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Decentralized but Globally
Coordinated Biodiversity Data

Beckett W. Sterner*, Edward E. Gilbert and Nico M. Franz

School of Life Sciences, Arizona State University, Tempe, AZ, United States

Centralized biodiversity data aggregation is too often failing societal needs due to
pervasive and systemic data quality deficiencies. We argue for a novel approach that
embodies the spirit of the Web (“small pieces loosely joined”) through the decentralized
coordination of data across scientific languages and communities. The upfront cost of
decentralization can be offset by the long-term benefit of achieving sustained expert
engagement, higher-quality data products, and ultimately more societal impact for
biodiversity data. Our decentralized approach encourages the emergence and evolution
of multiple self-identifying communities of practice that are regionally, taxonomically,
or institutionally localized. Each community is empowered to control the social and
informational design and versioning of their local data infrastructures and signals. With
no single aggregator to exert centralized control over biodiversity data, decentralization
generates loosely connected networks of mid-level aggregators. Global coordination is
nevertheless feasible through automatable data sharing agreements that enable efficient
propagation and translation of biodiversity data across communities. The decentralized
model also poses novel integration challenges, among which the explicit and continuous
articulation of conflicting systematic classifications and phylogenies remain the most
challenging. We discuss the development of available solutions, challenges, and outline
next steps: the global effort of coordination should focus on developing shared languages
for data signal translation, as opposed to homogenizing the data signal itself.

Keywords: data aggregation, ontology alignment, biodiversity data, communities of practice, data intelligence,
decentralization, knowledge commons, systematic biology

INTRODUCTION

After several decades of efforts toward a centralized and unified global biodiversity data
infrastructure, the broader community is now in a reflective moment about where to go next
and what it can learn from past successes and failures. Inspired by big science efforts like the
Human Genome Project, major biodiversity initiatives have set the goal of aggregating all data
about where and when different biological entities—most typically “species” in our context—are
located, in order to provide critical insight into global problems such as rapid biodiversity loss and
climate change (Peterson et al., 2010; Devictor and Bensaude-Vincent, 2016; IPBES, 2019; Wagner,
2020). However, there are an exceptionally large and heterogeneous set of stakeholders for this
emerging biodiversity knowledge commons (Adams et al., 2002; Strandburg et al., 2017), making
effective governance a critical, ongoing challenge (Alphandéry and Fortier, 2010, Turnhout et al.,
2014). The present moment marks a pivotal opportunity to examine how a new, decentralized
approach may better provide the “flexibility both to accommodate and to benefit from this
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diversity [of contributors], rather than seeking to implement a
prescriptive programme of planned deliverables” (Hobern et al.,
2019, p. 9)—as recommended by a recent report from the second
Global Biodiversity Informatics Conference.

Next-generation solutions, we argue, must proactively reckon
with the limitations of overriding local differences in the
production and meaningfulness of biodiversity data (Sterner
and Franz, 2017; Franz and Sterner, 2018; see also Gallagher
et al., 2020). Not only is the fundamental nature of biodiversity
highly contested, our knowledge of many taxonomic groups
is vastly incomplete, changing at an unprecedented rate, and
upending historically established methodologies (Hinchliff et al.,
2015; Hortal et al., 2015; Whitman, 2015; Peterson and Soberdn,
2017). As a result, the basic categories biodiversity scientists
use to communicate, integrate, and reason about their data
are frequently disputed or unstable (e.g., Vaidya et al., 2018).
More broadly, biodiversity loss is also a good example of a
“wicked” problem: “one cannot understand the problem without
knowing about its context; one cannot meaningfully search
for information without the orientation of a solution concept;
one cannot first understand, then solve” (Rittel and Webber,
1973, p. 162). Incorporating the possibility of dissent and local
customization into the fundamental architecture of the data
ecosystem may therefore prove crucial to harnessing the data
revolution to address biodiversity loss (Sterner et al., 2020).

The historically dominant paradigm, by contrast, has
depended upon a stable or coherently evolving consensus among
multiple scientific communities about the best way to classify
natural phenomena (Godfray, 2002; Smith et al., 2007; de Jong
et al,, 2015; Ruggiero et al., 2015; Sterner et al., 2020). Following
this best-consensus model, first-generation big biodiversity data
projects have generally prioritized scale and comprehensiveness,
launching large initiatives to centralize access through national
or global web portals (Wieczorek et al.,, 2012). However, these
efforts have struggled to address widespread deficiencies in
data quality, in part because they have purchased global data
aggregation at the price of imposing homogeneity on data
that were generated using different standards and classification
schemes (Mesibov, 2013, 2018; see also references in Franz
and Sterner, 2018). Responsibility for persistent dissatisfaction
with the quality of aggregated biodiversity data cannot be
simply or even primarily assigned to the globally distributed
set of organizations maintaining such data collections: many
deficiencies occur through the aggregation process, i.e., at higher
levels in the data flow trajectory. The centralized governance
approach moreover provides limited mechanisms for experts
to advance curation and innovation addressing fitness-for-use
requirements for diverse stakeholders (Franz and Sterner, 2018).

