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Background: The characterizing symptom of Alzheimer disease (AD) is cognitive

deterioration. While much recent work has focused on defining AD as a biological

construct, most patients are still diagnosed, staged, and treated based on their

cognitive symptoms. But the cognitive capability of a patient at any time throughout this

deterioration reflects not only the disease state, but also the effect of the cognitive decline

on the patient’s pre-disease cognitive capability. Patients with high pre-disease cognitive

capabilities tend to score better on cognitive tests that are sensitive early in disease

relative to patients with low pre-disease cognitive capabilities at a similar disease stage.

Thus, a single assessment with a cognitive test is often not adequate for determining the

stage of an AD patient. Repeated evaluation of patients’ cognition over time may improve

the ability to stage AD patients, and such longitudinal assessments in combinations with

biomarker assessments can help elucidate the time dynamics of biomarkers. In turn, this

can potentially lead to identification of markers that are predictive of disease stage and

future cognitive decline, possibly before any cognitive deficit is measurable.

Methods and Findings: This article presents a class of statistical disease progression

models and applies them to longitudinal cognitive scores. These non-linear mixed-effects

disease progression models explicitly model disease stage, baseline cognition, and the

patients’ individual changes in cognitive ability as latent variables. Maximum-likelihood

estimation in these models induces a data-driven criterion for separating disease

progression and baseline cognition. Applied to data from the Alzheimer’s Disease

Neuroimaging Initiative, the model estimated a timeline of cognitive decline that spans

∼15 years from the earliest subjective cognitive deficits to severe AD dementia.

Subsequent analyses demonstrated how direct modeling of latent factors that modify

the observed data patterns provides a scaffold for understanding disease progression,

biomarkers, and treatment effects along the continuous time progression of disease.

Conclusions: The presented framework enables direct interpretations of factors that

modify cognitive decline. The results give new insights to the value of biomarkers

for staging patients and suggest alternative explanations for previous findings related

to accelerated cognitive decline among highly educated patients and patients on

symptomatic treatments.

Keywords: cognitive decline, dementia, Alzheimer disease, disease staging, biomarkers, disease progression

modeling, progression curves, cognitive reserve
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BACKGROUND

Alzheimer disease (AD) is slowly progressing with preclinical
and prodromal phases lasting many years before the onset of
dementia. The stage of the underlying disease process of an
AD patient entering a clinical trial is largely unknown, but
may be estimated by a combination of, for example, cognitive
testing, clinical evaluation, and biomarker results. While these
procedures for evaluating disease severity are useful for creating
coarse groupings of patients, the factors used to create groupings
may be systematically affected by a wealth of factors not
directly tied to the disease process, for example, comorbidities,
intelligence, level of education, and genetics.

So far, efforts to develop therapies that delay or halt the
progression of AD have generally been unsuccessful, and the vast
majority of trials testing symptomatic agents in AD have failed.
These failures may be due to wrong therapeutic targets or non-
efficacious therapies, but it is conceivable that a proportion of
trial failures could be attributed to other factors, such as study
design, endpoints, and non-optimal patient population selection.
For disease-modifying drugs, for example, the current standard
durations for interventional studies may not be adequate.
Simulations based on cohort studies suggest that prevention
of disease in cognitively normal individuals may require study
lengths far beyond the current standard to achieve high statistical
power for detecting an effect of even very efficacious drugs
(Anderson et al., 2017; Insel et al., 2019). Better patient selection
and an improved understanding of patient-level cognitive decline
could potentially address this problem.

Cognitive Decline and Symptom Onset
The characterizing symptom of AD is cognitive deterioration.
The cognitive capability of a patient at any time throughout
this deterioration will not directly reflect the disease state, but
the cumulative effect of the cognitive decline on the patient’s
pre-disease cognitive capability.

Many factors influence instantaneous cognitive ability, and
low cognitive ability at a single time point is not necessarily an
indication of cognitive decline. Cognitive decline can only be
established by repeated evaluations of patients’ cognition over
time. Longitudinal assessments of patient cognition also offer
the benefit of hindsight—once cognitive decline or dementia is
established, one can traverse back in time along the cognitive
trajectory and predict when the decline started and search for
patterns that are indicative of future cognitive decline in its
earliest stages. If done properly, one can synchronize individual
observed trajectories to one long-term timeline representative of
the full span and variation of cognitive decline over the course
of disease.

Disease Progression Modeling
Alzheimer disease typically presents in a sporadic late-onset
form. The autosomal dominant forms of AD (ADAD) caused
by rare genetic mutations have earlier onset than sporadic AD,
but otherwise, the pathogenesis is largely similar (Bateman et al.,
2011). In ADAD, age at symptom onset is strongly affected by
mutation type, parental age at symptom onset, APOE genotype,

and sex (Ryman et al., 2014). These factors can be used to
calculate expected patient age at symptom onset for ADAD
patients, which can be used to construct a more synchronized
time scale for studying biomarkers and the pathological cascade
of the disease (Wang et al., 2019). Furthermore, this makes it
possible to do primary prevention studies in a highly efficient
manner (Bateman et al., 2017).

In sporadic AD, age at onset cannot be predicted accurately
from demographic or genetic factors. Assessment of biomarkers,
such as amyloid and tau load in cerebrospinal fluid (CSF)
or by positron emission tomography (PET) may be used to
diagnose the disease even in the earliest stages (Jack et al.,
2018), but such assessments can be both invasive and expensive,
and data are sparse. There are, however, rich datasets with
longitudinal cognitive measurements that span different parts
of the disease. An appealing use of this data is to assemble
the individual observed short-term trajectories to one long-term
timeline representative of the full span of cognitive decline over
the disease.

