
ORIGINAL RESEARCH
published: 16 October 2020

doi: 10.3389/fdata.2020.00030

Frontiers in Big Data | www.frontiersin.org 1 October 2020 | Volume 3 | Article 30

Edited by:

Andreas Zuefle,

George Mason University,

United States

Reviewed by:

Suprio Ray,

University of New Brunswick

Fredericton, Canada

Amr Magdy,

University of California, Riverside,

United States

Yun Li,

George Mason University,

United States

*Correspondence:

Yongyang Yu

yongyangyu@fb.com

Specialty section:

This article was submitted to

Data Mining and Management,

a section of the journal

Frontiers in Big Data

Received: 12 February 2020

Accepted: 05 August 2020

Published: 16 October 2020

Citation:

Tang M, Yu Y, Mahmood AR,

Malluhi QM, Ouzzani M and Aref WG

(2020) LocationSpark: In-memory

Distributed Spatial Query Processing

and Optimization.

Front. Big Data 3:30.

doi: 10.3389/fdata.2020.00030

LocationSpark: In-memory
Distributed Spatial Query Processing
and Optimization
Mingjie Tang 1, Yongyang Yu 2*, Ahmed R. Mahmood 3, Qutaibah M. Malluhi 4,

Mourad Ouzzani 5 and Walid G. Aref 3

1Chinese Academy of Science, Beijing, China, 2 Facebook, Menlo Park, CA, United States, 3Department of Computer

Science, Purdue University, West Lafayette, IN, United States, 4 KINDI Center for Computing Research, Qatar University,

Doha, Qatar, 5Qatar Computing Research Institute, HBKU, Doha, Qatar

Due to the ubiquity of spatial data applications and the large amounts of spatial data

that these applications generate and process, there is a pressing need for scalable

spatial query processing. In this paper, we present new techniques for spatial query

processing and optimization in an in-memory and distributed setup to address scalability.

More specifically, we introduce new techniques for handling query skew that commonly

happens in practice, and minimizes communication costs accordingly. We propose a

distributed query scheduler that uses a new cost model to minimize the cost of spatial

query processing. The scheduler generates query execution plans that minimize the

effect of query skew. The query scheduler utilizes new spatial indexing techniques

based on bitmap filters to forward queries to the appropriate local nodes. Each local

computation node is responsible for optimizing and selecting its best local query

execution plan based on the indexes and the nature of the spatial queries in that node.

All the proposed spatial query processing and optimization techniques are prototyped

inside Spark, a distributed memory-based computation system. Our prototype system

is termed LocationSpark. The experimental study is based on real datasets and

demonstrates that LocationSpark can enhance distributed spatial query processing by

up to an order of magnitude over existing in-memory and distributed spatial systems.

Keywords: spatial data, query processing, in-memory computation, parallel computing, query optimization

1. INTRODUCTION

Spatial computing is becoming increasingly important with the proliferation of mobile devices.
Besides, the growing scale and importance of location data have driven the development of
numerous specialized spatial data processing systems, e.g., SpatialHadoop (Eldawy and Mokbel,
2015), Hadoop-GIS (Aji et al., 2013). By taking advantage of the power and cost-effectiveness of
MapReduce, these systems typically outperform spatial extensions on top of relational database
systems by orders of magnitude (Aji et al., 2013). MapReduce-based systems allow users to run
spatial queries using predefined high-level spatial operators without worrying about fault tolerance
or computation distribution. However, these systems have the following two main limitations:
(1) They do not leverage the power of distributed memory, and (2) They are unable to reuse
intermediate data (Zaharia, 2016). Nonetheless, data reuse is very common in the spatial data
processing. Spatial datasets, e.g., Open Street Map (OSM, for short, >60 G) and Point of Interest

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2020.00030
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2020.00030&domain=pdf&date_stamp=2020-10-16
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yongyangyu@fb.com
https://doi.org/10.3389/fdata.2020.00030
https://www.frontiersin.org/articles/10.3389/fdata.2020.00030/full

Tang et al. LocationSpark

FIGURE 1 | Illustration of spatial join and kNN join operators. Circles centered around the triangle focal points form one dataset, and the black dots form the second

dataset. Spatial range join returns (dot, triangle) pairs when the dot is inside the circle. kNN join returns (triangle, dot) pairs when the dot is among the three nearest

dots to the triangle. (A) Range join, (B) 3NN join.

(POI, for short,>20 G) (Eldawy andMokbel, 2015), are relatively
large in size. It is unnecessary to read these datasets continuously
from disk [e.g., using HDFS; Shvachko et al., 2010] to respond
to user queries. Moreover, intermediate query results have to be
written back to HDFS, thus directly impeding the performance of
further data analysis steps.

One way to address the above challenges is to develop an
efficient execution engine for large-scale spatial data computation
based on a memory-based computation framework (in this case,
Spark; Zaharia, 2016). Spark is a computation framework that
allows users to work on distributed in-memory data without
worrying about data distribution or fault-tolerance. Recently,
various Spark-based systems have been proposed for spatial data
analysis, e.g., GeoSpark (Yu et al., 2015), Simba (Xie et al., 2016),
and LocationSpark (Tang et al., 2016).

Although addressing several challenges in spatial query
processing, none of the existing systems can overcome the
computation skew introduced by spatial queries. “Spatial query
skew” is observed in distributed environments during spatial
query processing when certain data partitions are overloaded
by spatial queries. Traditionally, distributed spatial computing
systems (e.g., Aji et al., 2013; Eldawy and Mokbel, 2015) first,
learn the spatial data distribution by sampling the input data.
Afterward, spatial data is partitioned evenly into equal-size
partitions. For example, in Figure 1, the data points with dark
dots are distributed evenly into four partitions. However, the
query workload is what may cause computation skew. Given
the partitioned data, consider two spatial join operators, namely
range and kNN joins, that combine two datasets, say D and
Q, with respect to a spatial relationship. For each point q ∈
Q, a spatial range join [Figure 1 (left)] returns data points in
D that are inside the circle centered at q. In contrast, a kNN
join [Figure 1 (right)] returns the k nearest-neighbors from the
dataset D for each query point q ∈ Q. Both spatial operators are
expensive, and may incur computation skew in certain workers,
thus greatly degrading the overall performance.

For illustration, consider a large spatial dataset, with millions
of points of interests (POIs), that is partitioned into different
computation nodes based on the spatial distribution of the data,
e.g., one data partition represents data from San Francisco, CA,
and another represents data from Chicago, IL. Assume that we
have incoming queries from people looking for different POIs,
e.g., restaurants, train, or bus stations, and grocery stores, around
their locations. These spatial range queries are consolidated
into batches to be joined via an index on the POI data (e.g.,
using indexed nested-loops join). After partitioning the incoming
spatial queries based on their locations, we observe the following
issues: During rush hours in San Francisco from 4 p.m. to 6 p.m.
(PST), San Francisco’s data partitionmay encountermore queries
than the data partition in Chicago, since it is already evening
time in Chicago.Without an appropriate optimization technique,
the data partition for San Francisco will take much longer
time to process its corresponding queries while the workers
responsible for the Chicago partition is lightly loaded. Similarly,
if in Figure 1, the data points (the dark dots) correspond to
the GPS records of Uber’s cars, where multiple users (the
triangles) are looking for the Uber carpool service around them.
Partition D1, that corresponds, say to an airport, experiences
more queries than the other partitions because people may
prefer using Uber at this location. Being aware of the spatial
query skew provides a new opportunity to optimize queries in
distributed spatial data environments. The skewed partitions
have to be assigned more computation power to reduce the
overall processing time.

Furthermore, communication cost, generally a key factor of
the overall performance, may become a bottleneck. When a
spatial query touches more than one data partition, it may be
the case that some of these partitions do not contribute to the
final query result. For example, in Figure 1 (left part), queries
q2, q3, q4, and q5 overlap more than one data partition (D1,
D2, and D4). Traditionally, system would think these partitions
would contribute the final query results, however, these partitions

Frontiers in Big Data | www.frontiersin.org 2 October 2020 | Volume 3 | Article 30

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tang et al. LocationSpark

do not contain data points that satisfy the queries, since these
queries overlap partitions only. Thus, scheduling queries (e.g., q4
and q5) to the overlapping data partition D4 incurs unnecessary
communication costs. More importantly, for the spatial range
join or kNN join operators over two large datasets, the cost of
the network communication may become prohibitive without
proper optimization.

