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Climate change has been called “the defining challenge of our age” and yet the global

community lacks adequate information to understand whether actions to address it

are succeeding or failing to mitigate it. The emergence of technologies such as earth

observation (EO) and Internet-of-Things (IoT) promises to provide new advances in data

collection for monitoring climate change mitigation, particularly where traditional means

of data exploration and analysis, such as government-led statistical census efforts,

are costly and time consuming. In this review article, we examine the extent to which

digital data technologies, such as EO (e.g., remote sensing satellites, unmanned aerial

vehicles or UAVs, generally from space) and IoT (e.g., smart meters, sensors, and

actuators, generally from the ground) can address existing gaps that impede efforts

to evaluate progress toward global climate change mitigation. We argue that there is

underexplored potential for EO and IoT to advance large-scale data generation that can

be translated to improve climate change data collection. Finally, we discuss how a system

employing digital data collection technologies could leverage advances in distributed

ledger technologies to address concerns of transparency, privacy, and data governance.

Keywords: climate data, earth observation, internet of things, blockchain technology, climate policy, public policy,

climate change mitigation, big data

INTRODUCTION

The advent of big data analytics and development of earth observation (EO) and internet of things
(IoT) technologies have, over the preceding decade, opened up new fields of research and practice,
ones that center on database mining and knowledge discovery. In the context of EO, methodologies
of spatial data mining and knowledge discovery aim to extract and analyze large, high-dimensional,
and complex information (Mennis and Guo, 2009). In the context of IoT, Tsai et al. (2014b) argue
that a future digital ecosystem will not only involve making “things” smart and scaling up the
internet infrastructure to handle the exponential growth in connected devices, but also integrating
data mining to provide better services through new functionalities such as association analysis,
classification, clustering, outlier analysis, and time-series analysis (Chen et al., 2015).

A growing area of scholarship proposes ideas for constructing an intelligent digital
ecosystem that can harness this big data potential (Marjani et al., 2017). Researchers have
introduced new brands of IoT, such as “Future Internet of Things” (Tsai et al., 2014a),
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“Cognitive Internet of Things” (Wu et al., 2014), and a “Social
Internet of Things” (Gil et al., 2016). While these proposals
envision differing relationships between data and analysis,
they all agree on the need to combine IoT with analytics
to translate data into knowledge. Integrating IoT, analytics,
and cloud computing would enable what Chen et al. (2018)
have called “cognitive computing.” The specific paradigm and
system architecture for combining data collection technologies,
analytics, and data storage and retrieval will largely depend
on the digital services required of the field of research in
question. For the emerging sphere of “big Earth data” or
“big environmental data” that speaks to the increasing volume,
variety, and velocity with which technological advances in EO
and IoT are generating massive amounts of data relevant for
urgent issues like climate change, there is both great promise
and challenges with harnessing this potential and translating it
to usable insight (Sudmanns et al., 2018).

Climate change has been dubbed “the defining challenge
of our age” (Rosenthal, 2007). Yet scientists and policymakers
continue to lack adequate data to understand how we are
progressing in terms of mitigating impacts. With global
temperatures already 1.1 degrees C above pre-industrial levels
[World Meteorological Organization (WMO), 2019] and
dangerously close to thresholds where scientists agree climate
change’s effects will be irreversible (IPCC, 2014a, 2018; Jackson
et al., 2019), the need to address data gaps with respect to
climate change could not be more urgent. Although data and
models to understand anthropogenic climate change have greatly
advanced since the first reports establishing the scientific basis
of climate change (IPCC, 1990), uncertainties still exist (Soden
et al., 2018). Estimates of anthropogenic-induced emissions
and socioeconomic drivers are primarily derived from climate
models, which rely on global earth observation data derived from
ground-based and satellite measurements (Guo et al., 2015). The
relatively coarse spatial resolution (∼100 sq km) of a typical
climate model (IPCC, 2007) is generally too crude to evaluate
local impacts or climate change actions at the individual actor
level (Hsu et al., 2019). Particularly in the policy domain, more
fine-grained data are needed to evaluate policy and program
performance and to understand whether actions to mitigate
greenhouse gas emissions or adapt to climate change impacts are
being achieved.

The emergence of digital data collection technologies, such
as satellite remote sensing and low-cost sensors, promises to
provide new advances in data collection and monitoring for
the Sustainable Development Goals (SDGs), particularly where
traditional means of data collection, such as government-
led statistical census efforts, are costly and time consuming
(Fritz et al., 2019; Anenberg et al., 2020). Despite these
technological advances, their uptake into policy processes and
applications has been relatively limited (Fritz et al., 2019). Recent
research efforts, however, have been initiated to better connect
the digital technology, computer science, and data science
communities with climate change science, policy and practitioner
communities, including the Climate Change AI effort (Rolnick
et al., 2019). In this initiative, a coalition of industry and academic
experts identify 13 sectors related to climate change, including

buildings, transport, industry, and agriculture, where advances
in machine learning (ML) can be applied to empower work
in climate change (Rolnick et al., 2019). While the authors
touch upon ML methods applications for collective decision-
making and policy, more elaboration is needed to bridge cross-
sector digital tech-enabled data collection and monitoring to the
question of climate policy and climate action tracking.

This article examines the extent to which digital data
technologies, such as EO technologies (e.g., remote sensing
satellites, unmanned aerial vehicles or UAVs, generally from
space) and IoT (e.g., smart meters and sensors, generally
from the ground) can address existing data gaps that stymy
efforts to measure climate change mitigation progress. Although
numerous reviews of EO (Navalgund et al., 2007; Pettorelli et al.,
2014; De Araujo Barbosa et al., 2015) and IoT (Atzori et al., 2010;
Stankovic, 2014; Al-Fuqaha et al., 2015) exist, to the best of our
knowledge, this is the first integrated, comprehensive review of
the application of such digital data collection technologies in the
domain of climate change.

Our aim is that this review motivates a future research
agenda to explore the potential for digital data collection
technologies to bridge gaps in climate change data collection.
While digital data collection technologies alone are not silver
bullet solutions, there is underexplored potential for EO and
IoT to advance large-scale data generation to assess progress of
climate change mitigation efforts. We end our review with a
discussion of how a system architecture combining digital data
collection technologies could leverage advances in distributed
ledger technology (DLT) to integrate these new data mining
streams alongside legacy databases in a way that addresses
transparency, data validation, and privacy concerns. In evidence-
based policy in particular, there is increasing demand for
transparency and traceability not just in government, agency, and
policymaker actions, but in the documentation of original data
and analytic processes used to evaluate them (Sicilia and Visvizi,
2019). DLT-based systems could provide a level of permanent
availability, immutability, and tamper-resistant evidence that
is now becoming the burden of proof when demonstrating
the efficacy of policy actions. With this discussion, we aim to
stimulate future research related to DLTs for collecting and
coalescing climate data.

DEFINING THE PROBLEM SPACE: ISSUES
WITH DATA COLLECTION

Although there is no consensus defining exactly what climate
change data constitutes, for the purposes of this review article,
we are concerned mainly with data that is a “time series of
measurements of sufficient length, consistency and continuity to
determine climate variability and change,” often referred to as a
Climate Data Record or CDR (National Center for Atmospheric
Research Staff, 2014). Exactly how climate variability and change
are defined, are also of scientific debate, but in this review we
more narrowly consider CDRs in the context of climate-warming
greenhouse gas emissions (GHGs) that have “iconic status in
climate science as evidence of the effect of human activities
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on the chemical composition of the global atmosphere” (Le
Treut et al., 2007). These anthropogenic GHG-emitting activities
mostly involve the combustion of fossil fuels for electricity
generation and transport, industrial processes, and land-use
change (Stocker et al., 2013). In a policy context, not only does
the concentration of GHGs in the atmosphere matter, but also
their attribution to specific sources and actors is an important
consideration in determining whether actions to mitigate or
reduce climate change are effective. Towards that aim, a GHG
inventory that combines data from various emissions sources
within a defined boundary is considered the foundation for
binding policy commitments and performance evaluation (Peters
and Hertwich, 2008). GHG inventories can be produced at
multiple levels from the individual actor level to national and
global scales, and they are critical tools for policymakers to
develop mitigation strategies and track the progress of their
implementation, as well as for agencies and businesses to comply
with regulations or identify opportunities for better management
[World Resources Institute (WRI) and World Business Council
for Sustainable Development (WBCSD), 2011; Jonas et al.,
2019].