Given the many diverse projects and data sources involved in
the biodiversity data commons, some sort of regional to global
coordination is nonetheless clearly necessary (Turnhout and
Boonman-Berson, 2011). The primary unit of biodiversity data
being aggregated across these contexts is an observation event
of an organism at a particular place and time, vouchered with a
preserved material specimen, photograph, or in some cases DNA
sequence. Historically, the dominant source for such “occurrence
data” —as named by the widely adopted Darwin Core standard
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FIGURE 1 | Each level (blue rectangles) represents a broad class of products
or outcomes exchanged among researchers, decision-makers, and society
members. The arrows linking levels describe information processes important
to generating value across levels.

(Wieczorek et al., 2012)—have been natural history collections
and ecological surveys hosted and carried out around the world.
The past several decades have introduced major new data sources,
including enthusiast science efforts such as eBird or iNaturalist,
remote sensing technologies such as camera traps or satellite
imaging, and automated genetic sequencing efforts such as DNA
barcoding and environmental metagenomics.

In response to these complexities, we present a novel
philosophy of decentralized coordination for biodiversity data
science integrating recent advances in the field. Our approach
embodies the spirit of the Web as “small pieces loosely joined”
(Weinberger, 2008) and we argue for its broader potential to
strengthen integration across the biodiversity data life cycle.
Reflecting the societal importance and urgency of continued
biodiversity loss, we characterize the biodiversity data life cycle
here in terms of a positive feedback loop connecting primary
data sources and decision-making. Figurel illustrates key
components and interactions we identify as central to integrating
the biodiversity data life cycle from primary data collection to
decision-making. The figure can be interpreted as a schematic
diagram to be filled in with particulars for a given situation, e.g.,
with the design of a new protected area as the decision to be made,
models for species richness and spatial niches as the predictive
models, and GIS data layers as the modeling knowledge base.

Rather than building a top-heavy global infrastructure with
weak connections to existing institutions and efforts at local
and regional scales, we argue for innovating and promoting
competing designs to empower and coordinate both existing
and newly emerging communities of practice. Biodiversity
data infrastructure and informatics tools should then reflect
the forms of social engagement, imagination, and alignment
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within and among communities of practice that best promote
biodiversity learning and high-quality data (Wenger, 1998, 2000).
By necessity, each community will have a taxonomic, regional, or
institutional reach below that of a single, global network but will
also have the capacity to grow or shrink dynamically to reflect
changing resources and needs. Cross-community coordination
toward a more global reach can happen simultaneously through
the articulation of classification alignments enabling translation
of biodiversity data across evolving or conflicting, locally
maintained perspectives. Decentralized coordination therefore
depends on the relatively lossless translation of data but not on
a stable, shared theory of the world or pool of settled knowledge.

Our core aims in this paper are thus to: (1) critically
review how centralizing control over the data aggregation
process and outputs limits opportunities and incentives for
continuous growth and fitness-for-use; (2) synthesize recent
advances to articulate a positive alternative model based on
facilitating lateral data sharing among a distributed network
of portals. We start in Section Growing the Biodiversity Data
Commons by drawing a distinction between centralized and
decentralized governance approaches, which we then apply
in Section Reframing the Critique of Globally Centralized
Biodiversity Data to synthesize and extend previous critiques of
the centralized approach. Sections A Model for Decentralized
But Globally Coordinated Data Aggregation and Developing
Socio-Technical Infrastructure to Implement Coordination pick
up the paper’s second aim by raising some key challenges for
maintaining coordination under a decentralized approach and
articulating a path forward based on existing or in-development
tools and methods.

GROWING THE BIODIVERSITY DATA
COMMONS

The design of biodiversity data infrastructure has ramifications
beyond the properties of any single aggregated dataset it produces
or hosts. To this point, this section introduces a distinction
between centralized and decentralized strategies for global
biodiversity data aggregation. Since decentralized approaches
have received less attention in this context, we also highlight the
important role that communities of practice play in the success of
knowledge commons. This conceptual and empirical background
will provide the basis for evaluating and designing better systems
for biodiversity knowledge commons in the following sections.
The Global Biodiversity Information Facility (GBIF) now
processes and serves over 1.5 billion occurrence data points
for users to search and download, aggregated from a wide
range of citizen science projects, museum collections, and other
organizations. Similar large national or continental aggregators
exist, such as Integrated Digitized Biocollections (iDigBio;
Hanken, 2013) and DataONE (Michener et al., 2012), as well
as for specific taxa such as the Avian Knowledge Network
(Iliff et al., 2009). Aggregation and curation at this level relies
heavily on broad adherence to the Darwin Core standard for
publishing occurrence data, which imposes minimal metadata
requirements and categories (Wieczorek et al., 2012). Relying on

this minimal consensus standard, aggregator portals can then
provide centralized access points for datasets sourced from a wide
range of repositories, collections, and databases.