In this paper, we introduce LOCATIONSPARK, an efficient
memory-based distributed spatial query processing system.
LOCATIONSPARK has a query scheduler to mitigate query
skew. The query scheduler uses a cost model to analyze
the skew for use by the spatial operators, and a plan
generation algorithm to construct a load-balanced query
execution plan. After plan generation, local computation nodes
select the proper algorithms to improve their local performance
based on the available spatial indexes and the registered
queries on each node. Finally, to reduce communication cost
when dispatching queries to their overlapping data partitions,
LOCATIONSPARK adopts a new spatial bitmap filter, termed
sFilter, that can speed up query processing by avoiding
needless communication with data partitions that do not
contribute to the query answer. We implement LOCATIONSPARK

as a library in Spark that provides an API for spatial
query processing and optimization based on Spark’s standard
dataflow operators.

The main contributions of this paper is as follows:

1. We present LOCATIONSPARK, a spatial computing system
for the efficient processing of spatial queries in a distributed
in-memory environment.

2. We address data and query skew issues to improve load
balancing while executing spatial operators, e.g., spatial
range joins and kNN joins. LOCATIONSPARK produces cost-
optimized query execution plans over in-memory distributed
spatial data.

3. We introduce a new lightweight yet efficient spatial bitmap
filter to reduce communication costs.

4. We realize the introduced query processing and optimization
techniques inside LOCATIONSPARK, and conduct a
large-scale evaluation on real spatial data and common
benchmark algorithms. We compare LOCATIONSPARK

against state-of-the-art distributed spatial data processing
systems. Experimental results illustrate an enhancement in
performance by up to an order of magnitude over existing
in-memory distributed spatial query processing systems.

The rest of this paper proceeds as follows. Section 2 presents
the problem definition and an overview of distributed spatial
query processing. Section 3 introduces the cost model and
the cost-based query plan scheduler and optimizer and their
corresponding algorithms. Section 4 presents an empirical
study for local execution plans in local computation nodes.
Section 5 introduces the spatial bitmap filter, and explains
how it can speedup spatial query processing in a distributed
setup. The experimental results are presented in section 6.
Section 7 discusses the related work. Finally, section 8 concludes
the paper.

2. PRELIMINARIES

2.1. Data Model and Spatial Operators
LOCATIONSPARK stores spatial data as key-value pairs. A tuple,
say oi, contains a spatial geometric key ki and a related value vi.
The spatial data type for key ki can be a two-dimensional point,
e.g., latitude-longitude, a line-segment, a poly-line, a rectangle, or
a polygon. The value types vi is specified by the user, e.g., a text
data type if the data tuple is a tweet. In this paper, we assume that
queries are issued continuously by users, and are processed by the
system in batches (e.g., similar to the DStream model; Zaharia,
2016).

LOCATIONSPARK supports various types of spatial query
predicates including spatial range search, k-NN search, spatial
range join, and kNN join. In this paper, we focus our discussion
on the spatial range join and kNN join operators on two datasets,
say Q and D, the form the outer and inner tables, respectively.

Definition 1. Spatial Range Select—range(q,D): Given a spatial
range area q (e.g., circle or rectangle) and a dataset D, range(q,D)
finds all tuples from D that overlap the spatial range defined by q.

Definition 2. Spatial Range Join—Q 1sj D: Given two datasets
Q and D, Q 1sj D, combines each object q ∈ Q with its range
search results from D, Q 1sj D= {(q, o)|q ∈ Q, o ∈ range(q,D)}.

Definition 3. kNN Select—kNN(q,D): Given a query tuple q, a
dataset D, and an integer k, kNN(q,D), returns the output set
{o|o ∈ D and ∀s ∈ D and s 6= o, ||o, q|| ≤ ||s, q||}, where the
number of output objects from D, |kNN(q,D)| = k.

Definition 4. kNN Join—Q 1knn D: Given a parameter k, kNN
join of Q and D computes for each object q ∈ Q its k-nearest-
neighbors in D. Q 1knn D= {(q, o)|∀q ∈ Q,∀o ∈ kNN(q,D)}.

2.2. Overview of In-memory Distributed
Spatial Query Processing in LocationSpark
To facilitate spatial query processing, in LOCATIONSPARK, we
construct a distributed spatial index for in-memory spatial data.
Given a spatial dataset D, we obtain samples from D, and
construct over these samples a spatial index (e.g., an R-tree)
with N leaves. We refer to this index on the sample data as
the global spatial index. It partitions D via data shuffling into
N partitions. The global spatial index guarantees that each data
partition approximately has the same amount of data. Then, each
worker Wi of the N workers has a local data partition Di that is
roughly 1/Nth of the data and constructs a local spatial index.
Finally, the indexed data (termed the LocationRDD) is cached
intomemory. Figure 2 gives the architecture of LOCATIONSPARK

and the physical representation of the partitioned spatial data
based on the procedure outlined above, where the master node
(e.g., Master in the Figure) stores the global spatial index that
indexes the data partitions, while each worker has a local spatial
index (e.g., the black triangle in the Figure) over the local spatial
data within the partition. Notice that the global spatial index
partitions the data into LocationRDDs as in Figure 2, and this
index can be copied into various workers to help partition the

Frontiers in Big Data | www.frontiersin.org 3 October 2020 | Volume 3 | Article 30

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tang et al. LocationSpark

FIGURE 2 | LOCATIONSPARK System architecture.

data in parallel. The type of each local index, e.g., a Grid, an R-
tree, or an IR-tree, for a data partition can be determined based
on the specifics of the application scenarios. For example, a Grid
can be used for indexing moving objects while an R-tree can be
used for polygonal objects. For spatial range join, two strategies
are possible; either replicate the outer table and send it to the
node where the inner table is, or replicate the inner table data and
send it to the different processing nodes where the outer table
tuples are. In a shared execution, the outer table is typically a
collection of range query tuples, and the inner table is the queried
dataset. If this is the case, it would make more sense to send the
outer table of queries to the inner data tables as the outer table is
usually much smaller compared to the inner data tables. In this
paper, we adopt this technique because it would be impracticable
to replicate and forward copies of the large inner data table.

Thus, each tuple q ∈ Q is replicated and forwarded to
the partitions that spatially overlap with it. These overlapping
partitions are identified using the global index. Then, a post-
processing step merges the local results to produce the final
output. For example, we replicate q2 in Figure 1 (left part) and
forward it to data partitions D1, D3, and D4. Then, we execute
a spatial range search on each data partition locally. Next, we
merge the local results to form the overall output of tuple q2.
As illustrated in Figure 2, the outer table that corresponds to a
shared execution plan’s collection of queries (termed queryRDD)
are first partitioned into qRDD based on the overlap between
the queries in qRDD and the corresponding data partitions.

Then, the local search takes place over the local data partitions
of LocationRDD.

The kNN join operator is implemented similarly in a simple
two-round process. First, each outer focal point qi ∈ Q is
transferred to the worker that holds the data partition that qi
spatially belongs to. Then, the kNN join is executed locally in
each data partition, producing the kNN candidates for each
focal point qi. Afterward, the maximum distance from qi to
its kNN candidates, say radius ri, is computed. If the radius
ri overlaps multiple data partitions, Point qi is replicated into
these overlapping partitions, and another set of kNN candidates
is computed in each of these partitions. Finally, we merge the
kNN candidates from the various partitions to get the exact
result. For example, in Figure 1 (right), assume that we want
to evaluate a 3NN query for Point q6. The first step is to find
the 3NN candidates for q6 in data Partition D3. Next, we find
that the radius r for the 3NN candidates from Partition D3

overlaps Partition D4. Thus, we need to compute the 3NN of
q6 in Partition D4 as well. Notice that the radius r can enhance
the 3NN search in Partition D4 because only the data points
within Radius r are among the 3NN of q6. Finally, the 3NN of q6
are o1, o2, and o3.

2.3. Challenges
The outer and inner tables (or, in shared execution terminology,
the queries, and the data) are spatially collocated in distributed
spatial query processing. We refer to the outer table as being the

Frontiers in Big Data | www.frontiersin.org 4 October 2020 | Volume 3 | Article 30

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tang et al. LocationSpark

queries table, e.g., containing the ranges of range operations, or
the focal points of kNN operations. Assume further that the outer
(queries) table is the smaller of the two. We refer to the inner
table by the data table (in the case of shared execution of multiple
queries together). The distribution of the incoming spatial
queries (in the outer tables) changes dynamically over time,
with bursts in certain spatial regions. Thus, evenly distributing
the input data D to the various workers may result in a load
imbalance at times. LOCATIONSPARK’s scheduler identifies the
skewed data partitions based on a cost model, repartitions,
and redistributes the data accordingly, and selects the optimal
repartitioning strategies for both the outer and inner tables, and
consequently generates an overall optimized execution plan.