Different approaches to construct disease progression models
for AD have been taken. A classic approach is to formulate the
changes in cognitive scores using differential equations (Ito et al.,
2011; Gomeni et al., 2012; Samtani et al., 2012; Delor et al.,
2013). One major drawback of this type of modeling is that
covariate effects and different sources of random variation should
be formulated in the differential equation framework and may be
very difficult to handle and interpret. A more direct approach
to disease progression modeling in AD is event-based models
(Young et al., 2014; Oxtoby et al., 2018) where cutoff points of
abnormality are inferred from observed biomarkers or clinical
scales, and disease stage is mapped to a discrete set of biomarker-
abnormality events. Event-basedmodels can improve robustness,
but the dichotomization of variables also reduces the granularity
of the results, especially for variables that do not show a bimodal
distribution and/or continuously evolve with disease progression.

An alternative class of disease progression models relies on
direct modeling of the observed longitudinal trajectories and
explicit modeling of the patient-level disease stage (Jedynak
et al., 2012). An important example of this type of approach
is the model by Donohue et al. (2014), which simultaneously
models multiple observations of cognitive measures and
biomarkers. This modeling approach has been powerful in
illuminating the multivariate nature of AD progression. The
approach was recently generalized to a wider class of Bayesian
latent-time joint mixed-effects models (Li et al., 2018). This
generalized class of models allows dependencies between
different outcomes and inclusion of covariates, but covariates
can only model variation in outcomes and not disease stage or
progression rate.

For modeling disease progression of very high-dimensional
data with rich structure, such as brain imaging, disease
progression models are often considered in the context of
Riemannian geometry (Louis et al., 2019). While there have been
recent advances in the range implementable models (Schiratti
et al., 2017; Koval et al., 2018), the complexity and computational
demand are still restricting the types data and effects that can be
modeled by these approaches.
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For practical applications of disease progression modeling,
there are several important considerations to make.
Simultaneous modeling of multiple outcomes is desirable
as one can detect signals in multiple outcomes that may reduce
noise in the staging of patients. However, it typically comes
with an assumption of all outcomes being synchronized in
the same disease time model (Donohue et al., 2014; Li et al.,
2018). Therefore, care should be taken when deciding which
outcomes to include. For example, if a group of individuals with
different age-related neurodegenerative diseases is modeled,
these individuals may all experience progressive dementia that
can be mapped to a common trajectory of cognitive decline,
but their individual biomarker measurements may be very
different along this trajectory, and including these as outcomes
may deteriorate the quality of the staging. Conversely, if most
individuals have the same cause of their cognitive decline (e.g.,
AD), including biomarkers may help staging patients in the early
stages of disease where no or little cognitive deficit is detectable.
Another important consideration is the time scale at which
to model disease progression. Age is typically considered the
major risk factor for developing AD, but age at first diagnosis
of AD can vary by decades between patients, and because this
span is much greater than the entire course of cognitive decline
associated with AD, patient age is not an appropriate scale for
understanding the pattern of cognitive decline in AD because it
may amplify the a priori dis-synchronization between patients
by orders of magnitude. For example, two individuals diagnosed
with AD dementia at 60 and 90 years of age, respectively, may
have similar courses of cognitive decline, but an age-indexed
model would have to compensate for the additional 30 years’
difference when compared to a diagnosis-indexed model. The
negative consequence of this can, for example, be seen in Figure
1 in Li et al. (2018), where patient-level trajectories go from
minimal to maximal severity over 10–15 years, while variation
of when maximal severity is reached between patients is spread
out over 30-years periods. Therefore, a more natural scale for
studying the patterns of cognitive decline is time since symptom
onset. However, self- or caregiver-reported age at symptom
onset is not perfect either. It may be imprecise because of the
patient’s memory problems; recall bias, where early sporadic
cognitive issues are believed to be symptoms of the disease;
or personal differences in sensitivity and interpretation of the
earliest cognitive problems.

In this article, we propose a new approach to disease
progression modeling that separates disease stage and deviations
from the mean pattern in a fully data-driven manner. The
model enables more detailed modeling and analysis of some
of the aspects of cognitive decline compared to previous
models. For example, it allows investigation of whether observed
variables are related to cognitive ability, disease stage, or rate
of decline. In the presented form, the model is estimating
a disease timeline from repeated assessments of a univariate
measure, such as a cognitive scale. The model is inspired
by the statistical framework presented by Raket et al. (2014),
where systematic patterns of variation in both vertical (observed
cognitive score) and horizontal (disease timing) directions are
modeled simultaneously on both the population and individual

levels. The model allows covariate effects on both outcomes
and disease progression, and all model parameters are estimated
simultaneously using maximum likelihood estimation.

The goal of this work was to explore whether the proposed
disease progression model could align observed cognitive
trajectories to a precise timeline of cognitive decline associated
with AD and to evaluate if this modeling would shed new light
on aspects related to disease progression and biomarkers. When
the model was fitted to cognitive scores from Alzheimer’s Disease
Neuroimaging Initiative (ADNI), the presented model aligned
the cognitive trajectories of patients to a consistent shape of
cognitive decline with a span of ∼15 years from the earliest
subjective cognitive deficits to severe AD dementia. It was shown
that the model’s predictions of patients’ disease stages based
on their longitudinal cognitive scores could predict time since
symptom onset and diagnosis. It was further demonstrated that
the predicted disease stages provided a more suitable time scale
for modeling the evolution of biomarkers over the course of
disease than group-wise modeling based on patient symptoms
at baseline. The model was used to estimate the effects of sex,
age, and education on cognitive decline and to evaluate the
effects of cholinesterase inhibitor (ChEI) treatment on cognitive
decline. Finally, the model was fitted to the cognitive trajectories
of a subset of patients with a rich set of biomarkers available at
baseline to estimate if baseline biomarker profile could predict
disease stage. The results of the model in an independent held-
out validation dataset confirmed that baseline biomarker profiles
could predict the disease stage of unseen individuals—even in
the preclinical phases of disease where no clinically detectable
cognitive impairment was present.