However, simply adding more data to a problem—e.g., by
aggregating observations across many sources—unfortunately
does not necessarily lead to improved predictions or discoveries,
despite claims that suggest theoretically informed statistical
analyses and experimental designs are no longer relevant
(Philippe etal., 2011; Lazer et al., 2014; Leonelli, 2016; Sterner and
Franz, 2017). “The real source of innovation in current biology,”
argues philosopher of science Sabina Leonelli, “is the attention
paid to data handling and dissemination practices and the ways
in which such practices mirror economic and political modes of
interaction and decision making, rather than the emergence of
big data and associated methods per se” (Leonelli, 2016, p. 1).

For example, consider how new norms around open
data become institutionalized in science. Proactive individual
adoption of open data practices matters for the success of large
cyberinfrastructure projects, such as Dryad (White et al., 2008)
or DataONE. From a top-down policy perspective, compliance
with open data principles is an obligation for individual
scientists as part of their funded research. Addressing these
concerns, survey studies addressing biodiversity data sharing
have primarily focused on scientists’ individual attitudes or
behaviors (e.g., Enke et al., 2012; Schmidt et al., 2016). From
a bottom-up community perspective, however, following norms
about data use and sharing is one aspect of participating in
the community’s broader scientific identity, culture, and social
organization (Wenger, 1998; Aronova et al., 2010; Strasser,
2011). Research has shown these community-level variables
have a strong impact on the success or failure in the related
domain of collaborative open source software projects (Schweik
and English, 2012). Some of the most successful community
curation projects for genome data have also emerged as
bottom-up collaborations that use wiki technology to layer
information on top of centralized sequence repositories (Lee,
2017). This example illustrates the value of looking beyond
abstract principles or policies to examine how situated rules
and practices affect the ways actors engage with each other and
shared resources.

The literature on knowledge commons provides a useful
framework and body of empirical studies for this purpose. The
idea of a “commons” refers to an institutionalized arrangement
for the use and management of a shared resource among multiple
actors (Strandburg et al., 2017). A commons therefore denotes
“a form of community management” for a resource; not the
resources, community, or place being managed (Strandburg et al.,
2017, p. 10). While the term is also often used in a loose
metaphorical way, several types of commons have been subject
to extensive theoretical and empirical research, including natural
resource commons and knowledge commons (Ostrom, 2010;
Schweik and English, 2012; Strandburg et al., 2017). A knowledge
commons in particular is defined as “the institutionalized
community governance of the sharing and, in many cases,
creation of information, science, knowledge, data, and other
types of intellectual and cultural resources” (Strandburg et al.,
2017, p. 10).
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As we zoom in to look at how scientific data are created,
shared, and curated in practice, it is clear that the governance
of knowledge commons operates in multiple dimensions
simultaneously and may reflect heterogeneous strategies for
different aspects of the data and modes of engagement. One
reason is that actors can participate in the commons in multiple
ways, including adding, altering, removing, restricting, using, and
exchanging access rights to the shared resources (Frischmann
et al., 2014). Another reason is that the data themselves are
complex objects whose properties and scientific significance often
vary with context (Franz and Thau, 2010; Millerand et al., 2013;
Leonelli, 2016; Lee, 2017). Metadata are key in order to find
and use scientific data online, but the language scientists use to
describe the observations they have made are often highly local
and dependent on tacit knowledge (Leonelli, 2016; Sterner and
Franz, 2017).

An important distinction among knowledge commons is
whether authority over the pooled resource is allocated in
a centralized or decentralized way. Where totally centralized
governance would put all decisions regarding actors’ access, use,
and contribution rights in the hands of a single organization
or group, totally decentralized governance would instead give
full autonomy in each of these respects to local organizations
or communities (Brown and Grant, 2005). Computer ontologies
in the life sciences, for example, are typically developed and
maintained under centralized governance by a single consortium
in charge of formulating and maintaining consensus definitions
for the associated terminology (Smith et al., 2007; Wieczorek
et al., 2012; Millerand et al., 2013). As we use the term here, a
computer ontology provides standardized metadata vocabularies
organized into formal logical relationships that allow users
to categorize and reason about data in a machine-readable
format. Many of the largest bio-ontologies, such as the Gene
Ontology, are members of the Open Biomedical Ontologies
(OBO) Foundry, which historically has been associated with
a metaphysically realist approach to selecting and defining
metadata vocabularies (Smith et al., 2007; Sterner et al., 2020).

A range of intermediates also exist between extremes of
centralized and decentralized approaches, reflecting different
forms of governance arrangements and the multiple aspects
of actors’ relationships to the knowledge commons (Fisher
and Fortmann, 2010; Ostrom, 2010; Contreras and Reichman,
2015). The collaborative software development and repository
service GitHub, for example, provides an intermediate option for
programmers where updating and releasing a software project is
controlled by a single individual or group, but any individual is
able to initiate a new copy (“fork”) of the code and edit it in a
decentralized fashion without any obligation to re-integrate the
code updates back into the main project.