Communication cost is a major factor that affects system
performance. LOCATIONSPARK adopts a spatial bitmap filter to
reduce network communication costs. The role of the spatial
bitmap filter is to prune the data partitions that overlap the spatial
ranges from the outer tables but do not contribute to the final
operation’s results. This spatial bitmap filter is memory-based
and is space- and time-efficient. The spatial bitmap filter adapts
its structure as the data and query distributions change.

3. QUERY PLAN SCHEDULER

This section addresses how to dynamically handle query skew
(the outer table of the join). First, we present the cost functions
for query processing and analyze the bottlenecks. Then, we
show how to repartition the skewed data partitions to speed
up processing. This is formulated as an optimization problem
that we show is NP-complete. Consequently, we introduce an
approximation algorithm to solve the data skew repartitioning
problem. Although presented for spatial range joins, the
proposed technique all applies to kNN joins.

3.1. The Cost Model
The inner table D of the spatial range join is distributed into N
data partitions, where each partition Di is indexed and is cached
in memory. For the query table Q (i.e., the outer table of spatial
range join), each query qi ∈ Q is shuffled to the data partitions
that spatially overlap with it. Let ǫ(Q,N) be the shuffling cost,
and E(Di) be the execution time of local queries at Partition Di.
The execution times of local queries depend on the queries and
the built indexes. The estimation of E(Di) is presented later. After
the local results are computed, the post-processing step merges
the local results to produce the final output. The corresponding
cost is denoted by ρ(Q).

Overall, the runtime cost for the spatial range join operation is:

C(D,Q) = ǫ(Q,N)+ max
i∈[1,N]

E(Di)+ ρ(Q), (1)

where N is the number of data partitions. In reality, the cost of
query shuffling is far less than the other costs as the number of
queries is much smaller than the number of data items. Thus, the
runtime cost can be estimated as follows:

C(D,Q) = max
i∈[1,N]

E(Di)+ ρ(Q) (2)

We categorize the data partitions into two types: skewed (Ds)
and non-skewed (Dns). The execution time of the local queries
in the skewed partitions is the bottleneck. The runtime costs for
skewed and non-skewed data partitions are maxi∈[1,N̂] E(D

s
i) and

maxj∈[1,N̄] E(D
ns
j), respectively, where N̂ (and N̄) is the number of

skewed (and non-skewed) data partitions, andN = N̂+ N̄. Thus,
Equation (2) can be rewritten as follows:

C(D,Q) = max{ max
i∈[1,N̂]

E(Ds
i), max

j∈[1,N̄]
E(Dns

j)} + ρ(Q) (3)

3.2. Execution Plan Generation
The goal of the query scheduler is to minimize the query
processing time subject to the following constraints: (1) The
limited number of available resources (i.e., the number of
partitions) in a cluster, and (2) The overhead of network
bandwidth and disk I/O. Given the partitioned and indexed
spatial data, the cost estimators for query processing based on
sampling (that is introduced below), and the available number
of data partitions, the optimizer returns an execution plan that
minimizes query processing time. First, the optimizer determines
if any partitions are skewed. Then, it repartitions them subject to
the introduced cluster and networking constraints. Finally, the
optimizer evaluates the plan on the newly repartitioned data to
determine whether or not it minimizes query execution time (see
Figure 3). For example, the partition D is repartitioned into two
parts for skew issues.

Estimating the runtime cost of executing the local queries and
the cost of merging the final results is not straightforward. The
local query processing time E(Di) is influenced by various factors
including the types of spatial indexes used, the number of data
points in Di, the number of queries directed to Di, related spatial
regions, and the available memory. Similar to Kwon et al. (2010),
we assume that the related cost functions are monotonic, and
can be approximated using samples from the outer and inner
tables (queries and data). Thus, the local query execution time
is formulated as follows: E(Di) = Es(D̃i, Q̃i,α,A), where D̃i is
a sample of the original inner table dataset, Q̃i is the sample of
the outer table queries, A is the area of the underlying spatial
region, and α is the sample ratio to scale up the estimate to the
entire dataset. After computing a representative sample of the
data points and queries, e.g., using reservoir sampling (Vitter,
1985), the cost function E(Di) estimates the query processing
runtime in Data Partition Di. More details on computing E(Di),
ρ(Qi), and the sample size can be found in Kwon et al. (2010).

Given the estimated runtime cost over skewed and non-
skewed partitions, the optimizer splits one skewed data Partition
Ds
i into m′ data sub-partitions. Assume that Q̂i is the set of

queries originally assigned to Partition Ds
i . Let the overheads due

to data shuffling, re-indexing, and merging be β(Ds
i), γ (D

s
i), and

ρ(Q̂i), respectively. After splitting a skewed partition (Ds
i), the

new runtime is:

Ê(Ds
i) = β(Ds

i)+ max
s∈[1,m′]

{γ (Ds)+ E(Ds)} + ρ(Q̂i). (4)

Frontiers in Big Data | www.frontiersin.org 5 October 2020 | Volume 3 | Article 30

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tang et al. LocationSpark

FIGURE 3 | Execution plan for spatial range join. The red lines identify local operations, and black lines show the data partitioning.

Hence, we can split Ds
i into multiple partitions only if Ê(Ds

i)

< E(Ds
i). As a result, the new query execution time Ĉ(D,Q) is:

Ĉ(D,Q) = max{ max
i∈[1,N̂]

{Ê(Ds
i)}, max

j∈[1,N̄]
{E(Dns

j)}} + ρ(Q̄). (5)

Thus, we can formulate the query plan generation based on the
data repartitioning problem as follows:

Definition 5. Let D be the set of spatially indexed data partitions,
Q be the set of spatial queries, M be the total number of data
partitions, and their corresponding cost estimation functions, i.e.,
local query execution E(Di), data repartitioning β(Di), and data
indexing cost estimates γ (Qi). The query optimization problem is
to choose a skewed PartitionDs fromD, repartition eachDs

i ∈ Ds

intomultiple partitions, and assign spatial queries to the new data
partitions. The new data partition set, say D′, contains partitions

D′1,D
′
2, . . . ,D

′
k
. s.t. (1) Ĉ(D,Q) < C(D,Q) and (2) |D′| ≤ M.

Unfortunately, as we show below, this problem is NP-
complete. In the next section, we present a greedy algorithm for
this problem.

Theorem 1. Optimized query plan generation with data
repartitioning for distributed indexed spatial data is NP-complete.

The proof is given in Mingjie et al. (2016).

3.3. A Greedy Algorithm
The general idea is to search for skewed partitions based
on their local query execution times. Then, we split the
selected data partitions only if the runtime can be improved.
If the runtime cannot be improved, or if all the available
data partitions are consumed, then the algorithm terminates.
While this greedy algorithm cannot guarantee optimal query
performance, our experiments show significant improvement (by

one order of magnitude) over the plan executing on the original
partitions. Algorithm 1 gives the pseudocode for the greedy
partitioning procedure.

Algorithm 1 includes two functions, namely
numberOfPartitions and repartition. Function
numberOfPartitions in line 7 computes the number of sub-
partitions m′ that the skewed partition will be split into. We
could split a skewed partition into two partitions each time,
but this is not necessarily efficient. Given data partitions
D = {D1,D2, . . . ,DN}, let Partition D1 be the one with the
largest local query execution time E(D1). From Equation (2), the
execution time is approximated by E(D1) + ρ(Q). To reduce
this execution time, D1 is split into m′ partitions, and the query

execution time forD1 is updated to Ê(D1). For all other partitions
Di ∈ D (i 6= 1), the runtime is the max{E(Di)} + ρ(Q′) = 1,
where i = [2, . . . ,N] and Q′ are the queries related to all data

partitions except D1. Thus, the runtime is max{1, Ê(D1)}, and is
improved if

max{1, Ê(D1)} < E(D1)+ ρ(Q) (6)

As a result, we need to compute the minimum value of m′ to
satisfy Equation (6), since 1, E(D1), and ρ(Q) are known.