METHODS

Data
Data used in the preparation of this article were obtained
from the ADNI database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public–private partnership, led by the
principal investigator Michael W.Weiner, MD. The primary goal
of ADNI has been to test whether serial magnetic resonance
imaging (MRI), PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early AD.
For up-to-date information, see www.adni-info.org.

Patients included in the current study were required to have
a valid classification at baseline [cognitively normal, significant
memory concern, MCI (early), MCI (late), or dementia].

Outcomes
The main outcome measure considered was the total score of
the 13-item Alzheimer’s Disease Assessment Scale–Cognitive
Subscale (ADAS-Cog; range = 0–85; lower score indicates less
impairment) (Mohs et al., 1997). Included patients were required
to have at least one valid ADAS-Cog total score to be included in
the present study.

Other outcomes reported were onset of various symptoms
related to cognitive impairment and AD; Clinical Dementia
Rating scale—sum of boxes (Hughes et al., 1982); Functional
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Activities Questionnaire (Pfeffer et al., 1982); fluorodeoxyglucose
(FDG) PET meta region of interest (meta-ROI) (Landau et al.,
2011); cross-sectional hippocampal volume extracted from MRI
using FreeSurfer (Fischl, 2012); florbetapir PET SUVr (Landau
et al., 2015); Aβ1−42, total tau, and p-tau181 concentrations
in CSF as measured using the Roche Elecsys R© immunoassay
(Bittner et al., 2016); the ratio of Aβ1−42/Aβ1−40 concentrations
in CSF as measured by two-dimensional ultraperformance liquid
chromatography tandem mass spectrometry; and neurofilament
light chain (NfL) levels in plasma measured using a single-
molecule array platform (Mattsson et al., 2019).

Disease Progression Model
Let yij represent the observed cognitive score of patient i at time
tij (i = 1, . . . , n, j = 1, . . . ,mi). We assume that yij is generated
by a model of the form

yij = θ
(

wi

(

tij
))

+ xi
(

tij
)

+ εij

where θ is a function that represents the shape of cognitive
decline; wi is a warping function that transforms observation
time tij to a disease time scale wi

(

tij
)

that is aligned across
patients; xi is the idiosyncratic patient-level deviation from the
mean shape that represents consistent deviations over time; and
εij is independent measurement noise.

Cognitive scores can be extremely noisy because of many
different sources of variation, and one will have to make suitable
model choices to accurately infer the shape of the disease timeline
of cognitive decline θ , to predict patient-level disease stage wi,
and to predict the entire patient-level course of decline ŷi. In the
following, we describe the basic model choices taken here and
their motivations.

Because we are modeling cognitive decline in pathological
aging, it is natural to assume that the representative shape of
decline θ is a function that has a stable left asymptote (pre-disease
cognitive normality) and a monotone decline. In this article,
we focus on ADAS-Cog scores that show a distinct exponential
decline in dementia (Yang et al., 2011), and thus we will work
with a parametrized family of exponential functions to model the
mean progression pattern

θ (t) = l · exp

(

t + s

exp
(

g
)

)

+ v,

It is worth noting that this choice of θ is overparametrized
unless restrictions are put on some of the parameters. The
constraint used here (discussed further below) is that s = 0 for
the cognitively normal individuals, in which case v is the left
asymptote representing the average stable pre-disease cognitive
score and where the remaining parameters determine the shape
of the decline.

The mean progression pattern θ can be modeled differently
to achieve other properties, for example, as a generalized
logistic function or as a monotone spline (Ramsay, 1988). Other
modeling options are available in the progmod R package (Raket,
2020) accompanying this article.

The mapping of observed time to disease time wi should allow
the model to assemble short-term longitudinal observations to a
long-term timeline of cognitive decline. Because themajor source
of horizontal variation can likely be ascribed to differences in how
long the patient has had the disease before we begin observing
them, we model wi as a shift of study time.

wi (t) = t + si.

Random Effects
When modeling longitudinal data for groups of individuals, it
is often natural to describe systematic differences between
individuals using random effect. The proposed disease
progression model has three types of random effects.

• si: Random patient-level shift that models the disease stage of
patient i. Assumed to follow a zero-mean normal distribution
with unknown variance τ 2.

• xi: Random patient-level systematic deviation from the mean
curve. Assumed to be a sum of discrete-time observation
of a Brownian motion xi, BM and an independent zero-
mean normally distributed starting level xi, 0 with unknown
variance. The covariance function of xi is thus C

(

t, t′
)

=

σ 2
BM · min(t, t′) + σ20 where σ2BM is an unknown parameter

controlling variance scale of the Brownian motion, and σ20 is
an unknown parameter controlling the variance of the random
starting level.

• εij: Random observation noise. Assumed to be independent
zero-mean normally distributed with unknown variance σ 2.

A free correlation between si and the starting level xi, 0 is included
in the model; the remaining effects are assumed independent.

Fixed Effects
The basic model parameters l, g, s, and v that describe the shape
of θ are modeled as fixed effects.

• l is a scaling parameter of the exponential function. Because
a goal of disease progression modeling is to find a common
pattern of decline, l will be modeled as a single free parameter.

• g is a scaling parameter of time. Patient-level differences in
rate of decline that can be ascribed to a covariate or factor
can be modeled as a regression-type model on g. Initially, this
parameter will be modeled as a single free parameter.