While highly centralized control of the data aggregation
process and its outputs may appear to be necessary for building
successful shared infrastructure at such large scales, this is not
borne out empirically (Hess and Ostrom, 2006, 2007; Frischmann
et al., 2014; Strandburg et al,, 2017). In addition, contrary to
conclusions suggested by early game theory models, centralizing
control over a shared resource pool is neither necessary nor
the most common way to prevent overexploitation leading to

collapse (Wilson et al., 2013). We will also argue in the next
section that centralization can undercut the ability of individuals
and local communities to function and contribute valuable
biodiversity information, expertise, and time.

Furthermore, despite the apparent potential for exploitation
or anarchy, decentralized governance can succeed when robust
local institutions exist that teach, enforce, and maintain rules
(either formal or informal) about appropriate actions. The
concept of a “community of practice” provides a useful way
of understanding how people negotiate these rules and their
application over time (Wenger, 1998, 2000). A community of
practice provides the interpersonal and institutional scaffolding
needed for people to be recognized, trained, and leaders in a
particular skill set. The possible subject matter for a community
of practice ranges broadly; including e.g., claims processing
in insurance, macro photography, and college teaching. In
biodiversity science, examples would include researchers working
to advance the classification of a taxonomic group such as birds,
coordinating on the conservation of a particular ecosystem, or
working to improve informatics tools for sharing occurrence
datasets. The relevant community is restricted, though, to a
particular group of people (not necessarily in one geographic
place) who interact regularly as part of learning, applying, and
improving these skill sets. The community is therefore connected
by the practice as a shared matter of concern, such that they
are involved in a joint enterprise based on mutual interactions
and a shared repertoire. It forms a group to which people can
belong through their engagement and alignment in joint projects
using the relevant skill set and through a shared vision for the
community’s aims and identity.

REFRAMING THE CRITIQUE OF GLOBALLY
CENTRALIZED BIODIVERSITY DATA

We now turn to describe key limitations of the dominant,
centralized governance for global biodiversity knowledge
commons. The primary functionality provided by current
biodiversity aggregators is arguably serving as centralized
portals for finding and downloading occurrence datasets
(Hobern et al, 2019). This is clearly a desirable feature
for users exploring the data available for projects outside
existing thematically focused and curated collections. However,
implementing this query functionality drives further choices
between a centralized vs. decentralized strategy for handling data
aggregation. We critique two such choices: centralized control
over the metadata categories used to aggregate data, especially
taxonomic classifications, and centralized control over the flow
of information reflecting new curation or collections work.

One major and persistent problem with globally centralized
biodiversity data aggregation is that it can significantly distort
the underlying signal in heterogeneous datasets, leading to
a “synthesis that nobody believes in” (Franz and Sterner,
2018). This will occur whenever occurrence records from
multiple low-level sources are annotated with taxonomic name
usages that are coherently applied within one source, but are
nevertheless non-congruent across sources. As an example, we
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have shown how multiple locally and simultaneously applied
meanings of taxonomic names for endangered Southeastern
United States orchids in the Cleistes/Cleistesiopsis complex will
produce misleading ecological and conservation inferences if
aggregated under one centralized classification (Franz et al,
2016b; see also Peterson and Navarro Sigiienza, 1999). These
issues with conflicting taxonomic labels is just one example
in a broader debate about the desirability of consensus on a
single classification system for a domain of data and appropriate
governance strategies for managing advances and disagreements
about metadata categories, especially when their definitions are
justified by empirical hypotheses and evidence (Sterner et al,
2020).

The distortion in signal created by centralized aggregation
also has a social impact: it generates an unbalanced allocation
of power among actors or organizations seeking to represent
and propagate alternative data signals based on conflicting
hypotheses or approaches in the community. To illustrate this
point, we need to describe the current organization of the
biodiversity data ecosystem in more detail, focusing on how data
are structured in the aggregation process. Figures 2, 3 provide
related, schematic representations of how biodiversity data are
aggregated under a centralization paradigm. It is sufficient for
our purposes to show 2-3 distinct aggregation layers, although
in practice there are often additional layers and more complex
data flow relationships. We mention specific institutional entities,
software platforms, and information communities to illustrate
broader phenomena in a concrete way (and consistent with the
authors’ primary expertise in North American projects).

Low Level

At the lower levels of the aggregation hierarchy, making
data packages globally discoverable according to open science
standards (e.g., Wilkinson et al., 2016) requires at minimum: (1)
the locally stored data records are accurately and consistently
mapped to a metadata standard—in our case Darwin Core
Archive format (DwC-A); and (2), packaged data records are
exposed to the web via a DwC-A interface such as the Integrated
Publishing Toolkit (IPT; Robertson et al, 2014). Only data
package publication with the IPT or similar interfaces allows
global data discovery facilitated by an Application Programming
Interface (API) and further protocol-driven aggregation.

At this level, we find individual private or institutionalized
collections that may or may not be digitized in some form, but
in either case don’t meet the criteria above. We may term these
“hidden data” (Figure 2: 5A, 5B, 6).