Function repartition in line 8 splits the skewed data partitions
and reassigns the spatial queries to the new data partitions
using two strategies. The first strategy repartitions based on data
distribution. Because each data partition Di is already indexed by
a spatial index, the data distribution can be learned directly by
recording the number of data points in each branch of the index.
Then, we repartition data points in Di into multiple parts based
on the recorded numbers while guaranteeing that each newly
generated sub-partition contains an equal amount of data. In the
second strategy, we repartition a skewed Partition Di based on
the distribution of the spatial queries. First, we collect a sample
Qs from the queries Qi that are originally assigned to Partition

Frontiers in Big Data | www.frontiersin.org 6 October 2020 | Volume 3 | Article 30

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tang et al. LocationSpark

Di. Then, we compute how Qs is distributed in Partition Di

by recording the frequencies of the queries as they belong to
branches of the index over the data. Thus, we can repartition
the indexed data based on the query frequencies. Although the
data sizes may not be equal, the execution workload will be
balanced. In our experiments, we choose this second approach to
overcome query skew. To illustrate how the proposed query-plan
optimization algorithm works, consider the following example.

Running Example. Given data partitions D =

{D1,D2,D3,D4,D5}, where the number of data points in
each partition is 50, the number of queries in each partition
Di, 1 ≤ i ≤ 5 is 30, 20, 10, 10, and 10, respectively, and the
available data partitions M is 5. For simplicity, the local query
processing cost is E(Di) = |Di| × |Qi| × pe, where pe = 0.2 is a
constant. The cost of merging the results is ρ(Q) = |Q|×λ× pm,
where pm = 0.05, and λ = 10 is the approximate number of
retrieved data points per query. The cost of data shuffling and
re-indexing after repartitioning is β(Di,m

′) = |Di|×m
′×pr , and

γ (Ds) = |Ds| × px, respectively, where pr = 0.01 and px = 0.02.
Without any optimization, from Equation (2), the estimated
runtime cost for this input table is 340. LOCATIONSPARK

optimizes the workload as follows. At first, it chooses Data
Partition D1 as the skewed partition to be repartitioned because
D1 has the highest local runtime (300), while the second largest
cost is D2’s (200). Using Equation (6), we split D1 into two
partitions, i.e., m′ = 2. Thus, Function repartition splits
D1 into the two partitions D′1 and D′2 based on the distribution
of queries within D1. The number of data points in D′1 and D′2
is 22 and 28, respectively, and the number of queries are 12
and 18, respectively. Therefore, the new runtime is reduced to
≈ 200 + 25 because D1’s runtime is reduced to ≈ 100 based on
Equation (4). Therefore, the two new data partitions D′1 and D′2
are introduced in place of D1. Next, Partition D2 is chosen to
be split into two partitions, and the optimized runtime becomes
≈ 100 + 15. Finally, the procedure terminates as only one
available partition is left.

4. LOCAL EXECUTION

Once the query plan is generated, each computation node
chooses a specific local execution plan based on the queries
assigned to it and the indexes it has. We implement various
centralized algorithms for spatial range join and kNN join
operators within each worker and study their performance. The
algorithms are implemented in Spark. We use the execution time
as the performance measure.

4.1. Spatial Range Join
We implement two algorithms for spatial range join (Sowell
et al., 2013). The first is indexed nested-loops join, where
we probe the spatial index repeatedly for each outer tuple
(or range query in the case of shared execution). The tested
algorithms are nestRtree, nestGrid, and nestQtree, where they
use an R-tree, a Grid, and a Quadtree as an index for the
inner table, respectively. The second algorithm is based on
the dual-tree traversal (Brinkhoff et al., 1993). It builds two
spatial indexes (e.g., an R-tree) over both the input queries

Algorithm 1: Greedy Partitioning Algorithm

Input: D: Indexed spatial data partitions, Stat: Collected statistics, e.g.,

the number of data points and queries in Data Partition Di,M:

Number of available data partitions.

Output: Plan: Optimized data and query partition plan, C: Estimated

query cost

1 h: Maximum Heap;

2 Inserts Di into heap // Data partitions are ordered by Cost E(Di) that is

computed using Stat

3 Costo← E(h.top)+ ρ(Q) // old execution plan runtime cost

4 Plan

5 whileM > 0 do

6 Var Dx← h.pop(); //Get the partition with maximum runtime cost

7 Varm′← numberOfPartitions(h,Dx ,M)

8 Var (Ds, PLs)← repartition(Dx ,m
′) //Split Dx intom

′ partitions

9 Costx ← β(Dx)+maxs∈[1,m′]{γ (Ds)+ E(Ds)}} + ρ(Qx)

//Updated runtime cost over selected skewed partition

10 if Costx < Costo then

11 Save Partitions Ds into h

12 Save Partition plan PLs into Plan

13 Costo← Costx
14 M←M-m′

15 end

16 else

17 break;

18 end

19 end

and the data, and performs a depth-first search over the dual
trees simultaneously.

4.2. kNN Join
Similar to the spatial range join, indexed nested-loops can be
applied to kNN join, where it computes the set of kNN objects for
each query point in the outer table. An index is built on the inner
table (the data table). The other kinds of kNN join algorithms
are block-based. They partition the queries (the outer table) and
the data points (the inner table) into different blocks and find
the kNN candidates for queries in the same block. Then, post-
processing refines step computes kNN for each query point in
the same block. Gorder (Xia et al., 2004) divides query and data
points into different rectangles based on the G-order, and utilizes
two distance bounds to reduce the processing of unnecessary
blocks. For example, the min-distance bound is the minimum
distance between the rectangles of the query points and the data
points. The max-distance bound is the maximum distance from
the queries to their kNN sets. If the max-distance is smaller
than the min-distance bound, the related data block is pruned.
PGBJ (Lu et al., 2012) has a similar idea that extends to parallel
kNN join using MapReduce.

Recently, Spitfire (Chatzimilioudis et al., 2016) is a parallel
kNN self-join algorithm for in-memory data. It replicates the
possible kNN candidates into its neighboring data blocks. Both
PGBJ and Spitfire are designed for parallel kNN join, but they are
not directly applicable to indexed data. The reason is that PGBJ
partitions queries and data points based on the selected pivots
while Spitfire is specifically optimized for kNN self-join.

Frontiers in Big Data | www.frontiersin.org 7 October 2020 | Volume 3 | Article 30

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tang et al. LocationSpark

LOCATIONSPARK enhances the performance of the local kNN
join procedure. For Gorder (Xia et al., 2004), instead of using
the expensive principal component analysis (PCA) in Gorder,
we apply the Hilbert curve to partition the query points. We
term the modified Gorder method sfcurve. We modify PGBJ as
follows. First, we compute the pivots of the query points based
on a clustering algorithm (e.g., k-means) oversample data, and
then partition the query points into different blocks based on
the computed pivots. Next, we compute the MBR of each block.
Because the data points are already indexed (e.g., using an R-tree),
the min-distance from the MBRs of the query points and the
index data is computed, and themax-distance bound is calculated
based on the kNN results from the pivots. This approach is
termed pgbjk. For Spitfire, we use a spatial index to speed up
finding the kNN candidates.

5. SPATIAL BITMAP FILTER

In this section, we introduce a new spatial bitmap filter termed
sFilter. The sFilter helps us decide for an outer tuple, say q, in
a spatial range join, if there exist tuples in the inner table that
join with q. This helps reduce the communication overhead.
For example, consider an outer tuple q of a spatial range join
where q has a range that overlaps multiple data partitions of the
inner table. Typically, all the overlapping partitions need to be
examined by communicating q’s range to them and searching the
data within each partition to test for overlap with q’s range. This
incurs high communication and search costs. Using the sFilter,
given q’s range that overlaps multiple partitions of the inner
table, the sFilter can decide which overlapping partitions contain
data that overlaps q’s range without actually communicating with
and searching the data in the partitions. Only the partitions
that contain data that overlap q’s range are the ones that will
be searched.

Figure 4 gives an example sFilter. Conceptually, an sFilter is a
new in-memory variant of a quadtree that has internal and leaf
nodes (Samet, 2005). Internal nodes are for index navigation,
and leaf nodes, each has a marker to indicate whether or not
there are data items in the node’s corresponding region. We
encode the sFilter into two binary codes and execute queries over
this encoding.

