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Deep learning is bringing remarkable contributions to the field of argumentation mining,

but the existing approaches still need to fill the gap toward performing advanced

reasoning tasks. In this position paper, we posit that neural-symbolic and statistical

relational learning could play a crucial role in the integration of symbolic and sub-symbolic

methods to achieve this goal.
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1. INTRODUCTION

The goal of argumentation mining (AM) is to automatically extract arguments and their relations
from a given document (Lippi and Torroni, 2016). The majority of AM systems follows a pipeline
scheme, starting with simpler tasks, such as argument component detection, down tomore complex
tasks, such as argumentation structure prediction. Recent years have seen the development of a
large number of techniques in this area, on the wake of the advancements produced by deep
learning on the whole research field of natural language processing (NLP). Yet, it is widely
recognized that the existing AM systems still have a large margin of improvement, as good results
have been obtained with some genres where prior knowledge on the structure of the text eases
some AM tasks, but other genres, such as legal cases and social media documents still require more
work (Cabrio and Villata, 2018). Performing and understanding argumentation requires advanced
reasoning capabilities, which are natural human skills, but are difficult to learn for a machine.
Understanding whether a given piece of evidence supports a given claim, or whether two claims
attack each other, are complex problems that humans can address thanks to their ability to exploit
commonsense knowledge, and to perform reasoning and inference. Despite the remarkable impact
of deep neural networks in NLP, we argue that these techniques alone will not suffice to address
such complex issues.

We envisage that a significant advancement in AM could come from the combination
of symbolic and sub-symbolic approaches, such as those developed in the Neural Symbolic
(NeSy) (Garcez et al., 2015) or Statistical Relational Learning (SRL) (Getoor and Taskar, 2007; De
Raedt et al., 2016; Kordjamshidi et al., 2018) communities. This issue is also widely recognized as
one of the major challenges for the whole field of artificial intelligence in the coming years (LeCun
et al., 2015).

In computational argumentation, structured arguments have been studied and formalized for
decades using models that can be expressed in a logic framework (Bench-Capon and Dunne, 2007).
At the same time, AMhas rapidly evolved by exploiting state-of-the-art neural architectures coming
from deep learning. So far, these two worlds have progressed largely independently of each other.
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Only recently, a few works have taken some steps toward
the integration of such methods, by applying techniques
combining sub-symbolic classifiers with knowledge expressed
in the form of rules and constraints to AM. For instance,
Niculae et al. (2017) adopted structured support vector machines
and recurrent neural networks to collectively classify argument
components and their relations in short documents, by hard-
coding contextual dependencies and constraints of the argument
model in a factor graph. A joint inference approach for argument
component classification and relation identification was instead
proposed by Persing and Ng (2016), following a pipeline
scheme where integer linear programming is used to enforce
mathematical constraints on the outcomes of a first-stage set of
classifiers. More recently, Cocarascu and Toni (2018) combined
a deep network for relation extraction with an argumentative
reasoning system that computes the dialectical strength of
arguments, for the task of determining whether a review is
truthful or deceptive.

We propose to exploit the potential of both symbolic and
sub-symbolic approaches for AM, by combining both results in
systems that are capable of modeling knowledge and constraints
with a logic formalism, while maintaining the computational
power of deep networks. Differently from existing approaches,
we advocate the use of a logic-based language for the definition
of contextual dependencies and constraints, independently of
the structure of the underlying classifiers. Most importantly, the
approaches we outline do not exploit a pipeline scheme, but
rather perform joint detection of argument components and
relations through a single learning process.