We also find other collections that are standards compatible
and accessible online through custom publishing solutions
(Figure 2: 3A, 3B, 4) or software applications designed to
serve multi-collections institutions such as museums, academic
institutions, and environmental organizations (e.g., the KE Emu
and Specify software applications; Figure 2: 1A—1C, 2A—2C).
These data providers will typically not host occurrence records
in their managed systems when the corresponding specimens or
vouchers are owned by external entities.

Mid-level

As defined here, a mid-level aggregator is explicitly scoped in its
design and mission to aggregate biodiversity across only certain
taxonomic groups or geographic regions below the continental
scale. Mid-level aggregators also have the ability to host data
from collections pertaining to multi-institutional communities of
practice in the sense of Wenger (1998, 2000). Such community-
driven data platforms are often referred to as portals. Reciprocal
exchange among portals with different origins, emphases,
management structures, and target communities embodies a
lateral rather than hierarchical network at the middle level.

Data packages are currently managed in mid-level portals
in the following two ways: (1) “live-managed,” which means
that the entity owning the physical collection of specimens or
vouchers has comprehensive rights within the pertinent portal
to create new occurrence records and annotations (referred to
as within-portal rights); and (2) “snapshots,” which are time-
stamped versions of a live-managed collection exported to one or
more outside portals where occurrence records may be annotated
further, typically by actors that are not members of the physical
collection-owning entity (referred to as outside-portal rights)!.
Snapshot collections can be periodically or even automatically
updated from the live-managed portal. Conversely, annotations
made on snapshot occurrence records can be integrated with the
corresponding live-managed collection under proper social and
technical conditions.

Depending on its history and sustainability model, a portal
may create and maintain its own, one-off software application or
on a software platform serving multiple portals with installations
hosting different data collections. Certain mid-level aggregators,
such as Arctos (https://arctosdb.org/), may only support live-
managed collections (Figure2: 7, 8). However, the Symbiota
software platform (Gries et al., 2014) supports live-managed as
well as snapshot collections in the same portal (Figure 2: 1B, 9,
10) and has a built-in DwC-A publishing module.

Both of these design features of the Symbiota platform are
essential for exchanging occurrence records and annotations
laterally across mid-level portals. For example, the SEINet
portal, which focuses on vascular plants in the Southwestern
United States, can reciprocally exchange occurrence records and
annotations with the National Ecological Observatory Network
(NEON) portal, which includes information about a variety of
taxa sampled across the U.S. and is intended to facilitate long-
term macrosystems ecological monitoring and forecasting.

High Level

High-level aggregators aim for both comprehensive taxonomic
and geographic coverage on national, continental, or global
scales; for instance all natural history collections occurrence
records of North American institutions (Figure2: iDigBio),
or even all organismal records, globally (Figure2: GBIF—
Global Biodiversity Information Facility, 2019). By design and
aspiration, high-level aggregators aim for aggregated occurrence

'Having within- versus outside-portal rights currently coincides with the ability to
add or edit records in real-time versus with snapshot updates, but these two aspects
could in principle be separated in future implementations.
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FIGURE 2 | Schematic representation of biodiversity data aggregation under a centralized system. Continental to global aggregators are at the highest level, then
web-only portals at the middle level, and institutional or individual collections at the lowest level. Collections pertaining to the same academic institution carry the same
number with succeeding letters (1A, 1B, etc.). Abbreviations or proper names used: DwC-A, Darwin Core Archive (standard for packaging and publishing biodiversity
data using Darwin Core terms); DwC-A Publish, custom DwC-A Publisher embedded in Symbiota software and portals; FAIR principles, findability, accessibility,
interoperability, and reusability; GBIF, Global Biodiversity Information Facility; iDigBio, Integrated Digitized Biocollections; IPT, Integrated Publishing Toolkit (open source
software tool used to publish and share biodiversity datasets through the GBIF network); Arctos, KE EMu, Specify, and Symbiota, specifically, functionally overlapping
software packages for managing collections-based biodiversity data; SEINet (originally: Southwestern Environmental Information Network) and NEON (National
Ecological Observatory Network), realized instances (communities of practice) of Symbiota biodiversity data portals. See text for additional explanation.
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low- and mid-level environments. QC, Quality Control. See text for additional explanation.

data services and user communities who expect a “one- Implications
stop shop” in order to get data signals for “everything On the surface, the comprehensive scope of high-level
there is.” aggregators appears to give them a distinct advantage over
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mid- and low-level providers. Moreover, high-level aggregators
typically prefer to receive occurrence data packages and
periodical updates thereof directly from the lowest-level instance
of a data collection enabled with DwC-A publishing. This means
that some collections may not be discoverable at the middle level
when the collection has no data publishing arrangement with a
mid-level portal.