• s is a shift of observed time. Patient-level differences in
disease stage that can be ascribed to a covariate or factor
can be modeled as fixed effects. Because the present study
includes several cohorts at different disease stages (e.g.,
cognitively normal individuals, patients with dementia), the
initial modeling will have different s parameters for non-
cognitively normal cohorts and s = 0 for the cognitively
normal individuals to ensure structural identifiability of the
model (Lavielle and Aarons, 2016). Thus, s is modeling
disease time since the average baseline stage of the cognitively
normal individuals.

• v is an intercept parameter describing the left asymptote.
Patient-level differences in pre-disease cognition that can
be ascribed to a covariate or factor can be modeled as a
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regression-type model on v. Initially, this parameter will be
modeled as a single free parameter.

Final Model Formulation
The basic model used has the form

yij = l · exp

(

tij + si + Xs,ijβs

exp
(

g
)

)

+ v+ xi, BM
(

tij
)

+ xi, 0 + εij

where l, g, v ǫ R and βs ∈ R4 are free fixed effects, and Xs,ij is
the four-dimensional dummy row-vector indicating which, if
any, of the symptomatic baseline groups individual i belongs to.
The random effects follow a joint zero-mean normal distribution









si
xi, 0

xi, BM
(

tij
)

+ xi, 0 + εij
xi, BM (tik) + xi, 0 + εik









∼ N

















0
0
0
0









,









τ 2 ρ

ρ σ 2
0

ρ

σ 2
0

ρ

σ 2
0

ρ σ 2
0 σ 2

BM · tij + σ 2
0 + σ 2 σ 2

BM ·min
(

tij, tik
)

+ σ 2
0

ρ σ 2
0 σ 2

BM ·min
(

tij, tik
)

+ σ 2
0 σ 2

BM · tik + σ 2
0 + σ 2

















where τ 2, σ 2
BM , σ 2

0 , σ 2 > 0 are unknown variance parameters,
and ρ ∈ R is a parameter that controls the correlation
between the random time shift si and the random starting
level xi, 0.

Statistical Analysis
Estimation in the disease progression model was
done with maximum likelihood using the two-step
algorithm of Lindstrom and Bates (1990). Random
effects were predicted as the most likely values
given the data and maximum likelihood parameter
estimates (i.e., they maximized the posterior under the
parameter estimates).

To investigate the effect of covariates on the pattern
of disease progression, forward selection was used to
evaluate models with all combinations of covariate effects
on rate of decline g, disease stage s, and pre-disease
cognition v. The search was continued as long as the
Akaike Information Criterion (Akaike, 1998) improved,
but the model selection was based on the more conservative
Schwarz’s Bayesian Information Criterion (BIC) (Schwarz,
1978).

To investigate if predicted disease time was predictive of time
since reported symptom onset, linear regression was done on
time since reported symptom onset (at baseline) using predicted
disease time as a covariate. P-values were computed using t-tests.

Linear mixed-effects modeling was used to investigate
if predicted disease time offered a better time scale for
modeling other longitudinal outcomes (e.g., biomarkers)
than time since baseline for the five baseline groups.
To allow for non-linear trends in the mean pattern, the
outcome was modeled using a cubic B-spline function
with 3 degrees of freedom plus an intercept across
predicted disease time and time since baseline (one
pattern per baseline group), respectively. Patient-level
random slopes and intercepts were included to model
longitudinal deviations within an individual. P-values

were computed using likelihood ratio tests with maximum
likelihood estimation.

Comparisons of quantitative outcomes between groups
with two levels were done using Wilcoxon rank sum
tests, and correlations were evaluated with Spearman rank
correlation coefficients.

Software
All analyses were done using R version 4.0.0 (R Core Team,
2020). Maximum likelihood estimation in the disease progression
models was done using the progmod R package (Raket, 2020),
which builds on the estimation procedures available in the nlme
and covBM R packages (Pinheiro et al., 2019).

RESULTS

Basic Model
The basic model described above was fitted on longitudinal
ADAS-Cog data from ADNI. The data comprised 9,830
ADAS-Cog scores across 2,142 individuals. The ADAS-Cog
scores plotted against study time are shown in the top panel of
Figure 1. The middle panel in Figure 1 shows the fixed-effects
staging of the baseline status groups relative to the cognitively
normal group on the predicted time scale (“disease month”).
The bottom panel of Figure 1 shows the predicted individual
staging (both fixed and random effects) of trajectories on the
predicted time scale. Relative to the average baseline disease stage
of the cognitively normal group, the model estimated that the
significant memory concern group was 29 months later into
the trajectory of cognitive decline, whereas the early and late
MCI groups were, respectively, 42 and 88 months later and that
the dementia group was 136 months later. The model had 12
degrees of freedom, and twice the negative log likelihood of the
fitted model was 59,468.52. AIC and BIC were 59,492.52 and
59,578.84, respectively.

Validation of the Basic Model
The presented disease progression model aggregates the

information in baseline status groups and the longitudinal

trajectories of participants to a single number, the predicted

disease month. For this continuous disease progression scale to
be relevant to AD, it should also hold information that describes

other aspects of the disease than the cognitive deterioration

observed on ADAS-Cog that the model was fitted on.
To evaluate whether the disease progression model captured

milestones of cognitive deterioration, we investigated the model’s
ability to predict self-reported onset of cognitive symptoms,
MCI symptoms, AD symptoms, or diagnosis of AD. There were
1,142 participants who had at least one entry of these data
during the study follow-up. Age at symptom onset or diagnosis
plotted against the age at the model’s predicted disease time 0
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FIGURE 1 | Observed longitudinal ADAS-Cog trajectories for 2,142 ADNI participants plotted against time in study (top), predicted disease time based on the

fixed-effects staging of the different patient baseline status groups relative to the cognitively normal group (middle), and predicted individual disease time based on

both fixed group and random individual effects.