5.1. Binary Encoding of the sFilter
The sFilter is encoded into two long sequences of bits. The first
bit-sequence corresponds to internal nodes while the second bit-
sequence corresponds to leaf nodes. Notice that in these two
binary sequences, no pointers are needed. Each internal node of
the sFilter takes four bits, where each bit represents one of the
internal node’s children. These children are encoded in clockwise
order starting from the upper-left corner. Each bit value of an
internal node determines the type of its corresponding child,
i.e., whether the child is internal (a 1 bit) or leaf (a 0 bit). In
Figure 4, the root (internal) node A has binary code 1011, i.e.,
it has three of its children being internal nodes, and its second
node is a leaf node. The four-bit encodings of all the internal
nodes are concatenated to form the internal-node bit-sequence of
the sFilter. The ordering of the internal nodes in this sequence is

based on a breadth-first search (BFS) traversal of the quadtree. In
contrast, a leaf node only takes one bit, and its bit value indicates
whether or not data points exist inside the spatial quadrant
corresponding to the leaf. In Figure 4, Internal Node B has four
children, and the bit values for B’s leaf nodes are 1010, i.e., the
first and third leaf nodes of B contain data items. During the
BFS on the underlying quad-tree of the sFilter, simultaneously
construct the bit-sequences for all the leaf and internal nodes. The
sFilter is encoded into the two binary sequences in Figure 4. The
space usage of an sFilter is ((4d−1 − 1)/3)× 4+ 4d−1 Bits, where
(4d−1− 1)/3 and 4d−1 are the numbers of internal nodes and leaf
nodes, respectively, and d = o(log(L)) is the depth of quadtree
and L is the length of the space.

5.2. Query Processing Using the sFilter
Consider the internal nodeD in Figure 4.D’s binary code is 0001,
and the fourth bit has Value 1 at Memory Address ax of the
internal-nodes bit-sequence. Thus, this bit refers to D’s child F
that is also an internal node at Address aj. Because the sFilter has
no pointers, we need to compute F’s address aj from ax. Observe
that the number of bits with Value 1 from Start Address a0 of the
binary code to ax can be used to compute the address.

Definition 6. Let a be the bit sequence that starts at Address a0.
χ(a0, ax) and τ (a0, ax) are the number of bits with Values 1 and
0, respectively, from Addresses a0 to ax inclusive.

χ(a0, ax) is the number of internal nodes up to ax. Thus,
Address aj of F is (a0+5×4) because there are 5 bits with value 1
from a0 to ax. Similarly, if one child node is a leaf node, its address
is inferred from τ (a0, ax) as follows:

Proposition 1. Let a and b be the sFilter’s bit sequences for internal
and leaf nodes in Memory Addresses a0 and b0, respectively. To
access a node’s child in memory, we need to compute its address.
The address, say aj, of the xth child of an internal node at Address
ax is computed as follows. If the bit value of ax is 1, then aj =
a0 + 4× χ(a0, ax). If the bit value of ax is 0, aj = b0 + τ (a0, ax).

We adopt the following two optimizations to speedup the
computation of χ(a0, ax) and τ (a0, ax): (1) Precomputation and
(2) Set counting. Let di be thememory address of the first internal
node at Height (or Depth) i of the underlying quadtree when
traversed in BFS order. For example, in Figure 4, Nodes B and
E are the first internal nodes in BFS order at Depths 1 and 2 of
the quadtree, respectively. For all i ≤ depth of the underlying
quadtree, we precomputeχ(a0, di), e.g.,χ(a0, d1) andχ(a0, d2) in
Figure 4. Notice that d0 = a0 and χ(a0, d0) = 0. Then, Address
aj that corresponds to the memory address of the xth child of
an internal node at Address ax can be computed as follows.
aj = a0 + (χ(a0, d1)+ χ(d1, ax))× 4. χ(a0, d1) is precomputed.
Thus, we only need to compute on the fly χ(d1, ax). Furthermore,
evaluating χ can be optimized by a bit set counting approach,
i.e., a lookup table or a sideways addition1 that can achieve
constant-time complexity.

After getting one node’s children via Proposition 1, we apply
Depth-First Search (DFS) over the binary codes of the internal

1https://graphics.stanford.edu/~seander/bithacks.html

Frontiers in Big Data | www.frontiersin.org 8 October 2020 | Volume 3 | Article 30

https://graphics.stanford.edu/~seander/bithacks.html
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tang et al. LocationSpark

FIGURE 4 | sFilter structure (up left), the related data (up right), and the two bit sequences of the sFilter (down).

nodes to answer a spatial range query. The procedure starts from
the first four bits of Bit Sequence a, since these four bits are the
root node of the sFilter. Then, we check the four quadrants, say
rs, of the children of the root node, and iterate over rs to find
the quadrants, say r′s, overlapping the input query range qi. Next,
we continue searching the children of r′s based on the addresses
computed from Proposition 1. This recursive procedure stops if a
leaf node is found with Value 1, or if all internal nodes are visited.
For example, consider Range Query q2 in Figure 4. We start at
Root Node A (with Bit Value 1011). Query q2 is located inside the
northwestern (NW) quadrant of A. Because the related bit value
for this quadrant is 1, it indicates an internal node type, and it
refers to Child Node B. Node B’s memory address is computed
by a0 + 1 × 4 because only one non-leaf node (A) is before B.
B’s related bit value is 0000, i.e., B contains four leaf nodes. The
procedure continues until finding one leaf node of B, mainly the
southeastern child leaf node, with Value 1 that overlaps the query,
and thus returns True.

5.3. sFilter in LocationSpark
Since the depth of the sFilter affects query performance, it is
impractical to use only one sFilter in a distributed setting. Thus,
we embed multiple sFilters into the global and local spatial
indexes in LOCATIONSPARK. In themaster node, separate sFilters
are placed into the different branches of the global index, where
the role of each sFilter is to locally answer the query for the
specific branch it is in. In the local computation nodes, an sFilter
is built, and it adapts its structure based on data updates and
changes in query patterns.

Algorithm 2 gives the procedure for performing the spatial
range join using the sFilter. Initially, the outer (queries) table
is partitioned according to the global index. The global index
identifies the overlapping data partitions for each query q. Then,
the sFilter tells which partitions contain data that overlap the
query range (Line 2 of the algorithm). After performing the
spatial range join (Line 14), the master node fetches the updated
sFilter from each data worker, and refreshes the existing sFilters
in the master node (Lines 15–16). Lines 2–13 update the sFilter
of each worker (as in Figure 2).

The sFilter can improve the kNN search and kNN join because
they also depend on spatial range search. Moreover, their query
results may enhance the sFilter by lowering the false positive
errors as illustrated below.

5.4. Query-Aware Adaptivity of the sFilter
The build and update operations of the sFilter are first executed
at the local workers in parallel. Then, the updated sFilters are
propagated to the master node.

The initial sFilter is built from a temporary local
quadtree (Samet, 2005) in each partition. Then, the sFilter
is adapted based on the query results. For example, consider
Query q1 in Figure 4. Initially, the sFilter reports that there is
data for q1 in the partitions. When q1 visits the related data
partitions, it finds that no data points are overlapping q1 in the
partitions, i.e., a false-positive (+ve) error. Thus, we mark the
quadrants precisely covered by q1 in the sFilter as empty, and
hence reduce the false positive errors if queries visit the marked
quadrants again. Function insert in Algorithm 2 recursively

Frontiers in Big Data | www.frontiersin.org 9 October 2020 | Volume 3 | Article 30

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tang et al. LocationSpark

Algorithm 2: Update sFilter in LocationSpark

Input: LocationRDD: Distributed/indexed spatial data,

Q: Input set of spatial range queries

Output: R: Results of the spatial queries

1 Var index← LocationRDD.index //Get global index with embedded

sFilters

2 Var qRDD← partition(Q,index) // Distribute in parallel the input

spatial queries using the global index

3 Var update_sFilter← //Function for updating the sFilter in each

worker

4 {

5 for each query qi in this worker do

6 if query qi’s return result is empty then

7 Insert(qi, sFilter) // Adapt sFilter given qi
8 end

9 end

10 if sFilter.space > α then

11 Shrink(sFilter) // Shrink the sFilter to save space

12 end

13 }

14 R← LocationRDD.sjoin(qRDD)(update_sFilter) //Execute spatial join

and update sFilter in workers

15 Var sFilters← LocationRDD.collect_sFilter() //Collect sFilter from

workers

16 mergesFilters(sFilters, index) // Update sfilter in global index

17 return R

splits the quadrants covered by the empty query, and marks these
generated quadrants as empty. After each local sFilter is updated
in each worker, these updates are reflected into the master node.
The compact encoding of the sFilter saves the communication
cost between the workers and the master.