However, high-level aggregation also frequently incurs the
disadvantage of only providing collection snapshots. Whereas,
globally comprehensive data discovery is favored at the high
level, new data annotations are not. Instead, users sourcing
their data from high-level aggregators typically download them
into external web or local environments to carry out data
cleaning, annotation, analysis, and publication. Because of the
hierarchical aggregation design, it is exceedingly hard to “push”
these value-added data annotations back down to the live-
managed collections. These value-added actions tend to occur in
external systems, not the software platform hosting or serving the
occurrence data, and DwC-A transmission channels from source
to user are generally configured to function unidirectionally. As a
result, the vast majority of new annotations only flow one way,
i.e., upwards, leading to a strongly unidirectional as opposed
to reciprocal or cyclical quality enhancement system (Figure 2,
left region). This unidirectional flow leads to potentially infinite,
variously differing and outdated versions of “the same occurrence
records” stored in unconnected systems, without adequate
mechanisms to ensure annotation provenance and translation of
syntactic and semantic changes.

A second disadvantage for high-level aggregators arises out
of their increased separation from most biodiversity expert
communities of practice, which simply do not work on all groups
and at the global level. Instead, the experts and communities
tend to have both taxonomic and geographic (or even
political) boundaries that are much more accurately represented
at low and middle levels of aggregation (Figure2, right
region). Conversely, research communities that are interested in
analyzing all organisms at the global level tend to lack the highly
contextualized expertise needed, for example, to reconcile non-
congruent classification schemes inherent in biodiversity data
packages aggregated from many localized sources and distinct
communities of practice.

This gap in expertise may help explain why in practice
centralized aggregation of occurrence records and centralized
management of data-structuring biological classifications often
go hand and hand.? For instance, GBIF—currently the most
globally comprehensive aggregator of all—is actively promoting
its “backbone” taxonomy (de Jong et al., 2015) to which all
aggregated data are preferentially matched (Franz and Sterner,
2018), often with considerable loss of syntactic preference and
semantic context for new or contested nomenclature. GBIF
thereby preferentially responds to the needs of those users
who are interested in large-scale signals yet who are also likely
unprepared or unwilling to add value to data packages live-
managed at much lower levels.

2In principle, though, centralizing occurrence data communities and centralizing
taxonomic knowledge could be decoupled and pursued separately.

A MODEL FOR DECENTRALIZED BUT
GLOBALLY COORDINATED DATA
AGGREGATION

Decentralized governance for data aggregation offers an
important alternative (Contreras and Reichman, 2015). While
potentially better able to accommodate local communities of
practice, a decentralized approach of course risks continuing
the current fragmented state of the biodiversity data ecosystem.
Unlike some of the most familiar examples of commons, such as
aquifers or forests, knowledge commons cannot rely on natural
processes to aggregate resources into a single, shared resource.
Instead, aggregation must be engineered and re-engineered over
time to ensure continued coordination of new data contributions
and modifications to existing datasets. This sets up a critical
challenge for decentralized approaches to data aggregation:
how to engineer the capacity for competing hypotheses and
distributed curation work without losing the connectivity
required for global data sharing?

In this section, we introduce a novel conceptual model for
achieving decentralized but globally coordinated data commons.
Crucially, a decentralized approach permits multiple metadata
systems to coexist when important to the functioning of relevant
communities of practice while ensuring sufficient resources
exist to allow efficient and accurate translation across locally
variable metadata systems. Decentralization therefore relies on
a second-order consensus about how to coordinate across
local variation among communities of practice rather than a
first-order consensus about a single global best option for all
such communities (Sterner et al., 2020). Our conceptual model
therefore extends a core tenet of philosophical pluralism into the
context of knowledge commons: “What is crucial for your ability
to communicate with me-to convey to me information about
your beliefs, plans, or values-is not that we have a commonality
of beliefs or ideas, and so stand in a consensus of some sort...
It pivots on the recipient’s capacity to interpret-to make good
inferential sense of the meanings that the declarer is able to send.
In the final analysis the matter is not one of an agreement between
parties but of a co-ordination between them” (Rescher, 2000, p.
148, emphasis in original).

In particular, we propose that core operations of the Git
model for decentralized version control provides a powerful and
successful foundation (Loeliger and McCullough, 2012). Perhaps
best known through its implementation by GitHub, the core
Git operations allow a group of software developers to create
parallel copies (“forking”) of a shared reference standard (the
“master”) and edit these copies locally before merging the edits
with the reference standard (via a “pull request”), which may
itself have changed in the meantime. Similarly, local copies can be
updated with changes from the reference standard (a “push”) by
reconciling edits to the local and reference copies. Adopting these
operations for a project comes with governance decisions about
who has the ability to create local copies, request and approve
changes to the reference standard, and push updates from the
standard to local copies. Contributors to a collaborative project
will generally form a community of practice, and the appropriate
governance strategy within a community can vary from highly
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centralized to highly decentralized; indeed, communities often
evolve over time as they grow or change identity (Shaikh and
Henfridsson, 2017).