(computed as age at baseline minus predicted shift in disease
time in years) is shown in Figure 2. In an ideal setting where
trajectories were perfectly aligned and onset/diagnosis would be
perfectly consistently reported across individuals, the results of
each measure would lie on a line with slope 1, and the intercept
would represent the difference in years between age at disease

time 0 and the age at onset/diagnosis time. For the age at onset of
cognitive symptoms, there seem to be different intercepts for the
different baseline groups, wheremore severe baseline groups tend
to report symptom onset later relative to the model prediction
of the less severe groups. This may be an effect of different
subjective definitions of onset of cognitive symptoms across
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FIGURE 2 | Reported age at onset of cognitive symptoms (top left), cognitive impairment symptoms (top right), Alzheimer disease symptoms (bottom left), and

Alzheimer disease diagnosis (bottom right) as a function of age at predicted disease month 0. Dotted lines represent the best-fitting least-squares estimated lines with

slope 1.

baseline groups, it may be because of biased model estimates of
the staging of the baseline groups, or a combination.

Based on linear regression, predicted disease month was
predictive of time since cognitive symptom onset (p < 0.0001),
time since AD symptoms onset (p < 0.0001), and time since
Alzheimer diagnosis (p < 0.0001)—all times relative to study
baseline. Predicted disease month was not significantly predictive
for time since MCI symptom onset (p= 0.558).

Second, to validate that the predicted disease time also
synchronized other independently captured aspects of the disease
than cognition as measured by ADAS-Cog, we analyzed if the

predicted continuous disease scale better captured patterns of
variation in other clinical scales and biomarkers than separate
modeling of the different baseline groups. We found that
predicted disease time better described the patterns of variation
compared to allowing separate patterns per baseline group in 7 of
the 10 outcomes whenmeasured by log likelihood (Table 1), even
though the latter model had 16 degrees of freedom more than
the former. When measured using AIC and BIC that both adjust
for additional degrees of freedom to compare model quality, the
predicted disease time model was better in 8 of the 10 cases
for AIC and 10 of the 10 cases for BIC. Interestingly, the three

Frontiers in Big Data | www.frontiersin.org 7 August 2020 | Volume 3 | Article 24

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Raket Progression Modeling in Alzheimer Disease

TABLE 1 | Comparison of longitudinal modeling of clinical scales and biomarkers based on patient baseline group vs. continuous disease time.

Outcome measure Number of

observations

(number of patients)

One trajectory per baseline group

(df = 24)

One trajectory across predicted

disease time (df = 8)

−2·Log

likelihood

AIC BIC −2·Log

likelihood

AIC BIC

Clinical Dementia Rating Scale—sum of boxes 9,712 (2,142) 29,584.0 29,632.0 29,804.3 29,062.3 29,078.3 29,135.8

Functional Activities Questionnaire 9,715 (2,126) 51,328.2 51,376.2 51,548.5 50,526.3 50,542.3 50,599.8

FDG-PET (meta-ROI) 3,461 (1,454) −7,185.3 −7,137.3 −6,989.7 −7,594.8 −7,578.8 −7,529.6

Hippocampal volume (MRI) 6,052 (1,675) 88,404.7 88,452.7 88,613.7 88,372.1 88,388.1 88,441.7

Florbetapir PET SUVr 2,568 (1,224) −3,466.3 −3,418.3 −3,277.9 −3,430.2 −3,414.2 −3,367.4

Aβ1−42 (CSF) 2,342 (1,252) 33,958.5 34,006.5 34,144.7 34,011.1 34,027.1 34,073.1

Aβ1−42/Aβ1−40 (CSF) 1,425 (867) −5,838.2 −5,790.2 −5,663.9 −5,816.5 −5,800.5 −5,758.4

Total tau (CSF) 2,334 (1,247) 26,441.1 26,489.1 26,627.2 26,353.7 26,369.7 26,415.7

p-tau181 (CSF) 2,330 (1,246) 15,849.8 15,897.8 16,035.9 15,793.6 15,809.6 15,855.6

NfL (plasma) 4,219 (1,576) 37,584.5 37,632.5 37,784.8 37,517.8 37,533.8 37,584.6

Comparison in terms of −2·log likelihood, AIC and BIC (smaller is better for all measures). Bold numbers indicate the best-fitting model for a given measure.

df, degrees of freedom.

biomarkers where group-wise modeling was better as measured
by log likelihood were all measures related to amyloid burden
(CSF Aβ1−42 and Aβ1−42/Aβ1−40 ratio, florbetapir PET). These
biomarkers are known to have a bimodal distribution (Palmqvist
et al., 2015) and are thus poorly modeled by a single trajectory.
The estimated trajectories of the two types of models for cognitive
scales are shown in Figure 3, imaging data trajectories are shown
in Figure 4, and CSF and plasma biomarker trajectories are
shown in Figures 5, 6. For some outcomes, the per-baseline
group modeling approach had too many degrees of freedom
for the significant memory concern and dementia groups. In
these cases, the estimated mean trajectories oscillate during time
periods where no data were collected. For the non-amyloid
biomarkers, reducing the degrees of freedom for these group
would have no bearing on the results in Table 1.