Data collection for tracking climate mitigation progress,
however, suffers from several overarching challenges. First,
GHG inventories are largely limited to self-reported data. Most
actors that do report data are disproportionately located in the
global North (Hsu et al., 2019), making it difficult to obtain a
complete picture of anthropogenic impact on the global climate,
particularly given the increasing contribution of global South
actors to GHG emissions (Climate Watch, 2019). Second, GHG
emissions are rarely measured directly and instead primarily
estimated using activity data (i.e., amount of fuel consumed,
vehicle miles traveled, etc.), which is inherently problematic
because not every activity’s impact on climate emissions can
be accurately quantified (Jonas et al., 2019). Third, because
data are self-reported and calculated from activity data, their
accuracy and completeness suffer from what Paterson and
Stripple (2010) note as numerical choices, which can serve to
render visible some things and visible others. As a result, an
emissions inventory never truly provides a complete picture
of a company’s impact on climate change (Walenta, 2018).
Fourth, there is a lack of methodological consistency and
comparability between actors’ inventories due to decisions in
what emission sources to include and what calculation methods
to apply. In evaluating climate policies’ impact, there are also
measurement and data collection uncertainties related to the
efficacy of some policy instruments (e.g., emissions trading vs.
education campaigns; Markolf et al., 2017; Jonas et al., 2019),
but for this review we are more narrowly focusing on challenges
related to emissions data inventories, where we see potential for
technology-enabled solutions. We organize these data collection
issues into several points of discussion below: standardization,
resolution, completeness and certainty, transparency, and other
technical barriers.

Lack of Standardization
Individual actors, ranging from companies and organizations
to subnational and national governments and even citizens,

can self-report emissions data using a suite of calculation
methodologies and protocols. The Intergovernmental Panel
on Climate Change (IPCC)—the leading scientific body on
climate change science—presents several tiers of methodological
complexity for calculating national greenhouse gas emissions
inventories (IPCC, 2006), but essentially they involve relying
on activity data (e.g., fuel combustion in stationary sources)
multiplied by emissions factors (e.g., GHG emissions generated
per unit activity or fuel type). Based on these methods, non-profit
organizations and think-tanks, primarily the World Resources
Institute and the World Business Council for Sustainable
Development, have adapted a corporate and organization-level
accounting method called The Greenhouse Gas Protocol [World
Resources Institute (WRI) and World Business Council for
Sustainable Development (WBCSD), 2011], which providesmore
detailed guidance for inventory development for smaller-scale
actors and was formally adopted by the International Standards
Organization (ISO, 2006). Considerations such as inventory
boundary, emission scopes (i.e., direct vs. indirect), and emission
sources are under an actor’s discretion to report. Due to these
methodological choices, resulting emissions inventories between
actors are not necessarily comparable.

For local government actors, the IPCC (2014b) identifies a
lack of systematic evaluation of urban climate policy plans and
their effectiveness, given the lack of consistent and comparable
accounting to assess their impact (Zimmerman and Faris, 2011).
While there are some efforts in place to standardize emissions
inventory calculations for cities and communities, such as the
Global Protocol for Community-Scale Greenhouse Gas Emission
Inventories (Fong et al., 2014), subnational governments do not
necessarilymeasure and report inventories in consistent ways nor
do they transparently communicate what assumptions or areas
of uncertainty are associated with reported data. Some efforts,
like the Global Covenant of Mayors, a transnational climate
initiative that includes nearly 10,000 cities, are working toward a
common reporting framework and guidelines for their members,
which should help improve standardization [Global Covenant for
Mayors Energy (GCOM), 2018]. Current lack of standardization
means there exists very little comparable greenhouse gas
emissions baseline or inventory data by which to compare actors
or develop an aggregate picture of global progress.

Low Resolution (Temporal and Spatial)
Ideally, data monitoring climate impacts and mitigation
performance would be available for multiple years, be spatially
relevant (e.g., appropriate spatial resolution for a unit of analysis)
and spatially explicit (e.g., for appropriate attribution). Because
the process of “mining” activity data to conduct an inventory
using existing standards and protocols, which as described above
requires collection of fuel or activity data and determination
of appropriate emission factors, is time consuming, it is
challenging for actors to regularly report annual emissions
inventories (Ogle et al., 2013; Markolf et al., 2017). CDP
(formerly Carbon Disclosure Project) estimates it takes upwards
of 100 h to complete their annual Supply Chain Questionnaire
for corporations, and, in 2014, only 3,500 companies disclosed
emissions information (Anderson, 2015). For the Compact of
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States and Regions, a transnational climate initiative that includes
124 actors from 35 countries around the world, their annual
disclosure and analysis report has only been able to feature
the same 44 actors due to lack of reporting from other actors
(The Climate Group, 2015, 2016, 2017). Those that do report
emissions inventory data also may not be the most significant
actors. In a recent report, it was found that 70 percent of 1,500
of the companies with the largest impact on the world’s forests
failed to disclose their data and their role in deforestation (CDP,
2019). Particularly for agriculture and land-use based emissions,
a critical gap exists in spatially-explicit data on land-use changes
that have inherently different impacts on emissions, and are
especially poor for developing countries (Smith et al., 2012;
Ogle et al., 2013). While researchers have experimented and
proposed statistical modeling approaches to develop spatially-
explicit, temporal emission inventories, their development is
“extremely labor-intensive” and “only available for limited places
and times,” with only select coverage in a few locations due to the
lack of physical measurements that can be used to ground-truth
modeled data (Oda et al., 2019).

Incomplete and Uncertain Data
Many aspects of climate mitigation suffer from incomplete
data for evaluating performance. There are some sectors and
categories of emissions that are frequently excluded from
emissions inventories that are relevant for actors’ mitigation
efforts. For example, many cities, and companies as well, do
not account for “Scope 3” or indirect emissions resulting
from upstream or downstream supply chain or embodied
carbon emissions. For many actors, these indirect or Scope
3 emissions could represent significant contributions to their
footprint (Ramaswami et al., 2008). For example, the U.S.
city of Portland, Oregon, found that 58 percent of their
carbon emissions were derived from these Scope 3 emissions
sources when they conducted a consumption-based approach to
accounting [Portland Bureau of Planning Sustainability (PBPS),
2015]. Kennedy et al. (2009) found that upstream emissions
due to the extraction, processing and transporting of fossil fuels
could add between 7 and 24 percent to cities’ end-use emission
totals. Further, land-sector and land-use based emissions in the
agriculture and forestry sectors that are critical to assess as
both carbon sinks and sources are methodologically challenging
to assess due to differences in assumptions related to carbon
cycle models, quantification of rates and dynamics of land-cover
change, soil responses to land-cover change, baseline carbon
stocks in vegetation and soils, among other issues (Ramankutty
et al., 2007), which is why their estimation is often missing or
fraught with uncertainties.

Where emissions inventories are available, they primarily exist
in industrialized countries. The process of developing emissions
inventories is time consuming and costly. There is evidence to
suggest that the time, resources, and capacity needed to complete
an emissions inventory can actually inhibit the implementation
of a climate mitigation strategy itself (Markolf et al., 2017). Sparse
emissions data exist for developing and emerging countries
(Bulkeley et al., 2012; Pattberg et al., 2012; Chan et al., 2018;
NewClimate Institute et al., 2019), which will drive emissions

and population growth over the next several decades [United
Nations Framework Convention on Climate Change (UNFCCC),
2019; US Energy Information Administration (E.I.A.), 2019]
and are especially vulnerable to the impacts of climate change
(IPCC, 2014a). The resources needed to report and measure
climate actions may play a role in the data gaps in the
global South, for instance, as well as in small and medium
enterprises and less wealthy cities and states within developed
economies. Actors in these countries face both human resource
capacity challenges (e.g., expertise, lack of clearly designated
roles in relevant government agencies for producing inventories,
insufficient documentation and archival systems) and technical
issues (e.g., incomplete or non-existent activity data or lack of
experimental data for developing country or technology-specific
emission factors) for producing emissions inventories (Ogle
et al., 2013). Developing country fossil-fuel based CO2-emissions
inventories are estimated to be two to three times less accurate
than those in developed countries (Ciais et al., 2015).