2. MODELING ARGUMENTATION WITH
PROBABILISTIC LOGIC

Computational argumentation is concerned with modeling
and analyzing argumentation in the computational settings of
artificial intelligence (Bench-Capon and Dunne, 2007; Simari
and Rahwan, 2009). The formalization of arguments is usually
addressed at two levels. At the argument level, the definition of
formal languages for representing knowledge and specifying how
arguments and counterarguments can be constructed from that
knowledge is the domain of structured argumentation (Besnard
et al., 2014). In structured argumentation, the premises and
claim of the argument are made explicit, and their relationships
are formally defined. However, when the discourse consists
of multiple arguments, such arguments may conflict with one
another and result in logical inconsistencies. A typical way of
dealing with such inconsistencies is to identify sets of arguments
that are mutually consistent and that collectively defeat their
“attackers.” One way to do that is to abstract away from the
internal structure of arguments and focus on the higher-level
relations among arguments: a conceptual framework known as
abstract argumentation (Dung, 1995).

Similarly to structured argumentation, AM too builds on
the definition of an argument model, and aims to identify
parts of the input text that can be interpreted as argument
components (Lippi and Torroni, 2016). For example, if we take

a basic claim/evidence argument model, possible tasks could
be claim detection (Aharoni et al., 2014; Lippi and Torroni,
2015), evidence detection (Rinott et al., 2015), and the prediction
of links between claim and evidence (Niculae et al., 2017;
Galassi et al., 2018). However, in structured argumentation the
formalization of the model is the basis for an inferential process,
whereby conclusions can be obtained starting from premises. In
AM, instead, an argument model is usually defined in order to
identify the target classes, and in some isolated cases to express
relations, for instance among argument components (Niculae
et al., 2017), but not for producing inferences that could help the
AM tasks.

The languages of structured argumentation are logic-based.
An influential structured argumentation system is deductive
argumentation (Besnard and Hunter, 2001), where premises are
logical formulae, which entail a claim, and entailment may be
specified from a range of base logics, such as classical logic or
modal logic. In assumption-based argumentation (Dung et al.,
2009) instead arguments correspond to assumptions, which like
in deductive systems prove a claim, and attacks are obtained via
a notion of contrary assumptions. Another powerful framework
is defeasible logic programming (DeLP) (García and Simari, 2004),
where claims can be supported using strict or defeasible rules, and
an argument supporting a claim is warranted if it defeats all its
counterarguments. For example, that a cephalopod is a mollusc
could be expressed by a strict rule, such as:

mollusc(X) ← cephalopod(X)

as these notions belong to an artificially defined, incontrovertible
taxonomy. However, since in nature not all molluscs have a shell,
and actually cephalopods are molluscs without a shell, rules used
to conclude that a given specimen has or does not have a shell are
best defined as defeasible. For instance, one could say:

has_shell(X) � mollusc(X)

∼ has_shell(X) � cephalopod(X)

where � denotes defeasible inference.
The choice of logic notwithstanding, rules offer a convenient

way to describe argumentative inference. Moreover, depending
on the application domain, the document genre, and the
employed argument model, different constraints and rules can
be enforced on the structure of the underlying network of
arguments. For example, if we adopt a DeLP-like approach,
strict rules can be used to define the relations among argument
components, and defeasible rules to define context knowledge.
For example, in a hypothetical claim-premise model, support
relations may be defined exclusively between a premise and
a claim. Such structural properties could be expressed by the
following strict rules:

claim(Y) ← supports(X,Y)

premise(X) ← supports(X,Y)

whereby if X supports Y , then X is a claim and Y is a premise. As
another abstract example, two claims based on the same premise
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may not attack each other:

∼ attacks(Y1,Y2) ← supports(X,Y1) ∧ supports(X,Y2)