However, the query performance of the sFilter degrades as the
size of the index increases. Function shrink in Algorithm 2
merges some branches of the sFilter at the price of increasing
false-positive errors. For example, one can shrink Internal Node
F in Figure 4 into a leaf node, and updating its bit value to 1,
although one quadrant of F does not contain data. Therefore,
we might track the visit frequencies of the internal nodes, and
merge internal nodes with low visiting frequency. Then, some
well-known data caching policies, e.g., LRU or MRU, can be
used. However, the overhead to track the visit frequencies is
expensive. In our implementation, we adopt a simple bottom-up
approach. We start merging the nodes from the lower levels of
the index to the higher levels until the space constraint is met.
In Figure 4, we shrink the sFilter from Internal Node F, and
replace it by a leaf node, and update its binary code to 1. F’s
leaf children are removed. The experimental results show that
this approach increases the false-positive errors, but enhances the
overall query performance.

6. PERFORMANCE STUDY

LOCATIONSPARK is implemented on top of Resilient Distributed
Datasets (RDDs); these key components of Spark are fault-
tolerant collections of elements that can be operated on in
parallel. LOCATIONSPARK is a library of Spark, and provides the
Class LocationRDD for spatial operations (Mingjie et al., 2016).

Statistics are maintained at the driver program of Spark, and
the execution plans are generated at the driver. Local spatial
indexes are persisted in the RDD data partitions, while the
global index is realized by extending the interface of the RDD
data partitioner. The data tuples and related spatial indexes
are encapsulated into the RDD data partitions. Thus, Spark’s
fault tolerance naturally applies to in LOCATIONSPARK. The
spatial indexes are immutable and are implemented based on
the path copy approaches. Thus, each updated version of the
spatial index can be persisted into a disk for fault tolerance.
This enables the recovery of a local index from disk in case of
failure in a worker. The Spark cluster is managed by YARN,
and a failure in the master nodes is detected and managed by
ZooKeeper. In the case of a master node failure, the lost master
node is evicted and a standby node is chosen to recover the
master. As a result, the global index and the sFilter in the master
node are recoverable. Finally, the built spatial index data can
be stored into a disk, and enables further data analysis without
additional data repartitioning or indexing. LOCATIONSPARK is
open-source, and can be downloaded from https://github.com/
merlintang/SpatialSpark.

6.1. Experimental Setup
Experiments are conducted on two datasets. Twitter: 1.5 Billion
Tweets (around 250 GB) are collected over a period of nearly
20 months (from January 2013 to July 2014), and is restricted
to the USA spatial region. The format of a tweet is the
identifier, timestamp, longitude-latitude coordinates, and text.
OSMP: is shared by the authors of SpatialHadoop (Eldawy and
Mokbel, 2015). OSMP represents the map features of the whole
world, where each spatial object is identified by its coordinates
(longitude, latitude) and an object ID. It contains 1.7 Billion
points with a total size of 62.3GB. We generate two types
of queries. (1) Uniformly distributed (USA, for short): We
uniformly sample data points from the corresponding dataset,
and generate spatial queries from the samples. These are the
default queries in our experiments. (2) Skewed spatial queries:
These are synthesized around specific spatial areas, e.g., Chicago,
San Francisco, New York (CHI, SF, NY, respectively, for short).
The spatial queries and data points are the outer and inner tables
Q andD for the experimental studies of the spatial range and kNN
joins presented below.

Our study compares LOCATIONSPARK with the
following: (1) GeoSpark (Yu et al., 2015) uses ideas
from SpatialHadoop, but is implemented over Spark.
(2) SpatialSpark (You, 2015) performs partition-based spatial
joins. (3) Magellan (Hortonworks, 2015) is developed based
on Spark’s dataframes to take advantage from Spark SQL’s
plan optimizer. However, Magellan does not have spatial
indexing. (4) State-of-art kNN-join: Since none of the three
systems support kNN join, we compare LOCATIONSPARK with
a state-of-art kNN-join approach (PGBJ; Lu et al., 2012) that
is provided by PGBJ’s authors. (5) Simba (Xie et al., 2016)
is a spatial computation system based on Spark SQL with
spatial distance join and kNN-join operator. We also modified
Simba with the developed techniques (e.g., query scheduler and
sFilter) inside, the optimized Simba is called Simba(opt). (6)

Frontiers in Big Data | www.frontiersin.org 10 October 2020 | Volume 3 | Article 30

https://github.com/merlintang/SpatialSpark
https://github.com/merlintang/SpatialSpark
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tang et al. LocationSpark

TABLE 1 | Performance of the spatial range select.

Dataset System Query

time(ms)

Index

build time(s)

Twitter

LocationSpark(R-tree) 390 32

LocationSpark(Qtree) 301 16

Magellan 15,093 /

SpatialSpark 16,874 35

SpatialSpark(no-index) 14,741 /

GeoSpark 4,321 45

Simba 1,231 34

Simba (opt) 430 35

OSMP

LocationSpark(R-tree) 1,212 67

LocationSpark(Qtree) 734 18

Magellan 41,291 /

SpatialSpark 24,189 64

SpatialSpark(no-index) 17,210 /

GeoSpark 4,781 87

Simba 1,345 68

Simba(opt) 876 68

The bold font just emphasizes the system that has the shortest query reponse time.

LocationSpark(opt) and LocationSpark refers to the query
scheduler and sFilter is applied or not, respectively. We do not
compare against Stark (Hagedorn et al., 2017), since GeoSpark
shows better performance than Stark in most of the cases.

We use a cluster of six physical nodes Hathi2. that consists
of Dell compute nodes with two 8-core Intel E5-2650v2 CPUs,
32 GB of memory, and 48TB of local storage per node.
Meanwhile, in order to test the scalability of LOCATIONSPARK,
we set up one Hadoop cluster (with Hortonworks data
platform 2.5) on the Amazon EC2 with 48 nodes, each
node has an Intel Xeon E5-2666 v3 (Haswell) and 8 GB
of memory. Spark 1.6.3 is used with YARN cluster resource
management. Performance is measured by the average query
execution time.

6.2. Spatial Range Select and Join
Table 1 summarizes the spatial range select and spatial index
build time by the various approaches. For a fair comparison, we
cache the indexed data into memory and record the spatial range
query processing time. From Table 1, we observe the following:
(1) LOCATIONSPARK is 50 times better than Magellan on the
query execution time for the two tables, mainly because the
global and local spatial indexes of LOCATIONSPARK can avoid
visiting unnecessary data partitions. (2) LOCATIONSPARK with
different local indexes, e.g., the R-tree and Quadtree, outperforms
SpatialSpark. The speedup is around 50 times since SpatialSpark
(without index) has to scan all the data partitions. SpatialSpark
(with index) stores the global indexes into a disk and finds
data partitions by scanning the global index in the disk. This
incurs extra I/O overhead. Also, the local index is not utilized
during local searching. (3) LOCATIONSPARK is around 10 times

2https://www.rcac.purdue.edu/compute/hathi/

faster than GeoSpark in spatial range search execution time
because GeoSpark does not utilize the built global indexes and
scans all data partitions. (4) The local index with Quadtree
for LOCATIONSPARK achieves superior performance over the R-
tree index in terms of index construction and query execution
time as discussed in section 4. (5) The index build time among
the three systems is comparable because they all scan the data
points, which is the dominant factor, and then build the index in
memory. (6) LOCATIONSPARK achieves 5 times speedup against
Simba since sFilter reduces redundant search of data partitions.
This is also observed from Simba(opt) (i.e., with sFilter) that can
achieve comparable performance with LOCATIONSPARK.