Compounding their incompleteness studies evaluating the
quality of existing emission inventory data point to their inherent
uncertainty. Uncertainty of greenhouse gas emissions data has
been estimated to have increased, largely due to uncertainties
in carbon uptake by sinks such as oceans and lands (Ballantyne
et al., 2012). In terms of bottom-up derived accounting of
emissions-generating activity data and modeling, Duren and
Miller (2012) estimate uncertainty in the order of 5–20 percent
per year for CO2 emissions from individual countries. One study
found a gigatonne difference between CO2 emission inventories
for China and its 30 constituent provinces for the time period
1997–2010 based on two publicly available energy data sets
(i.e., activity data) by which to estimate emissions (Guan et al.,
2012). This amount is roughly equivalent to Japan’s annual CO2

emissions or five percent of the global total. Even small ranges
of uncertainty, when multiplied across space and time, can have
significant influence over the accuracy of emissions data and
relevance for understanding global progress toward climate goals.

Lack of Transparency
Transparency is a key challenge that prevents comprehensive
tracking and analysis of climate mitigation. Approximately
6,000 of the 10,400 cities and states and 1,500 of the 6,000
companies recording climate action in 2018 shared information
that enabled researchers to quantify the potential mitigation
impact of these actions (NewClimate Institute et al., 2019). Very
few actors, however, share data tracking their progress toward
implementing mitigation policies (Hsu et al., 2019; NewClimate
Institute et al., 2019), which is why there have been calls for
measurement, reporting and verification (MRV) procedures for
international climate agreements specifically and accountability
for other climate actions that could be perceived as greenwashing
(Taebi and Safari, 2017). Concerns about the proprietary and
confidential nature of data further prevents free and open
exchange of climate-related data relevant for tracking progress.

Other Technical Barriers
For some sectors, measuring emissions and reductions due
to management or policy efforts is a technically challenging
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undertaking. Determination of emissions savings depends on the
type of activity as well as the greenhouse gas targeted (Jonas
et al., 2019). Particularly for non-CO2 gases, such as methane,
which can result from leakages at oil and gas sites or from
agricultural processes, emissions are difficult to directly measure
or estimate. There is also a lack of agreed-upon methods for
assessing land-use and agriculture-sector emissions, which, for
many actors, comprise the bulk of their emissions footprints
(Forsell et al., 2016). Livestock production and management
practices, for example, can vary substantially between countries
and introduce a range of uncertainty in emissions from these
sources (Ogle et al., 2013). Uncertainty in estimation for these
land-based emissions and removals have greater uncertainty
than fossil-fuel based emissions, with estimates of nitrous oxide
(N2O) more uncertain than either methane or CO2 (Jonas
et al., 2019). In most national inventories, the high spatial
and temporal variability of N2O emissions dominates overall
uncertainty – the underlying measurements and data are so
unreliable that governments have to apply the lowest tier of
IPCC estimation to include them in their reports (Leip et al.,
2011).

Measuring the performance of climate action commitments
focused on functions besides mitigation is even more difficult,
including progress on adaptation to climate change, which
is often defined as the reduction of harm from current
and future climate risks as measured through averted
impacts (Ford et al., 2015). Efforts to track adaptation face
the lack of a consistent definition of adaptation activities,
baselines or benchmarks by which to assess progress, the
lack of systematic reporting on adaptation progress, and
insufficiently large-scale data by which to assess progress
(Ford et al., 2015). The varying adaptation challenges and
resources different countries, cities, regions, and companies
encounter also make a common standard for comparing
and measuring different adaptation efforts challenging
(Berrang-Ford et al., 2019).

POTENTIAL DIGITAL DATA COLLECTION
SOLUTIONS

Given the data gaps in climate action tracking, new technologies
and sources of data could be leveraged to complement existing
data collection efforts. This section reviews potential solutions
according to the categories of data gaps established in the
previous section. We survey developments in Earth Observation
(EO) and Internet of Things (IoT) technology, both of which
have the potential to capture robust data on climate, natural
processes and human activities that can complement or act as
proxies to assess progress on climate change mitigation. Table 1
provides a summary of these solutions alongside their limitations.
For this paper, we distinguish between EO technology as space-
based and near-earth sensors (e.g., satellites, drones) and ground-
based IoT technology that primarily comes in the form of sensors
and networks (e.g., soil moisture sensors and control centers in
precision agriculture) as a way of organizing our review.

Earth Observation (EO) Data
Earth observation (EO) is the practice of collecting data
on the Earth’s biological, physical, and chemical processes
using remote sensing technologies and various earth-surveying
techniques (European Commission, 2016). In the context of
climate tracking, EO-derived data can then be used to develop
air pollution and various climate indicators, including wildfires,
dust storms, urban green space, and urban particulate matter
mortality (Anenberg et al., 2020). While earth observation has
traditionally relied on government-funded EO programs that
have established satellites like theU.S. and European-government
funded Sentinel and Landsat programs or commercial IKONOS,
emerging technologies like Unmanned Aerial Vehicles (UAVs)
and miniature satellites (e.g. CubeSats) are pushing the
boundaries of remote sensing and what it means to collect
“big EO data” or “big environmental data” (Sudmanns et al.,
2018). Open access policies to EO data through the Sentinel
and Landsat programs have also been instrumental in generating
huge amounts of data: Sentinel 1, 2, and 3 combined generate in
the order of 20 TB of data a day (Esch et al., 2018). So far more
than 12 million Landsat images have been distributed across
186 countries due to open data policies that have made rich
archives of EO data freely and publicly available (Giuliani et al.,
2017). Below we discuss the potential for EO data to address the
gaps identified in the previous section regarding primarily self-
reported emissions inventories used to assess progress toward
climate mitigation.

Greater Standardization of Data Management
Remotely sensed EO measurements using satellites and UAVs
potentially provide a more standardized method of data
collection, providing more consistency and comparability.
International organizations like the Committee on Earth
Observation Satellites (CEOS), the Global Climate Observing
System (GCOS), and the Group on Earth Observations (GEO)
have been established to facilitate the interoperability of disparate
EO systems. The Quality Assurance Framework for Earth
Observation (QA4EO), endorsed by CEOS, provides guiding
principles and indicators for ensuring data quality, while the
GEO Strategic Plan 2016–2025 promotes the adoption of
common standards and disseminates best practices for data
management (Sudmanns et al., 2019). These internationally
shared standards help to improve the design of algorithms and
workflows in data processing.

Higher Spatiotemporal Resolution of Data
Regular collection of earth observation data only came online
in the 1970s when the United States launched the Landsat
sensor capable of measuring four spectral bands at 30-meter
spatial resolution. Since then, the range of geostationary and
orbital satellites has expanded to provide regular, consistent
monitoring of earth phenomena ranging from land cover, oceans,
and atmosphere and is why they are considered a possible
alternative data source for measuring climate mitigation and
adaptation. Sensor technology has advanced dramatically to
include multispectral and hyperspectral imaging as well as radar
and lidar sensing for the observation of land-use, hydrological,
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TABLE 1 | Climate mitigation tracking challenges addressed by EO and IoT technology.