As an example of defeasible rules, consider instead the context
information about a political debate, where a republican
candidate, R, faces a democrat candidate, D. Then one may want
to use the knowledge that R’s claims and D’s claims are likely to
attack each other:

attacks(Y1,Y2) � auth(Y1,R) ∧ rep(R) ∧ auth(Y2,D) ∧ dem(D)

where predicate auth(A,B) denotes that claim A was made by
B. There exist many non-monotonic reasoning systems that
integrate defeasible and strict inference. However, an alternative
approach that may successfully reconcile the computational
argumentation view and the AM view is offered by probabilistic
logic programming (PLP). PLP combines the capability of
logic to represent complex relations among entities with the
capability of probability to model uncertainty over attributes
and relations (Riguzzi, 2018). In a PLP framework, such as
PRISM (Sato and Kameya, 1997), LPAD (Vennekens et al., 2004),
or ProbLog (Raedt et al., 2007), defeasible rules may be expressed
by rules with a probability label. For instance, in LPAD syntax,
one could write:

attacks(Y1,Y2) : 0.8 ← auth(Y1,R) ∧ rep(R) ∧ auth(Y2,D)

∧dem(D)

to express that the above rule holds in 80% of cases. In
this example, 0.8 could be interpreted as a weight or score
suggesting how likely the given inference rule is to hold.
In more recent approaches, such weights could be learned
directly from a collection of examples, for example by exploiting
likelihood maximization in a learning from interpretations
setting (Gutmann et al., 2011) or by using a generalization of
expectation maximization applied to logic programs (Bellodi and
Riguzzi, 2013).

From a higher-level perspective, rules could be exploited also
to model more complex relations between arguments or even to
encode argument schemes (Walton et al., 2008), for example to
assess whether an argument is defeated by another, on the basis
of the strength of its premises and claims. This is an even more
sophisticated reasoning task, which yet could be addressed within
the same kind of framework described so far.

3. COMBINING SYMBOLIC AND
SUB-SYMBOLIC APPROACHES

The usefulness of deep networks has been tested and proven
in many NLP tasks, such as machine translation (Young
et al., 2018), sentiment analysis (Zhang et al., 2018a), text
classification (Conneau et al., 2017; Zhang et al., 2018b), relations
extraction (Huang andWang, 2017), as well as in AM (Cocarascu
and Toni, 2017, 2018; Daxenberger et al., 2017; Galassi et al.,
2018; Lauscher et al., 2018; Lugini and Litman, 2018; Schulz

et al., 2018). While a straightforward approach to exploit domain
knowledge in AM is to apply a set of hand-crafted rules on the
output of some first stage classifier (such as a neural network),
NeSy or SRL approaches can directly enforce (hard or soft)
constraints during training, so that a solution that does not satisfy
them is penalized, or even ruled out. Therefore, if a neural
network is trained to classify argument components, and another
one1 is trained to detect links between them, additional global
constraints can be enforced to adjust the weights of the networks
toward admissible solutions, as the learning process advances.
Systems like DeepProbLog (Manhaeve et al., 2018), Logic Tensor
Networks (Serafini and Garcez, 2016), or Grounding-Specific
Markov Logic Networks (GS-MLN) (Lippi and Frasconi, 2009),
to mention a few, enable such a scheme.

By way of illustration, we report how to implement one of
the cases mentioned in section 2 with DeepProbLog and with
GS-MLNs. By extending the ProbLog framework, DeepProbLog
allows to introduce the following kind of construct:

nn(m,Et, Eu) : : q(Et, u1); . . . ; q(Et, un).

The effect of the construct is the creation of a set of ground
probabilistic facts, whose probability is assigned by a neural
network. This mechanism allows us to delegate to a neural
network m the classification of a set of predicates q defined
by some input features Et. The possible classes are given by
Eu. Therefore, in the AM scenario, it would be possible, for
example, to exploit two networks m_t and m_r to classify,
respectively, the type of a potential argumentative component
and the potential relation between two components. Figure 1A
shows the corresponding DeepProbLog code. These predicates
could be easily integrated within a probabilistic logic program
designed for argumentation, so as to model (possibly weighted)
constraints, rules, and preferences, such as those described in
section 2. Figure 1B illustrates one such possibility.

