effects. Systems covering biology of the
vasculature incorporate endothelial cells and vascular smooth
muscle cells, and studies using these assays have led to the
discovery of a novel toxicity mechanism underlying drug-
induced thrombosis related side effects in humans (Berg et al.,
2015). Limitations of the BioMAP platform include a lack
of 3D architecture, relatively short culture times (1–6 days),
and limited capabilities for drug metabolism. Notwithstanding,
the format and scale of this platform offers significant
advantages over more complex advanced cellular systems. In
particular, the level of reproducibility and throughput has
provided for generation of a large-scale reference database and
development of analytics for assigning mechanism of action
(Berg, 2017).

Comprehensive databases, given reasonable levels of assay
reproducibility and variability, allow comparative analyses to
reference standards and mechanism of action distinctions.
The BioMAP Reference Database contains biomarker
profiles generated from >4,500 test agents including drugs,
experimental chemicals, extracts, and environmental chemicals,
enabling mechanism of action classification development of
predictive toxicity signatures. Large-scale databases exist for
other phenotypic platforms including: the database of drug
sensitivities across panels of cancer cell lines (Seashore-Ludlow
et al., 2015; and the Cancer Therapeutics Response Portal
CTRP, https://portals.broadinstitute.org/ctrp/); the database of
gene expression profiles containing a subset of genes using the
L1000 platform (Subramanian et al., 2017); the NIH LINCS
program portal for Library of Integrated Network-Based
Cellular Signatures, http://www.lincsproject.org/LINCS/);
and a database of images from high content imaging assays
using multiplexed fluorescent dyes (Cell Painting, Bray et al.,
2017). Given sufficient data and statistical power, phenotypic
assays can distinguish diverse mechanisms of action, with
prediction accuracy increasing with increasing size of the
database coverage.
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DEVELOPMENT OF TOXICITY
SIGNATURES

Recently, BioMAP data from drugs and experimental therapies
tested in humans has been applied to identify phenotypic
signatures (toxicity signatures) associated with particular clinical

adverse effects (e.g., Berg et al., 2015; Shah et al., 2017). BioMAP
profiles for a small set of key reference drugs associated with
a particular clinical adverse effect (AE or adverse outcome)
were analyzed to identify shared biomarker activities among
drugs associated with the same AE. Common activities were
investigated for their potential to contribute to a toxicity

TABLE 1 | List of toxicity signatures with key reference compounds, biomarkers and associated pathway and target mechanisms.

Toxicity

signature

Definition Key reference

compounds

Key biomarker Pathway/Target

mechanisms

References

Acute

toxicity

Increased risk

of death

A23187, monensin,

cycloheximide, actinomycin

D, digoxin, bortezomib,

valinomycin; Classes:

cardiac glycosides,

alkylating agents,

ionophores

Decreased SRB in multiple

systems (five biomarkers in

signature)

Protein synthesis

inhibition, RNA

synthesis

inhibition, Na+/K+

ATPase

dysfunction

Houck et al.,

2009; Berg,

2017

Immuno-

suppression

Increased risk

of infection

Sirolimus, infliximab,

cyclosporine, tacrolimus,

mycophenolate,

azathioprine

Decreased T cell

proliferation in BioMAP SAg

system (five biomarkers in

signature)

mTOR,

calcineurin, JAK,

Hsp90, NFAT,

DNA proliferation

Berg, 2017

Skin

irritation

Irritation of

the skin with

reddening

and itch

Retinoic acid, retinol,

vitamin D, ritonavir, imatinib,

2-chloroethyl ethyl sulfide,

calcitriol; Classes: retinoids,

vesicants, blister agents

Increased PGE2 in BioMAP

LPS system (three

biomarkers in signature)

RAR/RXR, AhR,

VDR receptor

classes

Shah et al.,

2017

Liver

toxicity

Increased

incidence of

hepatotoxicity,

liver steatosis

Amiodarone, tamoxifen,

astemizole, ketoconazole,

haloperidol, aplaviroc

Decreased SRB in BioMAP

3C system (four biomarkers

in signature)

V-ATPase,

PIKfyve,

smoothened

Shah et al.,

2014

Organ

toxicity

DNA

replication-

related organ

toxicity

5-fluorouracil, vincristine,

monensin, cisplatin;

Classes: chemotherapeutic

agents, anti-metabolites,

anti-mitotics

Decreased proliferation in

BioMAP 3C system (three

biomarkers in signature)

DNA replication,

microtubules

Berg, 2017

Skin rash

(MEK-

related)

Increased

likelihood of

acniform skin

rash

Trametinib, AZD6244, p38

MAPK inhibitors,

Betaseron®, anakinra

Increased VCAM-1 in

BioMAP HDF3CGF system

(two biomarkers in

signature)

MEK, p38 MAPK,

IL-1R, IL-4R,

Tweak receptor,

IFNα/β

Kleinstreuer

et al., 2014a

Skin

sensitization

Increased

potential for

allergic skin

reactions

NSAIDS, phthalates Decreased Collagen III in

BioMAP HDF3CGF system

(two biomarkers in

signature)

RAR/RXR, PKC,

mitochondria,

JNK,

prostaglandin

receptor

Kleinstreuer

et al., 2014b

Thrombosis Increased

incidence of

stroke, deep

vein

thrombosis,

pulmonary

embolism

Sirolimus, crizotinib,

raloxifene, tamoxifen,

clozapine; Classes:

polycyclic aryl

hydrocarbons, selective

estrogen receptor

modulators, anti-psychotics

Increased TF/CD142 in

BioMAP 3C system (three

biomarkers in signature)

mTOR, AhR,

V-ATPase,

lysosomal

function, CYP17A,

PKC, NOD2,

HIF-1α and

receptors for

estrogen,

histamine H1,

thyroid hormone

and oncostatin M

Berg et al.,

2015

Vascular

toxicity

Increased

incidence of

hypertension,

cardiovascular

events due to

atherosclerosis

Prednisolone, budesonide,

panobinostat, trametinib,

nicotine

Increased SAA in BioMAP

CASM3C system (two

biomarkers in signature)