Challenges addressed EO IoT

Lack of standardization Partially

+ The EO community adheres to internationally shared guiding principles

and reference standards for data collection, processing, and dissemination

– Measurements between sensors are not always comparable; accuracy of

measurements may vary depending on ground-truth data available

for validation

No

– Plethora of standards and protocols

Low spatiotemporal

resolution

Partially

+ Spectral imaging and radar sensing could provide data at high

spatiotemporal resolutions, although attribution to specific actors could still

pose a problem

– Space-based and near-earth EO-based measurement and GHG inventory

development most robust when combined with ground-based

measurements, which are limited across the world

Yes

+ Near-real time/real time and continuous monitoring

and transmission of data

Incomplete data Partially

+ Technological advances, lowering cost of satellites and UAVs could

increase deployment

– EO-derived greenhouse gas emission data still largely experimental, would

need to be combined with other ground-based or multi-layered data to

demonstrate robustness and accuracy

– Current generation of CO2-monitoring satellites not capable of

attributing/pinpointing emission sources.

Yes

+ Low cost of development and production of devices)

Lack of transparency Yes

+ Reduced reliance on climate actors to share or self-report data

Partially

+ Rise of citizen science using IoT devices could pave

the way for new modes of climate tracking

– Potential privacy concerns that need to be addressed

before IoT scaled widely at the individual level

Other technical barriers Yes

+ Significant potential and technological development of remote sensors

that can measure non-CO2 gases, such as methane, which can result from

leakages at industrial or agricultural sites

Yes

+ Sturdy and versatile devices can collect difficult to

obtain emissions data in harsh environmental conditions

and atmospheric changes (Guo et al., 2015; McCabe et al., 2017).
Only two satellites, however, exist for monitoring greenhouse
gas emissions from space (Tollefson, 2016), including Japan’s
GOSAT sensor [National Institute for Environmental Studies
(NIES), 2019], which has been operational since 2009 and is
capable of measuring column CO2 and CH4 concentrations,
and NASA’s Orbiting Carbon Observatory (OCO-2) satellite,
which launched in 2014 and provides higher spatial resolution
than GOSAT (Monastersky, 2014). Although these satellites were
developed for scientific atmospheric observation research rather
than for compliance or policy measurement purposes, they have
laid critical groundwork for future development of greenhouse
gas monitoring through satellite observation that provides
regular, consistent and repeated measurements of a range of
greenhouse gases from space (Matsunaga and Maksyutov, 2018).
Governments ranging from Europe, China, United States, Japan
as well as others are already planning a tripling in the number
of satellites monitoring just CO2 and CH4 by 2030 (Tollefson,
2016).

When combined with ground-based emissions estimates,
advances in EO have the potential to generate atmospheric,
observationally-consistent data that could help improve the
accuracy of emissions data and provide verification support
(Oda et al., 2019). EO data would complement existing surface-
based network atmospheric observations at the regional level,

offering higher measurement precision and spatiotemporal
resolution that could fill gaps in regions that currently lack
surface greenhouse gas or atmospheric monitoring networks,
particularly over cities or point sources such as power plants
(Duren and Miller, 2012; Ciais et al., 2015). These near-earth
and space-based approaches to emissions inventory development
use atmospheric transport models to relate surface fluxes of CO2

to atmospheric CO2 concentrations at a given location in time
(Ciais et al., 2015). Such multi-resolution modeling approaches
are generally considered labor-intensive and only available for
a select number of cities (e.g., Indianapolis, Los Angeles, and
Paris) (Davis et al., 2017; Oda et al., 2019), with a need to better
assess and quantify associated uncertainty. The Open-source
Data Inventory for Anthropogenic CO2 (ODIAC) is an example
of a 1 x 1 km spatially-explicit fossil-fuel CO2 emissions inventory
that incorporates point-source CO2 emissions data along with
satellite nighttime lights data (Oda and Maksyutov, 2011).

Land-based applications (e.g., monitoring of forests, land-
cover) are more established in EO, than for atmospheric and
climate applications, in the academic literature (Patenaude et al.,
2005; Plummer et al., 2006; Goetz and Dubayah, 2011). Remote
sensing can better map vegetation types and disturbances in
forest cover with “wall-to-wall” coverage, especially in areas
where it is not feasible or cost effective to conduct ground-based
surveys (Goetz and Dubayah, 2011; Taylor et al., 2020).
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For example, machine learning techniques have been applied to
historical remote sensing datasets of forests and deforestation
with high-resolution data from recent years, leading to significant
improvements in the proxies for the calculation of above-ground
and below-ground biomass, as well as in the identification
of correlational signals of forest conservation with concepts
of “additionality” (i.e., additional carbon sequestration) and
“leakage” (i.e., emissions that result from sequestration efforts)
(Meyers, 1999; Baker et al., 2010; Cowie et al., 2012). Such land-
use based emissions are frequently contributors to uncertainty
in emissions inventories, and the use of EO data has been
discussed in policy communities for helping primarily to
provide spatiotemporal data with sufficient resolution and
enhanced accuracy.

Lowering Cost and Proliferation of Sensing

Technologies
Advances in sensor and satellite technology, driven largely
by start-up entrepreneurs and private sector companies, have
introduced low-cost, small-scale satellites that have the potential
for lowering the cost of EO for climate monitoring. There
are now more working satellites deployed by fledgling space
startups than by established government space agencies (McCabe
et al., 2017). Private companies have stated plans to lower the
costs of CubeSAT satellites, miniaturized space satellites, from
$50,000 to $200,000 to even <$10,000 per satellite (Nervold
et al., 2016), with anticipated costs even lower for ChipSATs,
smaller, postage-stamp versions of CubeSATs (Abate, 2019). The
low cost of satellites, UAVs, and other sensing technologies may
allow for greater opportunities for data collection, especially in
gap filling where other satellites may miss out on daily or more
detailed measurements (Witze, 2018). Small and inexpensive
drones, for example, can be used for community-based forest
monitoring to enable more effective forest management and
conservation, which would be useful for tracking climate
change adaptation progress (Paneque-Galvez et al., 2014).
This trend of lowering costs means more global coverage of
the earth’s physical, chemical, and biological state than ever
before, potentially addressing the problem of incomplete climate
data, particularly for land-cover and land-use-based tracking
in deforestation, agriculture, and urbanization—key drivers of
climate change.

Greater Transparency
With EO technology, there is a reduced reliance on climate actors
to submit their own data, since a global network of remote
sensors could collect climate emissions data instead. When
considering emissions related to deforestation, for example,
satellites and UAVs can capture multispectral images and laser
scanning data of land use changes to determine if forest clearing
is within concession areas, allowing for improved transparency
and accounting efforts. For example, Page et al. (2002) estimated
a loss of 0.19–0.23 gigatonnes of carbon after a 1997 El Niño
event in Indonesia using satellite images of a 2.5 million hectare
study area in Central Kalimantan, Borneo. The Global Fire
Emissions Database (https://www.globalfiredata.org/) compiles
satellite EO data on fire activity and vegetation productivity

and climate models to estimate monthly burned areas and fire
emissions on a gridded scale in near-real time, demonstrating
the possibility for EO data to provide timely, transparent
and consistent emissions data without requiring actors to
self-report data, which may be less accurate and experience
time lags.

Lowering of Technical Barriers for Emissions Tracking
EO technologies could directly measure greenhouse gas
emissions of important polluting sites, thereby reducing
the technical barriers to collecting climate emissions data.
As mentioned in the previous section, measuring non-CO2

emissions such as methane (CH4) and nitrous oxide (N2O) are
more technically challenging for actors to measure than CO2

and represent significant sources of uncertainty in emissions
inventories. Available ground-based measurements of these
pollutants are sparse and limited in their global representation
(Frankenberg et al., 2005). Existing CH4 monitoring networks
are considered inadequate to explain observed trends and
variation in atmospheric CH4 (Riris et al., 2019). Advances
in EO technology have the potential to enhance measurement
accuracy for these gases in particular, which primarily result from
natural (e.g., wetlands, ruminant animals, rice cultivation) and
anthropogenic sources (e.g., fossil fuels; Frankenberg et al., 2005).
While a handful of satellites have existed since the mid-1990s for
remotely measuring CH4 from space, they have primarily been
used for detecting hotspots or evaluating emission trends rather
than for use in developing emissions inventories, which requires
a greater sensitivity to constrain to a more local level, although
EO-derived CH4 measurements have so far been evaluated to be
fairly accurate and show promise for climate policy applications
(Jacob et al., 2016; Riris et al., 2019). Governments are planning
to deepen EO capabilities for GHGmonitoring, including NASA,
which is designing the Geostationary Carbon Observatory
(GeoCARB) system that will provide as many as 10 million
daily observations to measure methane plumes near the earth’s
surface (Fialka, 2018).