There are a couple key limitations, however, which need
to be addressed for achieving decentralized but globally
coordinated biodiversity data. One critical limitation of current
Git implementations is that while they can track line edits
to documents, they do not evaluate the semantic implications
of those edits. In the context of software development, this
means that updating the reference standard with changes in
a local copy does not take into account any consequences to
the program’s input-output behaviors. There are heuristics to
flag changes that may create problems, e.g., parallel changes
across copies in the same lines of code, but these flags
are based on proximity in the document, not effects on
run-time behavior. In the context of data aggregation, this
means that we could tell when the taxonomic authority for
a specimen’s nomenclatural identification has been changed
but not necessarily whether this involves a change in the
associated meaning of the taxon name. It is therefore essential
to extend current implementations to incorporate semantically-
aware conflict detection and reconciliation between datasets with
different metadata classification systems. Current state of the
art relies on a supervised approach to identify and handle cases
where users have made changes to parallel copies of data records
(e.g., Arndt et al., 2019).

A second limitation is that semantically-aware data
reconciliation needs to be possible across multiple reference
standards rather than solely with respect to local copies of a
single reference standard. A setting where systematists maintain
multiple, partially conflicting species checKklists (e.g., as has been
the case with birds for many decades; Vaidya et al., 2018) is
most analogous to handling decentralized versioning across
multiple Git projects (i.e., multiple “master” versions), each of
which has its own local copies. Aligning concepts rather than
text documents (i.e., the meanings of metadata terms rather than
the documents specifying them) is therefore doubly essential
for accurate and machine-automated data aggregation across
parallel metadata systems.

Figure 4 illustrates how our proposed model extends the
basic Git model to accommodate semantic alignments and
conflict detection among multiple reference standards and thus
aggregation of associated datasets. Franz et al. (2016a) have
shown how such semantically-aware data translation is possible
using logic reasoning based on expert-articulated relationships
between metadata categories using Region Connection Calculus-
5 (RCC-5). The RCC-5 vocabulary can be understood intuitively
as describing five types of relationships between the set of
members associated with any pair of concepts. Given two
concepts, A and B, RCC-5 lets us say whether A and B congruent,
or A is a subset (<) or superset (>), or whether the two
regions are overlapping (><) or exclusive of each other B (!).
Articulating the relationships between classifications using these
relationships enables a computer to reason about how instances
of a concept in one classification can be translated into instances
of concepts in another classification. A computer is also able
to check whether an alignment between two classifications is

QO Version
<> Alignment

Ontology 2
o t Version update

<==Push/Pull update

Ontology 1 (Reference) Ontology 4 (Reference)

FIGURE 4 | An illustration of semantically-aware decentralized version control
for computer ontologies. Ontologies 1 and 2 serve as reference standards
(green and light blue dots) shared by different communities of practice, e.g.,
two taxonomic classifications developed by systematists in North American
and Asia for the same perceived group of species. Individual experts or
subcommunities can then create local versions of these reference standards
(dark blue dots) for research use or to meet local specifications of a
government agency or conservation stakeholder. The ability to translate data
accurately across local versions and reference standards is provided by
ontology alignments (red arrows).

logically consistent (no contradictory statements about how to
translate the data) and comprehensive (every instance of every
concept in each classification can be mapped in an unambiguous
way onto the other classification).

Figure 5 then shows how such alignments figure into
achieving decentralized data coordination. A community of
systematists working on the taxonomy of a group will typically
generate multiple proposed classifications over time. Some of
these classifications will prove more popular in use for data
curation, shown in the figure by the width of the lines. In
order to assemble a global data commons, one has to be
able to access a comprehensive aggregate of existing data
under a single, coherent metadata language. As we discussed
with coordinative consensus, this does not entail that all data
curation must be done under a single consensus classification.
Instead, we need appropriate information about the meanings
of the metadata categories within each classification in order to
translate across them in an accurate and efficient way. While
automated solutions are desirable, high-precision methods for
aligning ontologies and detecting conflict remains a challenging
research front in computer science (Euzenat and Shvaiko, 2013).
It is therefore likely that expert-curated alignments will continue
to be necessary for situations where accurate data translation is
important for data commons participants.

In sum, lateral alignments across metadata reference
standards used by data portals and individual experts can
remove the need for a single, globally authoritative consensus
classification. Automated reasoning with logical relationships
such as in RCC-5 has the potential to lower technical and
efficiency barriers to communities developing local consensus
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Proportion of Occurrence Data Curated Under Alternative Classifications

Time

" Revised

Adoption of Taxonomic Classifications for A Perceived Group

FIGURE 5 | A hypothetical spindle diagram showing the relative usage of
taxonomic classifications over time. Each spindle (gray polygons) corresponds
to a distinct taxonomic classification for the corresponding (perceived) group,
and the spindle’s width indicates the relative proportion of occurrence data
curated under that classification. The diagram illustrates how multiple
classifications may be in heavy use simultaneously, while other proposed
revisions do not become widely used but can influence future work (arrows).

classifications customized to their aims and resources. Data
portals primarily serving scientists outside systematics, such
as conservation biologists or ecologists, may prioritize a more
conservative approach to data aggregation based on the most
widely used classifications. Alternatively, portals with high
levels of crowd-sourced curation may find it valuable to allow
contributors to use their preferred classification system out of
several options (e.g., iNaturalist, 2019). As Figure 5 suggests,
though, alignments between some metadata languages will be
more valuable for global data coordination than others. This
reflects an important way in which our approach aims to avoid
having to pay the labor cost of aligning everything to everything:
communities of practice or individual experts are incentivized
to connect their preferred datasets and metadata languages to
widely shared reference standards, but not at the cost of having
their research products overridden or coarse-grained as part of
participating in the knowledge commons.