Age, Sex, Education, and Cognitive Decline
There were systematic differences in follow-up time, age at
baseline, and length of education between male and female
participants (Supplementary Table 1). Compared to female
participants, male participants on average had 3.2 months’ longer
follow-up (Wilcoxon p= 0.0085), were on average 2.0 years older
at baseline (Wilcoxon p < 0.0001), and had 0.89 years more
education (Wilcoxon p < 0.0001). Age at baseline and years of
educationwere not significantly correlated (Spearman ρ=−0.04,
p= 0.0792).

To explore whether age at baseline, sex, and length of
education affected the pattern of cognitive decline, stepwise
forward model selection was done to include these factors in
the model. The best model included fixed covariate effects of
age and sex on g, s, and v, and fixed covariate effects of years
of education on g and v. While there were some substantial
differences in marginal parameter estimates due to age, sex,
and length of education (e.g., men are predicted to be 57
months later in disease compared to women in the same baseline
groups; Supplementary Table 2), the estimates should not be
interpreted in isolation because all parameters simultaneously

affect the shape of the disease trajectory and may counteract each
other. Figure 7 shows how age, sex, and education differences
systematically affected the mean trajectories. From the figure, we
see that male participants consistently scored lower on ADAS-
Cog throughout the disease (3.1 points), but that they remained
more stable in the initial 100 months where female participants
had a more gradual decline. Lower age at baseline and longer
education were both associated with higher cognitive scores, but
also slightly increased rates of decline as evident in the stages of
overt dementia (predicted disease time >120 months).

Cholinesterase Inhibitors and Cognitive
Decline
Using the search terms described in the Supplementary Material,
we identified 1,347 individuals that were treated with ChEIs,
which are approved for symptomatic treatment of AD. There
were no restrictions to brand or dose used. Only 64 of the
identified patients had records of initiation or discontinuation of
treatment during the observation time (total of nine initiations
and 60 discontinuations).

To explore if treatment with ChEIs affected the shape of the
decline trajectories, stepwise forward model selection from the
basic model was done to include ChEI treatment in the model.
The best model included fixed effects of treatment on s and v, but
not on rate of decline g (14 degrees of freedom, twice the negative
log likelihood=−59,277.59, AIC= 59,305.59, BIC= 59,406.29).
The model found that patients treated with ChEIs generally had
worse level of cognition (effect on v was 5.50 ADAS-Cog points
for treated individuals, p < 0.0001) and a delayed progression
within baseline groups (effect on s was 7.53 months, p < 0.0001).
The average trajectories and distribution of data across treatment
are shown in Figure 8.

Biomarkers for Disease Staging
The disease progression model relies on observing patients
longitudinally and uses the temporal patterns of cognitive scores
to predict the patient’s status at baseline. This type of approach
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FIGURE 3 | Data and estimated biomarker trajectories for CDR sum of boxes and FAQ. Left column shows results when allowing different trajectories for the five

baseline groups; right column shows the results when requiring a single trajectory over predicted disease time.

is needed for understanding the progression of disease and
is valuable in retrospective cohort analyses. But the models
presented thus far offer only little insight into the disease stage of
a patient that has not been followed longitudinally, for example,
a patient entering a clinical trial. In this setting, only the baseline
classification of the patient, the cognitive score, and possibly
other demographic data would be able to inform the stage
of the patient. However, as shown in Validation of the Basic
Model, several biomarkers have distinct temporal patterns over
the course of predicted disease time. Biomarker data collected
at baseline may thus enable a better assessment of the stage of
an individual.

The following analyses were done on the 688 individuals who
had complete biomarker data at baseline for the eight biomarkers
considered in Validation of the Basic Model. These individuals
had 3,301 visits with valid ADAS-Cog scores.

Training and Validation Data
Five hundred forty individuals (80%) were randomly selected for
the training cohort, and the remaining 148 (20%) comprised the
validation cohort.

Model Development
Using the BIC-based model selection procedure described
previously, we searched for the best model among
models that included adjustment for sex, baseline age,
and education (on parameters g, s, v), as well as
adjustment for the eight baseline biomarkers on disease
stage (parameter s). The model selection was done on the
training data. The best model included the biomarkers
FDG-PET (meta-ROI), hippocampal volume (MRI),
florbetapir PET SUVr, Aβ1−42/Aβ1−40 (CSF), and NfL
(plasma) (22 degrees of freedom, −2·log likelihood
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FIGURE 4 | Data and estimated biomarker trajectories for FDG-PET, hippocampal volume (MRI), and florbetapir PET. Left column shows results when allowing different

trajectories for the five baseline groups; right column shows the results when requiring a single trajectory over predicted disease time. Note that the oscillations for the

significant memory concern and dementia groups on FDG-PET and florbetapir PET, respectively, occur in time periods where no data were collected for these groups.

= 15,182.34, AIC = 15,226.34, BIC = 15,355.45).
The parameter estimates for the model are given in
Supplementary Table 3.

Model Validation
To validate the biomarker model, the model fitted on training
data was used to predict disease stage in two different
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FIGURE 5 | Data and estimated biomarker trajectories for Aβ1−42 (CSF) and Aβ1−42/Aβ1−40 ratio (CSF). Left column shows results when allowing different trajectories

for the five baseline groups; right column shows the results when requiring a single trajectory over predicted disease time. Note that the oscillations for the significant

memory concern group occur in time periods where no data were collected for this group.

scenarios. In addition to patient status, the first used only
baseline biomarker data, whereas the second also used baseline
ADAS-Cog total score. Visual inspection of the longitudinal
ADAS-Cog trajectories suggests that the baseline data do
hold information that improves prediction of disease stage
in the test data (Figure 9). To quantify this, the predictive
accuracy of the biomarker model was compared to the basic
model that did not include biomarker on the longitudinal
ADAS-Cog total score trajectories (Table 2). Inclusion of
biomarker data clearly reduced the mean squared error (MSE)
and median absolute error (MAE) of predictions on both
test and training data (MSE/MAE 65.1/4.21 vs. 100.0/4.98
on test data). Including the baseline ADAS-Cog total score
improved the post-baseline predictive accuracy of the biomarker
model further (MSE/MAE 55.1/3.48 for baseline biomarkers
+ ADAS-Cog model vs. 69.8/4.31 for biomarker model on
test data).