MEK,

glucocorticoid and

mineral corticoid

receptors, HDAC,

IL-6R,

NAD+/NADH ratio

Berg, 2017
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signature by evaluating the full BioMAP Reference Database
for all agents exhibiting the signature and determining the
level of association of these agents with the clinical AE.
Successful signatures were further developed if reference agents
were found to be preferentially associated (>90%) with the
clinical AE.

Deficiencies in reporting adverse effects do not permit
reliable statistical performance metrics for predictive toxicity
signatures. Without a statistically rigorous foundation, in
order for these signatures to be of practical use, pathway
mechanisms driving these signatures are needed. To
accomplish this, active reference agents from the database
were investigated for their reported mechanisms of action.
Target mechanisms specifically enriched in any given reference
group were then assigned to the toxicity signature. Following
this approach over the past decade, nine human toxicity
signatures were developed: acute toxicity, organ toxicity,
immunosuppression, liver toxicity, skin rash, irritation,
sensitization, thrombosis-related side effects, and vascular
inflammation. Table 1 shows the list of signatures, key
biomarkers, representative drugs, associated mechanisms
and reference publications.

APPLICATION OF TOXICITY SIGNATURES
IN INVESTIGATIVE TOXICOLOGY AND
EARLY DISCOVERY

Predicting the likelihood of drug-induced toxicities in humans
is challenging due to known limitations of drug side effect data
(Maciejewski et al., 2017). The study from Shah et al. (2017)
describes the application of toxicity signatures for investigative
toxicology. Researchers at Pfizer previously discovered that
a preclinical lead for an mGluR5 program caused skin
toxicity in non-human primates, but not in rodents (Zhang
et al., 2014). This compound was evaluated in the BioMAP
Diversity PLUS R© Panel, and analysis of the profile data
indicated presence of the BioMAP Toxicity Signature for skin
irritation (see Table 1, Definition). Data mining previously
associated this signature with activity against the nuclear
hormone receptor (NHR) targets, RAR/RXR (agonism), AhR
(antagonism), or VDR (agonism). Using an orthogonal assay
platform (Attagene Factorial R© technology, Morrisville NC), the
lead compound was confirmed to have activity in functional
assays for AhR and VDR, two of the mechanisms previously
associated with the skin irritation signature. Additional identified
T-cell response biomarker activities supported a proposed
hypothesis to explain the observed T cell-mediated type IV
hypersensitivity reaction.

This case study illustrates the importance of combining results
from multiple platforms to support program advancement.
Indeed, the NHR assays highlighted above are not included in
standard safety pharmacology panels, as these have not shown
sufficient predictivity for safety-related outcomes. Only when
combined with the phenotypic profiling results, which provides
both tissue context and potential clinical biomarkers, can these
assays be useful to a program. Together the results provide

sufficient mechanistic rationale to explain why the skin toxicity
was not seen in lower animal species and to develop methods for
assessing this mechanism in clinical studies.

DISCUSSION

Adopting the AOP framework for integrating information from
diverse platforms can help drive acceptance of phenotypic
assay NAMs by facilitating their incorporation into weight-
of-evidence decision strategies. AOPs emphasize the value of
information as representative of a key event modality, rather
than as an isolated result from a single assay or platform.
AOPs can also accommodate other important information for
safety de-risking such as in silico models and other in vitro
data for predicting pharmacokinetics and ADME properties.
These are critical for predicting toxicity effects in vivo and
for quantifying safety risks. Indeed, quantitative AOP models
represent an active area of research (Perkins et al., 2019; Saili
et al., 2019). Translation of results from animal studies is also
facilitated as each of the key mechanistic steps can be evaluated
and compared across species. Understanding human/animal
differences at the mechanism level facilitates the selection of
appropriate animal models and incorporation of study results
into program decisions.

Future research in this area will see advanced complex
systems continue to improve and scale. Indeed, new systems
for modeling the CNS, kidney, and cancer have been recently
described (Petrosyan et al., 2019; Plummer et al., 2019; Trujillo
et al., 2019). Key challenges remain, however, particularly
in data management and analysis. Assay systems can be
complicated requiring significant metadata to describe
them effectively. In addition, there has been relatively little
standardization around phenotypic data analysis methods.
This has made it difficult to compare data across platforms
and to make results easily interpreted. Solutions in these
areas to standardize analysis methods, incorporate metadata
ontologies, and enable data integration, perhaps in conjunction
with new methods for data visualization, will be important to
facilitate adoption of NAMs. Human-based in vitro methods,
and in particular innovative NAMs, have the potential to
be especially helpful in reducing safety-related attrition in
drug development. They can provide the necessary context
at the appropriate pathway, cellular, tissue, or organ level
for understanding toxicity mechanisms. Platforms that
have sufficient scale and reproducibility to generate large
reference databases are particularly useful as they provide a
relational connection between targets and clinical outcomes.
Anchoring phenotypic NAMs to a mechanistic framework
such as those provided by the AOP construct will help with
adoption of these approaches, as toxicology moves away from a
descriptive science to an evidence-based, mechanistic discipline
(Beilmann et al., 2019).
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