Private sector companies and non-profit organizations
are also developing a range of high-resolution satellites to
specifically target greenhouse gas monitoring. Google has backed
a collaboration between non-profit organizations WattTime,
Carbon Tracker, and the World Resources Institute to operate
a global network of satellites to monitor the greenhouse
gas emissions of large power plants (Arnone, 2019). Private
companies like Planet Labs have also started to develop
high-resolution earth observation data (with pixel resampling
capabilities of 5, 3, or 0.72 meters) that could vastly increase the
ability to assess detailed on-the-ground climate data (Planet Labs,
2015). The Environmental Defense Fund is also constructing
MethaneSAT, a new satellite that will measure methane pollution
from oil and gas facilities (Davis, 2019). GHGSat is another
company that is providing high-resolution remote sensing
solutions for the tracking of industrial site emissions all over
the world. GHGSat satellites and aircrafts can detect light
absorbed in a variety of spectral bands to measure concentrations
of greenhouse gases including carbon dioxide, methane, and
nitrogen oxide, the resolution of which can go down to single
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FIGURE 1 | The five main layers of IoT comprise devices, communications protocols, processing systems, applications, and management. Source: authors.

meters. Complementing the range of planned government-
backed EO satellites, these substantial investments in high-
resolution, localized GHG monitoring via EO satellites should
bolster global measurement of non-CH2 gases substantially.

Ground-Based Internet-of-Things (IoT)
Complementing the space-based and near-earth sensing
capabilities of EO is ground-based IoT. IoT is a network
infrastructure in which objects equipped with computing
capabilities can communicate directly with each other as well as
collect and transmit data to central servers (ITU, 2012; Tzounis
et al., 2017). These objects are identifiable through Radio-
Frequency Identification (RFID) tags, infrared technology, or
unique barcodes (Khan et al., 2012). The number of devices
connected to the internet is increasing yearly, and it is predicted

that by 2021, 25 billion IoT-related devices will be in use
worldwide (Gartner, 2018). Advances in sensor technology,
particularly when networked through an IoT infrastructure,
could provide more granular data to understand climate change
mitigation and impacts. By 2021, the amount of data generated
by IoT applications will reach 847 ZB (1 ZB = 1021bytes) (Cisco,
2016).

The architecture of IoT can be illustrated through five layers
(Figure 1), with the first layer consisting of devices (i.e., physical
objects and sensors). Smart meters measuring real-time building
energy consumption, soil moisture detectors at crop sites, and
even underwater devices measuring water temperature and
pressure are a few examples of IoT devices that can exist in
a network and provide detailed, real-time environmental data
applicable for monitoring progress toward climate mitigation as
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well as adaptation. The second layer of IoT technology consists
of data-transmission technology that sends information collected
by a specific device securely to an IoT gateway or information
processing system. Devices within the same service can also
connect and share data with one another—a critical function that
allows for receiving information from networks of devices that
can then be managed and stored in a database. Depending on the
sensor used within a specific device, the means of transmission
may be through 3G, UMTS, Wifi, Bluetooth, or other forms
of networking technologies. A processing layer then performs
computations to extract useful data before relaying it to the cloud.
Crucial to this layer is its feature of automated decision-making,
which is based on programmed data processing modules. The
application layer can be developed out of the information
collected and transmitted from previous layers. The data can then
be utilized to better manage various systems ranging frommarine
ecosystem monitoring to transportation control. The final layer
of IoT technology is the management layer, which controls the
whole system and can develop varying operational models based
on the data received from preceding layers. Together, these layers
make up a seamless architecture of ground-based networks and
objects that is well-suited for collecting climate mitigation and
adaptation data, complementing the efforts of space-based and
near-earth remote sensors.

Greater Spatiotemporal Resolution of Data
IoT devices can offer high-resolution temporal and spatial data
for climate mitigation and adaptation monitoring. For example,
in Norfolk, Virginia, where flooding events are an increasing
occurrence, ultrasonic sensors can detect minute changes in the
distance between water level and ground to provide real-time
flood analysis (Carlson et al., 2019). In the electricity sector,
networks and sensors can be easily implemented to collect energy
readings in situ from PV or wind power systems, sending that
data to remote IoT gateways for preprocessing, storage, and
transmission to the cloud for monitoring and analysis. Open IoT
platforms such as Raspberry Pi and LoRa can further enhance
efficiency in renewable energy monitoring systems. Specifically,
a low-cost, wide-area LoRA network using <1 Ghz frequency
does not require a telecommunications base system and can allow
for consistent data collection using end-to-end LoRa modems to
send energy readings to microcomputers like Raspberry Pi (Choi
et al., 2018).

More Complete Data
The low cost and ease of deployment of IoT devices and networks
significantly reduce the barriers of data collection. For example,
the rise of cost-effective water quality sensing nodes and probes
using commercially available off-the-shelf parts could pave the
way for large-scale implementation and robust environmental
data collection and monitoring for assessing urban water quality
targets in national and subnational adaptation plans (Postolache
et al., 2014). In buildings and smart homes, IoT devices could be
used for efficient and inexpensive appliance load monitoring—
a single smart meter equipped with learning and detection
processing is capable of collecting electricity consumption data
of multiple appliances in a building or home for energy efficiency

target tracking (Ma et al., 2018). IoT could also be used for energy
tracking and optimization in the manufacturing sector. Wang
et al. (2018) introduce a real-time energy efficiency optimisation
method (REEOM) which utilizes RFIDs and smart meters to
monitor the flow of materials as well as the consumption patterns
of machines. The IoT devices then send information to a central
server using Wi-Fi, RS 485, or Zigbee for analysis. These energy
monitoring systems allow for energy-aware process scheduling
and reduced resources wastage, and are also able to continuously
collect data without network or supply chain interruption.

Other notable systems for energy monitoring include the
OpenEnergy Monitor and ACme. OpenEnergy uses open source
Arduino boards in a three-phase power metering system that
measures apparent and real power, and RootMean Square (RMS)
voltage and current, while ACme measures active, reactive,
and apparent power using the wireless technology 6LoWPAN
for small devices with limited processing (Jiang et al., 2009;
Pease et al., 2018). These different monitoring systems could
help to push the boundaries of indirect emissions accounting
in a multitude of sectors. In smart city initiatives, connected
wearables, sensors, and actuators can help improve urban
governance, environmental monitoring, and sustainable living.
The IoT European Large-Scale Pilots (LSP) Programme was
launched in 2016 to test the scalability of IoT applications and
the interoperability of EU-based IoT platforms, such as Open-
IoT and FIWARE (Meiling et al., 2018). The programme includes
pilot projects which have been deployed in various European
cities and focus on using end-to-end sensor applications for
collecting measurements on issues of aging, food security, and
autonomous vehicles.

Greater Transparency
The proliferation of open source electronic prototyping kits
such as Arduino, Raspberry Pi and.Net Gadgeteer has given rise
to a new wave of citizen science, increasing data transparency
and reducing the reliance on major climate actors to share and
report data (Salim and Haque, 2015; Fritz et al., 2019; Hsu
et al., 2020b). Users can share code through online communities
and use these microelectronic kits to build their own sensors
and actuators to measure a range of ambient environmental
conditions, including temperature, humidity, and barometric
pressure. Sensor.Community is an example of an open-source
platform in which civic-minded contributors from all over the
world build their own IoT devices and join a global network,
taking part in various campaigns and community projects that
generate new environmental data (e.g., PM2.5, PM10, noise,
relative humidity; Sensor.Community, 2020). Similarly, the Air
Quality Egg is a WiFi-enabled device that uses sensors to
measure changes in the levels of NO2, CO2, CO, O3, SO2,
particulates, and volatile organic compounds (VOCs). Citizens
upload measurements to the cloud and have access to a global
network of air quality data (Air Quality Egg, 2014).