DISCUSSION

Disease Progression Modeling
In this article, we presented a model for progression of dementia
based on longitudinal cognitive assessments. Disease stages
of individual patients were modeled using a latent variable
approach. As opposed to conventional latent variable models,
for example, those used in item response theory for modeling
cognitive tests (Balsis et al., 2012; Embretson and Reise, 2013),
the proposed model imposes explicit structures to ensure that the
longitudinal modeling respects the known course of disease (e.g.,
that disease progression is an increasing function of elapsed time
and that cognition on average declines with disease progression).
By imposing these structures, the model provides a scaffold for
understanding disease progression in pathological aging in terms
of three continuous measures, disease stage, rate of decline, and
cognitive deviation from the mean.
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FIGURE 6 | Data and estimated biomarker trajectories for total tau (CSF), p-tau181 (CSF), and NfL (plasma). Left column shows results when allowing different

trajectories for the five baseline groups; right column shows the results when requiring a single trajectory over predicted disease time. Note that the oscillations for the

significant memory concern group occur during time periods where no data were collected on the respective biomarkers.

The proposed model aligned trajectories of cognitive
decline. To demonstrate that this approach provided valid
insights about other aspects of the disease, it was shown that
predicted disease time was predictive of various measures of

disease onset. Furthermore, the use of ADAS-Cog trajectories
to map patients to a one-dimensional disease timeline
was shown to consistently provide a better explanation
of other clinical scales and biomarker trajectories than
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FIGURE 7 | Estimated trajectories for different combination of patient age, sex, and length of education. The trajectories are aligned at predicted month 0 that

corresponds to the average cognitive stage of cognitively normal individuals at baseline.

a conventional approach that grouped patients based on
baseline symptoms.

The presented model was formulated for one-dimensional
outcomes. This choice allowed formulation and implementation
of the model in a non-linear mixed-effects modeling framework
using maximum likelihood estimation. This in turn enabled
modeling of covariate effects on different aspects of disease
progression, sophisticated models for random variation in
data, and the possibility of taking advantage of the large
body of developed statistical methodology for mixed-effects
modeling (Pinheiro and Bates, 2006). Because AD ismultifaceted,
and different measures are sensitive of disease stage and
progression at different times during AD, progression models
for multivariate outcomes can be more sensitive than univariate
models. However, realistic specification of covariate effects,
cross-covariance structures, and dependence between random
effects for the different outcomes may be very difficult and
require a large number of free parameters. While model classes
and estimation procedures for similar longitudinal multivariate
outcomes have been proposed in other fields (Olsen et al., 2018),
existingmultivariate models for AD progression generally rely on
simple modeling of different sources of variation. Future work
should address this gap in the current available methodology:
while existing multivariate models can achieve high-quality
staging of patients and outcomes with simple noise modeling
by taking advantage of the aggregated information across many
outcomes (Donohue et al., 2014; Jedynak et al., 2015), they
can likely not take advantage of this aggregated information to
address specific questions about whether a covariate affects a
specific aspect of disease progression.

Age, Sex, Education, and Cognitive Decline
The effect of demographic and socioeconomic factors on disease
risk and manifestation in AD has been the subject of much study.
In this work, we focused on the combined effects of age, sex, and
length of education.

When considered individually, these factors have been
observed to result in differences in disease progression. While
age is typically considered the major risk factor for developing
AD, higher age at AD onset has been observed to be associated
with a slower rate of cognitive decline (Gardner et al., 2013;
Stanley et al., 2019). Similarly, female sex has been identified as
a major risk factor, with almost two-thirds of AD cases being
women (Alzheimer’s Association., 2018). While this difference
has been known for a long time, it has only become apparent
more recently that there are sex differences in symptomatology,
rate of decline, and possibly in neural anatomy (Ferretti et al.,
2018; Oveisgharan et al., 2018). The effects of cognitive reserve on
age-related cognitive decline have been the subject of much study
(Tucker and Stern, 2011). Cognitive reserve is often studied using
educational attainment as an operational proxy for cognitive
reserve. It has consistently been found that higher education is
associated with increased rate of cognitive decline in incident AD
(Teri et al., 1995; Rasmusson et al., 1996; Wilson et al., 2004;
Andel et al., 2006; Scarmeas et al., 2006; Musicco et al., 2009;
Thomas et al., 2016), with several of these studies also reporting
that education is associated with higher baseline cognition.

Differences in cognitive decline are often studied by
comparing slopes in statistical models that assume that cognitive
decline follows a linear pattern. The argumentation and
interpretation around the cognitive reserve model are somewhat
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FIGURE 8 | Estimated trajectories for patients with and without cholinesterase inhibitor treatment (top) and corresponding distribution of number of observed

ADAS-Cog scores at corresponding predicted disease times. The trajectories are aligned at predicted month 0 that corresponds to the average cognitive stage of

cognitively normal individuals that are not treated with cholinesterase inhibitors at baseline.

more sophisticated, but still largely centered on an assumption
of a linear rate of decline (e.g., illustrated in Figure 1 in Stern,
2012). The prevailing hypothesis within the field of cognitive
reserve research is that, compared to individuals with low
cognitive reserve, individuals with high cognitive reserve have
higher pre-disease cognitive scores and that their brains tolerate
a higher load of neuropathology before cognitive decline is
seen. At a sufficiently high level of neuropathology, cognitive

ability reaches its floor for all participants. If the timescale
of neuropathological buildup is similar across individuals, this
suggests that individuals with high cognitive reserve will have to
decline a wider range of cognitive scores in a shorter time, thus
leading to an accelerated rate of decline (Stern, 2012).