The execution times of the spatial range join are listed in
Figure 5. For a fair comparison, the runtime includes the time
to initiate the job, build indexes, execute the join query, and
save results into HDFS. Note that Simba does not support
spatial range join, it only provides the spatial distance join,
where each query is a rectangle or circle with the same size.
Performance results for Magellan are not shown because it
performs a Cartesian product and hence has the worst execution
time. Figure 5 presents the results by varying the data sizes
of D (the inner table) from 25 to 150 million, while keeping
the size of Q (the outer table) to 0.5 million. The execution
time of GeoSpark shows a quadratic increase as the data size
increases. GeoSpark’s running time is almost 3 h when the data
size is 150 million, which is extremely slow. SpatialSpark shows
similar trends. The reason is that bothGeoSpark and SpatialSpark
suffer from the following: (1) The spatial skew issue, where some
workers process more data and take a longer time to finish.
(2) The local execution plans based on the R-tree and the Grid
are slow. (3) Query processing accesses data partitions that do
not contribute to the final results. LOCATIONSPARK with the
optimized query plans and the sFilter outperforms the two other
systems by an order of magnitude. Also, we study the effect of
the outer table size on performance. Figure 5 give the run time,
and demonstrate that LOCATIONSPARK is 10 times faster than
the other two systems. From Figure 5, we also observe that Simba
outperforms GeoSpark and SpatialSpark more than one order of
magnitude. However, Simba suffers from query skew issues and
degrades the performance quickly, because Simba duplicates each
data point into multiple data partitions if it spatially overlaps
the query rectangles. Naturally, the bigger the spatial query
rectangle, the more data points to be duplicated. This introduces
redundant network and computation costs. Thus, we place the
query scheduler and sFilter into the physical execution part of
Simba (e.g., modifying the RDKspark). From the experimental
results, the performance of Simba is improved dramatically. This
also proves that the proposed approaches in this work could
be used to improve other in-memory distributed spatial query
processing systems.

6.3. Performance of kNN Select and Join
Performance of kNN select is given in Figure 6.
LOCATIONSPARK outperforms GeoSpark by an order of
magnitude. GeoSpark broadcasts the query points to each data
partition and accesses each data partition to get the kNN set
for the query. Then, GeoSpark collects the local results from

Frontiers in Big Data | www.frontiersin.org 11 October 2020 | Volume 3 | Article 30

https://www.rcac.purdue.edu/compute/hathi/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tang et al. LocationSpark

FIGURE 5 | The performance of spatial range join on dataset: Twitter and OSMP.

each partition, then sorts the tuples based on the distance
to a query point of kNN. This is prohibitively expensive and
results in large execution times. LOCATIONSPARK only searches
for data partitions that contribute to the kNN query point
based on the global and local spatial indexes and the sFilter.
It avoids redundant computations and unnecessary network
communication for irrelevant data partitions.

For kNN join, Figure 7 gives the performance results when
varying k on Twitter and OSMP datasets. In terms of runtime,
LOCATIONSPARK with optimized query plans and with the
sFilter always perform the best. LOCATIONSPARK without any
optimizations gives better performance than that of PGBJ.
The reason is due to having in-memory computations and
avoiding expensive disk I/O when compared to MapReduce jobs.
Furthermore, LOCATIONSPARK with optimization shows around
10 times speedup over PGBJ, because the optimized planmigrates
and splits the skewed query regions.

We test the performance of the kNN join operator when
increasing the number of data points while having the number

of queries fixed to 1 million around the Chicago area. The
results are illustrated in Figure 8. Observe that LOCATIONSPARK

with optimizations performs an order of magnitude better than
the basic approach. The reason is that the optimized query
plan identifies and repartitions the skewed partitions. In this
experiment, the top five slowest tasks in LOCATIONSPARK

without optimization take around 33 min, while more than 75%
tasks only take <30 s. On the other hand, with an optimized
query plan, the top five slowest tasks take <4 min. This directly
enhances the execution time.

Observe that Simba outperforms LOCATIONSPARK around
10 times for the kNN join operation. This speedup is achieved
by implementing the kNN join via a sampling technique in
Simba. More specifically, Simba at first samples query points,
and computes the kNN join bound to prune data partitions
that do not contribute kNN join results. The computed kNN
bound could be very tight when k is small and the query points
are well-balanced and distributed. More details can be found in
Simba (Xie et al., 2016).

Frontiers in Big Data | www.frontiersin.org 12 October 2020 | Volume 3 | Article 30

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tang et al. LocationSpark

FIGURE 6 | Performance of kNN join by increasing the number of data points for OSMP (left) and Twitter (right).

FIGURE 7 | kNN select (in ms).

FIGURE 8 | Runtime of kNN join (in seconds).

However, the computed kNN join bound has to check for
spatial overlap with data points, then duplicate the query points
to the overlapping data partitions as well. As a result, Simba
would suffer from query skew, where certain data partitions
are overwhelmed with query points. Furthermore, a bigger k
value introduces redundant network communication because
the kNN join bound would be bigger. Similar to spatial join,
we place the spatial query scheduler and the sFilter inside
the physical execution part of Simba. The query scheduler

can detect the skewed data partitions, and the sFilter removes
the data partitions that overlap the kNN join bound but
has no contributing results. Therefore, the performance of
Simba is further improved, e.g., more than three times in this
experimental setting.

Furthermore, we study the performance under various query
distributions, the number of execution nodes, and the effect of the
sFilter.More details are presented in the technical report (Mingjie
et al., 2016). In addition, most recent work (Pandey et al., 2018)
compare the performance of big spatial data processing system,
and it proves LOCATIONSPARK shows much better performance
in different aspects.

7. RELATED WORK

Spatial data management has been extensively studied for
decades and several surveys provide good overviews. Gaede
and Günther (1998) provides a good summary of spatial
data indexing. Sowell et al. (2013) present a survey and
experimental study of iterative spatial-join in memory.
Recently, there has been considerable interest in supporting
spatial data management over Hadoop MapReduce. Hadoop-
GIS (Aji et al., 2013) supports spatial queries in Hadoop
by using a uniform grid index. SpatialHadoop (Eldawy
and Mokbel, 2015) builds global and local spatial indexes,
and modifies the HDFS record reader to read data more
efficiently. MD-Hbase (Nishimura et al., 2011) extends
HBase to support spatial data update and queries. Hadoop
MapReduce is good at data processing for high throughput
and fault-tolerance.

Taking advantage of the very large memory pools available
in modern machines, Spark and Spark-related systems (e.g.,
Graphx, Spark-SQL, and DStream) (Gonzalez et al., 2014;
Zaharia, 2016) are developed to overcome the drawbacks of
MapReduce in specific application domains. To process big
spatial data more efficiently, it is natural to develop efficient
spatial data management systems based on Spark. Several

Frontiers in Big Data | www.frontiersin.org 13 October 2020 | Volume 3 | Article 30

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tang et al. LocationSpark

prototypes have been proposed to support spatial operations
over Spark, e.g., GeoSpark (Yu et al., 2015), SpatialSpark (You,
2015), Magellan (Hortonworks, 2015), Simba (Xie et al., 2016),
Stark (Hagedorn et al., 2017). However, some important
factors impede the performance of these systems, mainly,
query skew, lack of adaptivity, and excessive and unoptimized
network and I/O communication overheads. For existing spatial
join (Brinkhoff et al., 1993; Sowell et al., 2013) and kNN join
approaches (Xia et al., 2004; Lu et al., 2012; Chatzimilioudis
et al., 2016), we conduct experiments to study their performance
in section 4. The reader is referred to section 4. For testing
how the proposed techniques to improve Simba, we placed the
spatial query scheduler and the sFilter inside Simba standalone
version. Simba’s standalone version is based on Spark SQL
Dataframe while removing the support of the Spark SQL parser.
The query scheduler and the sFilter are placed inside the physical
plan of Simba (i.e., RDJSpark and RKJSpark). For spatial data
updating, it belongs to data processing engine scope but related
to data storage like (Memarzia et al., 2019). To support querying
over polygonal or polyline objects, we can reuse the spatial
index of LOCATIONSPARK (e.g., the local and global indexes),
then extend the workload scheduling model and sFilter while
considering the properties of polylines. More specifically, a
polygon is typically represented by a rectangle that is enclosing
the polgyon. The rectangles are used for “filtering.” Anything
that is outside the rectangle is guaranteed not to intersect the
polygon, Once a query intersects the rectangle, we need to apply
a detailed polygon intersection, which is relatively expensive.
We can use the sFilter to indicate the empty space between the
polygon and its representing rectangle, and this would reduce
the computation cost.

Kwon et al. (2010, 2012) proposes a skew handler to address
the computation skew in a MapReduce platform. AQWA (Aly
et al., 2015) is a disk-based approach that handles spatial
computation skew in MapReduce. In LOCATIONSPARK, we
overcome the spatial query skew for spatial range join and
kNN join operators and provide an optimized query execution
plan. These operators are not addressed in AQWA. The query
planner in LOCATIONSPARK is different from relational query
planners, i.e., join order and selection estimation. ARF (Alexiou
et al., 2013) supports a one-dimensional range query filter
for data in the disk. Calderoni et al. (2015) study spatial
Bloom filter for private data. Yet, it does not support spatial
range querying.