The integration of IoT into processes of inventory
management can also introduce more transparency between
actors in supply chains, bringing about more efficient planning
and sustainable production. Specifically, in the agricultural
sector, where supply is especially unpredictable, Near Field
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Communication (NFC) tags may be used to tag produce, and
Android devices with NFC readers and GPS antennae could
identify and track information (e.g., location, origin, certification,
price) on that produce through the internet (Srinivasan et al.,
2017). Such a system could prevent wastage and waiting times
as well as optimize supply chain integration, reducing overall
emissions within the agricultural sector.

Lowering Technical Barriers for Emissions Tracking
IoT technology is capable of obtaining technically challenging
data in both adaptation and mitigation domains. Low-power and
long-range IoT devices can be installed at various industrial sites
to capture GHG emissions in real time or near-real time. An
example includes Envira IoT’s Nanoenvi devices, which feature
multiple probes and sensors and can be installed in industrial
plants to monitor the concentrations of process gases. They
can withstand harsh conditions and can be integrated with
various IoT control centers using communication protocols (e.g.,
message formats, communication and transport networks, M2M
networks). In smart city initiatives, open-source, long-range, low
latency, and low power wireless network standards like DASH7
may be integrated with IoT devices to collect information on
temperature, light, humidity, and pressure for the monitoring of
green infrastructure (Le et al., 2019). These devices could also be
employed in the adaptation domain, where sensors measuring
water level, water speed, temperature, humidity, and turbidity,
can generate warnings for flood detection systems. In the
construction sector, specifically, an IoT-based system could make
use of a distributed sensor network (e.g., RFID) to collect real-
time emissions data to improve carbon emissions monitoring at
different stages of the construction process (Mao et al., 2018).

CURRENT LIMITATIONS OF EO AND IoT
DATA COLLECTION SOLUTIONS

Even with the advent of EO and IoT technology, the full potential
for data collection has yet to be realized due to a range of
challenges. This section examines these remaining challenges
according to our defined categories from the section Defining
the Problem Space: Issues With Data Collection and summarizes
them in Table 1. A common theme in the literature regarding
the generation of big earth data is the lack of existing methods,
infrastructures, and interaction modes to handle the scale and
domain peculiarities related to these data types. An in-depth
discussion of the storage and processing requirements needed to
process these large-scale data extends beyond the scope of our
review here, but it is nonetheless worth highlighting some of the
general challenges inherent to the task of integrating the large
stores of EO and IoT data that currently exist or will be generated.
Sudmanns et al. (2019) identify challenges attached to big Earth
data along three dimensions: technological, methodological and
societal. In the societal domain, the most obvious challenge is
that EO or IoT data generation does not automatically translate
into actionable insight or usable knowledge. Certain human-
centered processes, such as human interactions with natural
systems, for example, may require additional parameterization

in combination with large-scale EO and IoT data to make sense
of signals in the data. As climate change is a complex process
operating at the nexus of geophysical, biological, and social
systems, these complexities fundamentally make it difficult to
assess, even with limitless data.

Leveraging EO and IoT data collection for climate change
mitigation will further require technological innovations
to store, process, interact and analyze data. “Big Earth
data” or “big environmental data” is often characterized by
non-repeatability, uncertainty, multi-dimensionality, and
computational complexity that will require radical new modes
for how users interact and produce information from these
new data (Sudmanns et al., 2019). According to Giuliani et al.
(2017), these dimensions will require new storage, processing
and retrieval approaches to leverage the full “information power”
of this new data to broaden its uptake amongst a range of
users and support decision-makers with knowledge required.
Interoperability between EO and IoT systems, data types and
standards, which currently do not exist (Sudmanns et al., 2019),
will further be required to effectively utilize and apply the
growing pool of EO and IoT data to assess climate change
outcomes. Ogle et al. (2013) argue for advanced software systems
that include relational databases and graphic user interfaces that
allow users to easily input and extract data without knowledge
of computer code, pointing to the example of the Agriculture
and Land Use National Greenhouse Gas Inventory (ALU)
Software (www.nrel.colostate.edu/projects/ALUsoftware/).

To organize, store and facilitate analysis of large EO data
generation, the idea of a “data cube” has been introduced
that is equipped to handle the spatial and temporal multi-
dimensionality as well as the sheer size of EO and IoT data
using new infrastructures, software implementations and user
interfaces (Giuliani et al., 2017; Baumann, 2018; Sudmanns
et al., 2019). Examples include EarthServer, the Swiss Data
Cube (SDC) (Giuliani et al., 2017), and Digital Earth Australia,
formerly known as the Australian Geoscience Data Cube,
(AGDC) and represent a promising emerging solution for storing
and analyzing large-scale Earth-related data in an efficient way
(Sudmanns et al., 2019). Sudmanns et al. (2018) refer to the
data cube concept as “the backbone of modern big Earth data
analytics” and represent great promise for lowering barriers
for these data to be applied, particularly in combination with
“soft” technological infrastructure solutions such as Google
Earth Engine (Gorelick et al., 2017), which applies Google’s
distributed cloud computing technology to enable easy access
and analysis of entire archives of satellite EO imagery, and
ML techniques that are increasingly being applied to IoT
generated data.

EO Limitations
Lack of Technical Capacity to Interact With Collected

Data
While deriving GHG emissions data from EO represents a
promising solution to existing information gaps, translating raw
EO data into actionable insight for the climate policy community
is not a straightforward task. Existing EO sensors that currently
monitor GHG emissions from space were not designed for
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tracking policy or treaty compliance (Witze, 2018), and EO data
that do exist for GHG monitoring still need to be validated
and shown to be more accurate than ground measurements
(Tollefson, 2016). There are efforts underway to develop Analysis
Ready Data (ARD) data products from EO to lower the barrier
for users to utilize the data directly, incorporating pre-processing
and calibration steps that currently prevent much of EO data
to be readily applied by non-expert users (Giuliani et al., 2017).
EO data currently remain underutilized for several reasons,
including the fact that existing stores of data have outpaced
our ability to analyze them; a lack of technical know-how
and infrastructure to appropriately access and process them
(Giuliani et al., 2017).

Attribution and Research Uncertainties
There are also key scientific challenges related to EO data and
its relevant technology that must be determined before it can be
immediately applied in the climate policy domain. Despite the
ability of EO to collect repeated atmospheric observations on the
increase of CO2 concentrations, their attribution to actions of
any actor, whether local or national government or corporate,
has not been possible (Duren and Miller, 2012). This challenge
is due to the fact that the existing generation of EO satellites
measure CO2 within a column of air and do not pinpoint
where the emissions are actually derived—the critical question
for compliance and policymakers (Tollefson, 2016). Until these
key scientific hurdles, including uncertainties in the amount
of CO2 the land and oceans uptake, can be resolved, it will
remain challenging to use EO data to directly assess the impact
of mitigation policies or to predict global warming. In terms
of monitoring carbon losses from deforestation, there are also
no standardized practices for measuring forest biomass, a key
component of forest carbon stock assessment, through remote
sensing at regional and national scales (DeFries et al., 2007;
Tollefson, 2016; Witze, 2018).

Spatial Resolution and Intermittency
While the spatiotemporal resolution of EO satellites and sensors
is improving by the day, the use of EO data still faces real trade-
offs between temporal frequency, spatial coverage and image
resolution. For example, while remote-sensing based systems
have been used for fire detection, monitoring, and management,
EO sensors’ moderate range and poor spatial resolution make
them inadequate for forecasting fire danger (Chowdhury and
Hassan, 2015). For example, while the aforementioned ODIAC
fossil-fuel CO2 emissions inventory is generally in agreement
with other GHG inventories, uncertainty increases when the data
is applied to evaluate spatial extents smaller than 1 km × 1 km
(Oda and Maksyutov, 2011; Jonas et al., 2019). In the case of
vegetation phenology, the study of seasonal plant life cycle, which
is useful for anticipating climate impact and adapting to climate
change, satellite imagery is accurate in estimating plant behavior
in deciduous forests but less so in tropical forests (Hmimina
et al., 2013). There are also issues of intermittency in imaging:
only two to five percent of data GOSAT collects can be used
for CO2 and CH4 calculation, due to requirement of clear-sky
conditions, which is a major limitation for EO data in serving

as an alternative data source for GHG emissions monitoring
[National Institute for Environmental Studies (NIES), 2019].