The same scenario can be modeled using GS-MLNs. In the
Markov logic framework, first-order logic rules are associated
with a real-valued weight. The higher the weight, the higher the
probability that the clause is satisfied, other things being equal.
The weight could possibly be infinite, to model hard constraints.
In the GS-MLN extension, different weights can be associated to
different groundings of the same formula, and such weights can
be computed by neural networks. Joint training and inference
can be performed, as a straightforward extension of the classic
Markov logic framework (Lippi and Frasconi, 2009). Figure 2
shows an example of a GS-MLN used to model the AM scenario
that we consider. Here, the first three rules model grounding-
specific clauses (the dollar symbol indicating a reference to a
generic vector of features describing the example) whose weights
depend on the specific groundings (variables x and y); the three
subsequent rules are hard constraints (ending with a period); the

1In a multi-task setting, instead of two networks, the same network could be used

to perform both component classification and link detection at the same time. In

AM, this approach has already been successfully explored (Eger et al., 2017; Galassi

et al., 2018).
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FIGURE 1 | An excerpt of a DeepProbLog program for AM. (A) Definition of neural predicates. (B) Definition of (probabilistic) rules.

FIGURE 2 | An excerpt of a GS-MLN for the definition of neural, hard, and weighted rules for AM.

final rule is a classic Markov logic rule, with a weight attached to
the first-order clause.

The kind of approach hereby described strongly differs
from the existing approaches in AM. Whereas, Persing and
Ng (2016) exploit a pipeline scheme to apply the constraints
to the predictions made by deep networks at a first stage of
computation, the framework we propose can perform a joint
training, which includes the constraints within the learning
phase. This can be viewed as an instance of Constraint Driven
Learning (Chang et al., 2012) and its continuous counterpart,
posterior regularization (Ganchev et al., 2010), where multiple
signals contribute to a global decision, by being pushed to satisfy
expectations on the global decision. Differently from the work
by Niculae et al. (2017), who use factor graphs to encode inter-
dependencies between random variables, our approach enables
to exploit the interpretable formalism of logic to represent rules.
Moreover, the models of NeSy and SRL are typically able to learn
the weights or the probabilities of the rules, or even to learn the
rules themselves, thus addressing a structure learning task.

4. DISCUSSION

After many years of growing interest and remarkable results, time
is ripe for AM to move forward in its ability to support complex
arguments. To this end, we argue that research in this area should
aim at combining sub-symbolic and symbolic approaches, and
that several state-of-the-art ML frameworks already provide the
necessary ground for such a leap forward.

The combination of such approaches will leverage different
forms of abstractions that we consider essential for AM. On
the one hand, (probabilistic) logical representations enable to
specify AM systems in terms of data, world knowledge and
other constraints, and to express uncertainties at a logical and

conceptual level rather than at the level of individual random
variables. This would make AM systems easier to interpret—a
feature that is now becoming a need for AI in general (Guidotti
et al., 2018)—since they could help explaining the logic and
the reasons that lead them to produce their arguments, while
still dealing with the uncertainties stemming from the data and
the (incomplete) background knowledge. On the other hand,
AM is too complex to fully specify the distributions of random
variables and their global (in)dependency structure a priori. Sub-
symbolic models can harness such a complexity by finding the
right, general outline, in the form of computational graphs, and
processing data.

In order to fully exploit the potential of this joint approach,
clearly many challenges have to be faced. First of all, several
languages and frameworks for NeSy and SRL exist, each with
its own characteristics in terms of both expressive power and
efficiency. In this sense, AM would represent an ideal test-
bed for such frameworks, by presenting a challenging, large-
scale application domain where the exploitation of background
knowledge could play a crucial role to boost performance.
Inference in this kind of models is clearly an issue, thus AM
would provide additional benchmarks for the development of
efficient algorithms, both in terms of memory consumption and
running time. Finally, although there are already several NeSy
and SRL frameworks available, being these research areas still
relatively young and in rapid development, their tools are not yet
mainstream. Here, an effort is needed in integrating such tools
with state-of-the-art neural architectures for NLP.
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