8. CONCLUSIONS

We present LOCATIONSPARK, a query executor, and an
optimizer based on Spark to improve the query execution
plan generated for spatial queries. We introduce a new spatial
bitmap filter to reduce the redundant network communication
cost. Empirical studies on various real datasets demonstrate
the superiority of our approaches compared with existing
systems. In the future, we would like to adopt the introduced
techniques of LOCATIONSPARK into the Spark SQL optimization
engine, and investigate how spatial operations enabled
with the spatial bitmap filter would work with relational
data operators.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

MT and YY contributed to the design, implementation, and
analysis of the results in the manuscript. AM, QM, MO, and
WA contributed to the writing of the manuscript. WA also
contributed to the design and analysis of the manuscript,
in addition to the contribution of writing the manuscript.
All authors contributed to the article and approved the
submitted version.

ACKNOWLEDGMENTS

This manuscript has been released as a pre-print at:
http://export.arxiv.org/pdf/1907.03736, Tang et al. (2019).
Walid G. Aref acknowledges the support of the U.S. National
Science Foundation Under Grant Numbers III-1815796 and
IIS-1910216. This work was also supported by the Natural
Science Foundation of China (Grant No. 61802364).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fdata.
2020.00030/full#supplementary-material

REFERENCES

Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., et al. (2013). “Hadoop GIS: A

high performance spatial data warehousing system over mapreduce,” in VLDB

(Trento).

Alexiou, K., Kossmann, D., and Larson, P.-A. (2013). “Adaptive range filters for

cold data: avoiding trips to siberia,” in VLDB (Trento).

Aly, A. M., Mahmood, A. R., Hassan, M. S., Aref, W. G., Ouzzani, M., Elmeleegy,

H., et al. (2015). “AQWA: adaptive query-workload-aware partitioning of big

spatial data,” in VLDB (Kohala Coast, HI).

Brinkhoff, T., Kriegel, H.-P., and Seeger, B. (1993). “Efficient processing of spatial

joins using R-trees,” in SIGMOD Rec. (Washington, DC).

Calderoni, L., Palmieri, P., and Maio, D. (2015). Location privacy without

mutual trust. Comput. Commun. 68, 4–16. doi: 10.1016/j.comcom.2015.

06.011

Chatzimilioudis, G., Costa, C., Zeinalipour-Yazti, D., Lee, W., and

Pitoura, E. (2016). “Distributed in-memory processing of all K nearest

neighbor queries,” in IEEE Trans. Knowle. Data Eng. 28, 925–938.

doi: 10.1109/TKDE.2015.2503768

Eldawy, A., and Mokbel, M. (2015). “Spatialhadoop: a mapreduce framework for

spatial data,” in ICDE (Seoul).

Gaede, V., and Günther, O. (1998). Multidimensional access

methods. ACM Comput. Surv. 30, 170–231. doi: 10.1145/280277.

280279

Frontiers in Big Data | www.frontiersin.org 14 October 2020 | Volume 3 | Article 30

http://export.arxiv.org/pdf/1907.03736
https://www.frontiersin.org/articles/10.3389/fdata.2020.00030/full#supplementary-material
https://doi.org/10.1016/j.comcom.2015.06.011
https://doi.org/10.1109/TKDE.2015.2503768
https://doi.org/10.1145/280277.280279
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tang et al. LocationSpark

Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D., Franklin, M. J., and Stoica,

I. (2014). “Graphx: Graph processing in a distributed dataflow framework,” in

OSDI (Broomfield, CO).

Hagedorn, S., Götze, P., and Sattler, K.-U. (2017). “The stark framework for spatio-

temporal data analytics on spark,” in BTW, eds B. Mitschang et al. (Bonn:

Gesellschaft für Informatik), 20.

Hortonworks, I. (2015). Magellan. Open Source Project.

Kwon, Y., Balazinska, M., Howe, B., and Rolia, J. (2010). “Skew-resistant parallel

processing of feature-extracting scientific user-defined functions,” in SoCC

(Indianapolis, IN).

Kwon, Y., Balazinska, M., Howe, B., and Rolia, J. (2012). “Skewtune: Mitigating

skew in mapreduce applications,” in SIGMOD (Scottsdale, AZ)

Lu, W., Shen, Y., Chen, S., and Ooi, B. C. (2012). “Efficient processing of K nearest

neighbor joins using mapreduce,” in Proc. VLDB Endow. (Istanbul).

Memarzia, P., Patrou, M., Alam, M. M., Ray, S., Bhavsar, V. C., and Kent,

K. B. (2019). “Toward efficient processing of spatio-temporal workloads in a

distributed in-memory system,” in 2019 20th IEEE International Conference on

Mobile Data Management (MDM) (Hong Kong), 118–127.

Mingjie, T., Yongyang, Y., Walid, G. A., Qutaibah, M. M., Mourad, O., and

Ahmed, R. (2016). Locationspark: A Distributed In-Memory Data Management

System for Big Spatial Data. Purdue technical report. Purdue University inWest

Lafayette.

Nishimura, S., Das, S., Agrawal, D., and Abbadi, A. (2011). “MD-Hbase: A scalable

multi-dimensional data infrastructure for location aware services,” inMDM 11.

Pandey, V., Kipf, A., Neumann, T., and Kemper, A. (2018). How

good are modern spatial analytics systems? VLDB18 11, 1661–1673.

doi: 10.14778/3236187.3236213

Samet, H. (2005). Foundations of Multidimensional and Metric Data Structures.

Morgan Kaufmann Publishers Inc.

Shvachko, K., Kuang, H., Radia, S., and Chansler, R. (2010). “The hadoop

distributed file system,” inMSST (Incline Village, NV).

Sowell, B., Salles, M. V., Cao, T., Demers, A., and Gehrke, J. (2013). “An

experimental analysis of iterated spatial joins in main memory,” in Proc. VLDB

Endow. (Trento).

Tang, M., Yu, Y., Aref, W. G., Mahmood, A. R., Malluhi, Q. M.,

and Ouzzani, M. (2019). Locationspark: in-memory distributed

spatial query processing and optimization. CoRR abs/1907.

03736.

Tang,M., Yu, Y., Aref,W. G., Malluhi, Q., andOuzzani, M. (2016). “Locationspark:

a distributed in-memory data management system for big spatial data,” in

VLDB (New Delhi).

Vitter, J. S. (1985). Random sampling with a reservoir. ACM Trans. Math. Softw.

11, 37–57.

Xia, C., Lu, H., Chin, B., and Hu, O. J. (2004). “Gorder: An efficient method for

knn join processing,” in VLDB (Toronto, ON).

Xie, D., Li, F., Yao, B., Li, G., Zhou, L., and Guo, M. (2016). “Simba: efficient

in-memory spatial analytics,” in SIGMOD (San Francisco, CA).

You, S. (2015). Spatialspark. Open source project.

Yu, J., Wu, J., and Sarwat, M. (2015). “Geospark: a cluster computing framework

for processing large-scale spatial data,” in SIGSPATIAL (Seattle, WA).

Zaharia, M. (2016). An Architecture for Fast and General Data

Processing on Large Clusters. Association for Computing Machinery;

Morgan.

Conflict of Interest: YY was employed by the company Facebook. AM was

employed by the company Google.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Tang, Yu, Mahmood, Malluhi, Ouzzani and Aref. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Big Data | www.frontiersin.org 15 October 2020 | Volume 3 | Article 30

https://doi.org/10.14778/3236187.3236213
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	LocationSpark: In-memory Distributed Spatial Query Processing and Optimization
	1. Introduction
	2. Preliminaries
	2.1. Data Model and Spatial Operators
	2.2. Overview of In-memory Distributed Spatial Query Processing in LocationSpark
	2.3. Challenges

	3. Query Plan Scheduler
	3.1. The Cost Model
	3.2. Execution Plan Generation
	3.3. A Greedy Algorithm

	4. Local Execution
	4.1. Spatial Range Join
	4.2. kNN Join

	5. Spatial Bitmap Filter
	5.1. Binary Encoding of the sFilter
	5.2. Query Processing Using the sFilter
	5.3. sFilter in LocationSpark
	5.4. Query-Aware Adaptivity of the sFilter

	6. Performance Study
	6.1. Experimental Setup
	6.2. Spatial Range Select and Join
	6.3. Performance of kNN Select and Join

	7. Related Work
	8. Conclusions
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