Inventory Discrepancies
There is also a lack of agreement between inventories developed
from satellite remote sensing data sources and self-reported
emissions inventories (Weiss and Prinn, 2011), which requires
clear communication of uncertainties involved when applying
digital technology-based data collection methods because this
awareness can help facilitate decision making (Jonas et al.,
2019). Some limitations of remote sensing can be overcome
by combining different data technologies. For example, remote
sensing data can be triangulated with data from airborne
photography to model temperate glacier flow at a much higher
resolution (Trouve et al., 2007). The World Meteorological
Organization (WMO) has established the Global Greenhouse
Gas Information System (IG3IS) initiative, which is comprised
of scientists and stakeholders from around the world to develop
methodologies for combining atmospheric GHG concentration
measurements, such as those derived from EOs with spatially and
temporally explicit emissions inventory data from the ground
which could include data collected through IoT (Decola and
Tarasova, 2017).

IoT Limitations
Privacy and Security
As with all digital technology collecting real-time information
of individual actors, privacy and security is critical. The data
collected by IoT-networked devices often contain personally
identifiable information or proprietary information and are
continually at risk of being exposed or stolen. Yet the lightweight
and low-power nature of IoT devices—a feature that makes
these “Things” such efficient and scalable data-collectors in the
first place—precludes them from using security mechanisms
with high energy and computation overheads like antivirus or
intrusion detection systems (Zhang et al., 2014; Dorri et al.,
2017). The lack of readily available security protocols and data
anonymization schemes for IoT devices may prevent their scaling
and applicability.

Identification and Authentication
Another key issue with respect to IoT-derived data is object
identification. At present, there are billions of unique IoT device
identities that exist. The current method of device identification,
the Domain Name System (DNS), is a naming infrastructure
that is not immune to DNS spoofing, DDoS attacks, and man-
in-the-middle attacks, which corrupt the integrity of records
(Zhang et al., 2014). As an increasing volume of IoT devices
are produced and connected, developing a dynamic and efficient
system that can assign and manage the unique identities of each
device is essential.

Heterogeneous Devices and Protocols
Additionally, devices produced by differing manufacturers may
not utilize the same technologies and services, rendering the
interoperability of various devices and sensors uncertain. A
means of standardization is therefore necessary to ensure that

Frontiers in Big Data | www.frontiersin.org 11 September 2020 | Volume 3 | Article 29

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Hsu et al. Digital Data Technologies for Climate Change

devices are still compatible with one another. In reality, there are
more than 300 current IoT platforms in the market, including
platforms developed by major corporations such as Amazon,
Cisco, IBM, Apple, Google, Microsoft, and Qualcomm (Noura
et al., 2019). Differences in each platform’s IoT infrastructure,
standards, proprietary protocols, and formats create closed
ecosystems wherein the IoT technology and services between
platforms are incompatible with one another (Noura et al.,
2019). The aforementioned problem of data heterogeneity in
climate data is therefore not resolved with IoT. The lack
of interoperability and standardization jeopardizes security as
poorly created programs can easily slip through the cracks
and onto the market. These software vulnerabilities can then
lead to malware or backdoor problems, in which malicious
actors use reverse engineering techniques to control the device
(Zhang et al., 2014).

Recently, numerous institutions have attempted to address
the interoperability of IoT technology through proposed
policies and/or other means of standardization. The European
Commission has been involved in the research and development
of a number of projects related to the IoT, and in 2015
adopted the “Digital Single Market Strategy.” This strategy
highlighted the necessity of avoiding the fragmentation of device
technologies and services. Following the adoption of this strategy,
the European Commission has promoted and enacted a number
of studies and policies that address the development of a single
market. These projects include a 2017 “European data economy”
initiative that proposed policy dealing with the flow of data
across EU country borders, a 2019 “Cluster Study” which has
surveyed the current enterprises, research organizations and
academics that are involved in the innovation, development
and deployment of IoT technologies and applications, and
IoT research and innovation objectives in the European
Commission’s “Horizon 2020” program (European Commission,
2019). Further, processing methods of heterogeneous data are
advancing, with new fusion techniques and semantic approaches
that can merge structured, semistructured, and unstructured
information sources into a unified data layer. These tools
include Natural Language Processing (NLP), entity recognition
and linking (e.g., DBpedia Spotlight), data lakes, and data
virtualization (Wang, 2017), allowing IoT and EO data to be
integrated with each other as well as with information frommore
traditional streams (e.g., government agencies, national statistical
offices; Fritz et al., 2019).

DISCUSSION: TOWARD THE NEXT
GENERATION OF TRACKING CLIMATE
CHANGE

Our review shows that digital data technologies such as EO
and IoT have the potential to address major gaps in existing
climate data, particularly for the purposes of tracking and
assessing progress toward greenhouse gas mitigation. In
this section, we outline critical considerations for a digital,
next-generation solution based on digital ledger technologies
(DLTs) to integrate and apply EO and IoT technologies for

climate change monitoring and tracking. We discuss the
potential for DLTs to provide a more transparent and secure
infrastructure for housing multiple data streams, introduce
privacy techniques to encourage actors to report data, and
build in automatic governance mechanisms that would
help track progress toward external frameworks like the
Paris Agreement. We also identify critical areas of research
that are needed for such a DLT-based system to become
realized, including energy consumption, storage costs, and
data quality.

DLTs such as blockchain have been discussed in a range
of applications outside of its origin in the cryptocurrency
domain, including emissions trading schemes (ETS; Khaqqi et al.,
2018), precision or ICT-enabled agriculture (Lin et al., 2017),
and renewable energy incentives for electric vehicles (Zhang
et al., 2018), among others. While digital ledgers are record-
keeping databases that provide a common chronological order
of transactions within an organization, distributed ledgers enable
multiple actors to each hold a copy and constantly update it. In a
DLT system, there is no central server or central point of failure
for data to be tampered. The result is an immutable chain of
“artifacts and claims that can be traced back to the original raw
data” (Sicilia and Visvizi, 2019), allowing for a user to understand
the origins of the data, any processing algorithms, or claims
made—important considerations for the purposes of establishing
credibility in government and policy contexts where legacy IT-
enabled data management systems typically used are prone
to cyber-attack, inaccurate data, distortion and manipulation
(Lin et al., 2017).

In Figure 2, we illustrate how digital data collection
technologies discussed in this review paper could form the
foundation of a “next generation” approach to climate data
tracking based on DLTs. First, IoT and EO technologies collect
data (layer 1), the latter operating alongside existing ground-
truth sites that act as the calibration and triangulation for
ensuring data quality. The data could then leverage peer-to-
peer distributed storage systems, such as the InterPlanetary File
System (IPFS) and Storj, to facilitate tamper-resistant data pre-
processing, sharing, and storage (layer 2). Collected, processed
data could then enter a soft-infrastructure component to train
and use machine learning models for further evaluation and
analysis of incomplete datasets (layer 3). Once data is validated
by machine learning or external data feeds (i.e., oracles),
immutable, time-stamped data can be recorded on a DLT
ecosystem, and smart contracts, which are computer programs
or transaction protocols that execute agreements between parties
(Christidis and Devetsikiotis, 2016), could communicate that
certain benchmarks or targets have been met (layer 4), paving
the way for agreed-upon incentives to be paid out, or for
human, organizational, and computer actors to formulate further
agreements and governance mechanisms based on established
goals (e.g., Paris Agreement) (layer 5). A user interaction layer
would facilitate the use of this multi-layered digital ecosystem,
drawing upon the experience of platforms and interfaces
currently being developed in the EO and IoT communities to
translate raw data streams into usable and actionable information
(layer 6).
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FIGURE 2 | Overview of different digital data collection technologies and layered data solutions within the climate sector. Source: authors.