The analyses in the present article clearly illustrate that rate of
cognitive decline as measured on ADAS-Cog is not constant but
increases over the course of AD. Thus, findings of an increased
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FIGURE 9 | Predicted disease month for training and test datasets. Top row displays predicted disease-time alignment of observed ADAS-Cog total score trajectories

based on baseline biomarker data and patient baseline status; bottom row displays predicted disease-time alignment of trajectories based on baseline ADAS-Cog

total score, baseline biomarker data, and patient baseline status.

rate of decline in a certain group of patients using slope models
could either be because the group of patients has accelerated
decline, because they are at a later disease stage, or a combination.
The proposed disease progression model seeks to align cognitive
trajectories on a disease timeline, and thus it allows one to
separate the hypothesized mechanisms of cognitive decline. The
best model that adjusted for effects of age at baseline, sex, and
length of education on, respectively, disease stage, rate of decline,
and cognitive deviation found that all three factors affected all
three disease measures except for disease stage, which was not
affected by length of education.

When considering the combination of effects (Figure 7), the
results suggested that higher age at baseline was associated with
lower cognition throughout disease time and a slightly reduced
rate of decline. Women tended to have not only better pre-
disease cognition but also an accelerated decline. Finally, longer
education was associated with slightly faster rate of decline and a
systematically better cognition throughout the disease.

While these findings are largely consistent with previous
findings, they also illustrate that previous results that do not
take the long-term disease trajectories into account may be
systematically biased. In particular, the fact that highly educated
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TABLE 2 | Predictive accuracies of predicted ADAS-Cog total score trajectories for the basic model and the biomarker model both with and without the baseline

ADAS-Cog total score.

Model and data Mean squared error Median absolute error

Training Test Training Test

Basic model (baseline status) 90.0 100.0 (110.6a) 5.48 4.98 (5.01a)

BM model (baseline status + BMs) 58.3 65.1 (69.8a) 4.19 4.21 (4.31a)

Basic model (baseline status + ADAS-Cog) 78.2a 102.7a 3.49a 3.70a

BM model (baseline status + ADAS-Cog + BMs) 53.5a 55.1a 3.29a 3.48a

Predictions were censored to the interval [0, 85] to respect the range of the ADAS-Cog scores.

BM, biomarker.
aBaseline ADAS-Cog measurements excluded in computation of prediction errors.

patients tend to have above-mean cognition throughout the early
stages of disease means that they will meet cognitive cutoffs used
for inclusion criteria in clinical studies longer into their disease
than patients with less education. Because of the accelerated
cognitive decline in the later stages of disease, these patients will
have a much faster rate of decline when using conventional slope
models, but this difference will primarily be due to their later
disease stage.

Symptomatic Medications for Alzheimer
Disease and Cognitive Decline
Cholinesterase inhibitors have consistently shown a symptomatic
benefit in mild to severe dementia due to AD in randomized,
double-blind, placebo-controlled trials (Birks, 2006). It has,
however, been questioned whether long-term treatment with
ChEIs could be harmful (Schneider, 2012). A recent meta-
analysis found that AD patients treated with symptomatic
treatments had a faster rate of cognitive decline (Kennedy et al.,
2018). This could be interpreted as a harmful side effect, but
because the included studies were not randomized with respect
to symptomatic treatments, such causal link cannot be made. An
alternative explanation is simply that ChEIs work—that patients
who are being treated at study inclusion have a cognitive benefit
that, similarly to higher levels of education, means that they meet
inclusion criteria for clinical studies further into their disease.
The optimal disease progression model identified in the model
search did not include effects of ChEI treatment on rate of
decline. Instead, the results of this model showed that patients
treated generally had lower cognition compared to untreated
patients (which points to confounding by indication; patients are
prescribed ChEIs because of their cognitive impairment) and that
their progression was slightly delayed.

Biomarker-Based Disease Staging
The final application of the model examined how a patient’s
biomarker profile at study entry could be used to predict
his/her disease stage. Based on training data used for model
development, a set of five biomarkers were included in the
model. Biomarker profiles considerably improved prediction of
future ADAS-Cog trajectories in the unseen validation dataset,
and inclusion of baseline ADAS-Cog score further improved the
prediction. Among the biomarkers, FDG-PET explained most

variation followed by CSF Aβ1−42/Aβ1−40 and florbetapir SUVr.
Hippocampal volume and plasma NfL explained the least.

This modeling of baseline biomarkers for patients in the
earliest stages of disease takes advantage of the long-term follow-
up that is unique to ADNI. The modeling essentially relies on
hindsight because the patients’ disease stage can only be predicted
with high reliability once a systematic pattern of cognitive decline
has been observed. By using these patterns, the model identified
how combinations of biomarkers could be used to predict disease
stage. The results of the model suggest that biomarker profiles at
a single time point may be used to predict the disease stage of
an individual even in the preclinical phases of disease where no
clinically detectable cognitive impairment is present.

With further validation, these results can be used to define
a space of permissible biomarker profiles to use as inclusion
criteria in clinical trials. Such biomarker-based synchronization
of patient’s disease stage would enable testing a drug in a more
homogeneous population. This would in turn greatly increase the
power of clinical trials in AD where it is common to see extreme
levels of variability in patient trajectories (Cummings et al., 2018;
Ballard et al., 2019).
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