Key Advantages of a DLT-Based Climate
Measurement and Tracking System
Data Privacy
DLT systems can make use of privacy technologies, such
as zero-knowledge proofs and homomorphic encryption, to
address some of the privacy concerns associated with data
sharing by protecting sensitive and proprietary data (Kosba
et al., 2016). Zero-knowledge proofs allow data to be verified
without parties having to know what that data actually is,
and are used by DLTs such as Ethereum and Zcash, while
homomorphic encryption enables computations on encrypted
data (Homomorphic Encryption Standard, 2017; Koens et al.,
2018). Applied to climate data, zero-knowledge proofs could
allow data-reporting actors and objects to prove that they

belong to a system or consortium and interact with it without
necessarily revealing their identities. This identity protection
could be advantageous to incentivize actors concerned that
revealing certain climate data would reveal trade secrets (i.e.,
through production efficiency metrics). Similarly, homomorphic
encryption presents the opportunity for statistical checks to
be performed on encrypted granular emissions data without
exposing the actual data (Hsu et al., 2020a).

More Efficient Governance
DLTs can also provide rules for decentralized governance and
consensus, utilizing smart contracts to execute transactions,
data transmission, and voting more efficiently and transparently
between actors (Catalini and Gans, 2016; Underwood, 2016).
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These elements could allow for a greater inclusion of climate
stakeholders and lead to a more democratic network for
knowledge-sharing and decision-making. Decentralized
autonomous organizations (DAOs), for example, are entities
powered entirely by smart contracts. The rules of the
organization are encoded and enforced in a DLT-system,
where members democratically make decisions, control funds,
and manage information without the need for financial or legal
intermediaries (Norta, 2015). In the context of a global integrated
climate accounting platform, DAOs could be useful for creating
efficiently automated data sharing communities, where reporting
organizations agree to transparent rules on how data should
be collected and submitted. For example, the Paris Agreement
and Rulebook provides a set of formalized protocols for how
countries should develop their emission reduction contributions
and communicate and report progress toward them. DAOs
enforce accountability by enshrining these rules in code and
executing them automatically through smart contracts.

DLT Limitations
Several considerations would need to be addressed for such a
next-generation climate data and tracking system to be realized.
These challenges are inherent to the digital solution technologies
proposed in Figure 2 and not necessarily specific to climate
change, which means such a framework, and the challenges
identified, could potentially be applied to address other domains
as well.

Energy Consumption of Consensus Protocols
To maintain and constantly update the state of a distributed
ledger, participants within a system need to adhere to a
consensus mechanism, which provides the necessary rules
and fault-tolerance for validating transactions (Mahmood and
Wahab, 2018). In the case of a DLT-based climate data
system, a consensus protocol for exchanging and recording data
would need to address the common criticism of high energy
consumption, as seen in the proof-of-work approach (used
by Bitcoin, for example), which relies on intensive computer
calculations. There are, however, other methods of validating
transactions that are significantly more efficient in terms of
energy usage. These include the proof-of-authority and proof-of-
stake algorithms, which rely on actors’ identities or contributions
of funds, respectively, instead of computational power. Proof-
of-authority’s strict identity requirements and limited number
of validators, however, could decrease participation within a
network, thereby reducing its decentralization. Similarly, proof-
of-stake could lead to a centralization of resources where wealthy
validators enjoy economies of scale and crowd out nodes with
smaller stakes. Full decentralization of climate data, however, is
not the main goal of our proposed integrated system. A detailed
discussion of the tradeoffs within the existing and growing
universe of consensus protocols is beyond the scope of this
paper. Deciding the rules for data submissions and recording
in a way that is not energy-intensive while enhancing trusted
interactions, security, privacy and efficiency will be key research
tasks for designing a next-generation DLT-based climate data
tracking system.

Cost of Data Storage
Storing raw data on distributed ledgers can be prohibitively
expensive, since every node in a network typically needs to
synchronize and keep a copy of all uploaded information.
Fortunately, distributed data storage systems, such as IPFS or
Storj (Zheng et al., 2018) greatly reduce the storage size necessary
for information, hence reducing overhead costs for data storage.
A DLT-system, combined with a decentralized storage solution,
provides a “disruptive approach” (Sicilia and Visvizi, 2019) for
archiving digital resources, which will necessarily demand greater
storage space with the introduction of massive EO or IoT-linked
DLT systems that we suggest are the future of climate mitigation
tracking. For example, in the most well-known application of
blockchain, the Bitcoin network, transaction data can take up
tens of thousands of bytes in storage while an IPFS record is only
a few tens of bytes (Zheng et al., 2018).

Garbage in, Garbage Out
A common criticism of DLT is the lack of data quality at
the source. While DLTs provide a tamper-evident and tamper-
resistant trail of trust, it is often difficult to ensure raw data quality
at the moment of input (e.g., EO and IOT data streams), which
could lead to a trail of immutable but ultimately inaccurate data.
Some of the most significant technology advances in response to
this concern have come from the development of decentralized
identifiers (DIDs) and their use in verifiable credentials that
define the roles of holders, issuers and verifiers across complex
networks (Davie et al., 2019). The application of DIDs within
a network to establish trusted interactions, as in the case of the
“Trust over IP stack” (Davie et al., 2019), can provide the needed
rules and governance to ensure the data is trustworthy across the
different layers outlined in Figure 2. This requires IoT devices
to be registered as specific “agents” within the network, and have
pre-programmed disclosure settings, even with privacy tools such
as zero-knowledge proofs, irrespective of who owns the IoT and
where the data is stored (Huh et al., 2017). In systems with
multiple human and organizational actors, Hsu et al. (2020a) have
proposed a DLT-based solution in which members belonging to
a consortium are economically incentivized to report accurate
data. Members back their own claims of accuracy or challenge
those of others by staking specific funds on a blockchain, which
are then slashed or increased based on an independent audit.

Through this proposed integrated system, we aim to
lay the groundwork for further examination of how DLTs
could introduce new data collection and knowledge discovery
architectures for climate change. Groups such as the World Bank
and Climate Ledger Initiative have already developed some of
the foundation for examining how DLTs could be used for a
range of climate-related use cases in finance, adaptation, and
mitigation (Fuessler et al., 2018; World Bank Group, 2018). The
UNFCCC has even supported the launch of a new Climate Chain
Coalition for the sharing of domain and technology expertise
[United Nations Framework Convention on Climate Change
(UNFCCC), 2018]. Beyond this initial exploration, we envision
technologists, policymakers, and scholars collaborating to build
a pilot DLT-based climate tracking system that would address
the challenges identified in this discussion, including clarifying
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roles and incentives for participation and data collection, and
operationalizing consortium-specific governance mechanisms
toward a more unified climate action ecosystem.

CONCLUSION

The rise of data collection technologies has resulted in new
opportunities for tracking progress toward global climate change
mitigation. Earth observation sensors like satellites and UAVs,
together with IoT devices and networks, could offer more
transparency, more standardized and complete data, as well as
solve important technical challenges of emissions measuring.
A future integrated climate monitoring and accounting system
that leverages digital data collection technologies has the
potential to introduce a new level of large-scale data availability,
transparency, and standardization for assessing progress toward
climate change mitigation. A digital data ecosystem based
on distributed-ledger technology that integrates different data
streams from self-reported data and legacy databases to EO/IoT
digital data collection technologies could amplify the amount
of data available to develop a more complete picture of global
climate emissions. To realize such an integrated digital climate
data ecosystem, however, many challenges will need to be
addressed, some of which relate to EO and IoT technologies
themselves, and others that relate more generally to the challenge

of processing and analyzing the anticipated massive amounts
of data that will be generated as a result of these data. Issues
of storage, processing, and new analytical approaches will
be required to fully leverage the large-scale data generation
of EO and IoT technologies. Emerging technologies such as
distributed ledger and file storage systems, such as IPFS,
provide further potential to link together EO and IoT data
streams with existing databases and to introduce a range
of other mechanisms to ensure transparency, privacy, and
governance that can support next-generation tracking of climate
change mitigation.
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