DEVELOPING SOCIO-TECHNICAL
INFRASTRUCTURE TO IMPLEMENT
COORDINATION

This section uses the Symbiota software platform and portal
network to illustrate the social-technical infrastructure we
anticipate needing to manage biodiversity data aggregation
in a global, decentralized system (Figure 6). We regard this
infrastructure as a critical precondition for establishing and
nurturing local, high-quality communities of practice for both
occurrence records and taxonomic knowledge systems. Our
ultimate aim, though, is to illustrate a general solution path that

can and should be implemented across many different software
and data communities.

Once there is an emerging network of portals whose
respective foci and boundaries correspond to active communities
of practice, the task of globally coordinating these portals can
be achieved through portal-to-portal Application Programming
Interface (API) services, which provide socio-technical
infrastructure enabling expert knowledge managed within
one portal to be shared and coordinated across the portal
network. Domain knowledge expertise, for example, could
flow out into the extended specimen network with external
annotations from other actors then channeled back to the
domain expert for review, verification, and acceptance. The
function of the API services is thus to “hard-wire” the rights
and restrictions for data record and metadata access and editing
that maintain the social integrity of each portal community
while allowing filtered data annotations (Morris et al., 2013) to
flow globally.

A sophisticated cross-portal API encompassing both technical
and social components should achieve the following:

e Provide continuous,  bi-directional, =~ API-managed
data flow across portals and across live-managed vs.
snapshot collections.

e Facilitate automated filtering of this data flow necessary to
represent the social agendas of distributed data and data
annotation providers and users.

e Regulate reciprocal updates from portal to portal directly
through the API service configuration, including replacements
of records with provenance tracking

e Configure and automate portal-to-portal updates such that
they are triggered on a regular basis (e.g., nightly).

e Track data modifications based on Globally Unique Identifiers
(GUIDs; see Nelson et al., 2018), timestamps, and value
changes so that conflicting annotations can be identified and
resolved based on a set of rule-based guided decisions.

As an example, data annotations provided by a trusted expert
for a particular taxonomic group and region on a snapshot of
records in another portal could be allowed through the API
configuration to directly become pushed to replace standing
data records and annotations in the live-managed collection
serving as the reference standard. In other cases, managers for
the reference dataset may prefer to review external annotations
prior to assigning them “latest viable version” in the live-
managed portal. This may include the option to display the
new annotations separately in the live-managed collection yet
in a linked form, as an alternative view not yet validated by the
live-collection manager(s).

Additionally,  automatically  scheduled network-wide
updates would allow all new annotations to be propagated
globally (though only laterally; see Figure5) and in
accordance with established rules for propagation and
filtering. Such application-to-application  synchronization
has become standard within the digital world, such as
with regular synchronization of data queries, bookmarks,
and messages among a persons phones, laptops, and
desktop systems.
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We illustrate the current status of and progress toward this
socio-technical infrastructure using recent projects involving
the Symbiota software platform. At present, lateral data flow
between mid-level portals using Symbiota software, and hence
also between live-managed and snapshot collections represented
in these portals, is largely facilitated through batch updates
of DwC-A packages that are triggered periodically but also
manually, i.e., by an individual (human) with appropriate access
rights. For more than a decade, Symbiota has featured a well-
developed import module that supports data ingestion from IPT
instances, Specify, and other data sources that support DWC-
Archive transfer protocols. Similar to the GBIF model, these data
pushes typically involve pushing DwC-A data packages from a
Live Managed dataset into Snapshot data representations within
a remote aggregate Symbiota portal.

These experiences have highlighted the limitations of these
methods of transferring data. A significant problem is that data
harvesting is limited by the constraints of the data provider,
particularly in terms of the content and age of the data.
For instance, there is a large US institution that currently
publishes their data via an IPT instance that features a single
1.5 GB DwC_archive dataset containing 8.4 million records
that span across multiple collection types. This method of
publishing not only makes it onerous to harvest and extract
taxonomically themed record sets (e.g., lichens, bryophyte,
insects), it also hinders the transfer of custom-defined record
subsets. Furthermore, it would be ideal if data could be harvested
directly from the live dataset, rather than a remote data cache,
thus ensuring the most current representation of the data.

These experiences have influenced Symbiota development
in several ways. We first summarize two recent steps
toward broader implementation among existing portals.
We then describe a product in development to provide
native support for users to discover, aggregate, curate,
and update data records in localized repositories
without leaving the network of Symbiota data portals
and communities.

With the goal of establishing more flexible, atomized methods
of sharing data between Symbiota portals, project developers
established a built-in DWC-Archive publishing module that
functions similar to the IPT software, though with enhancements
that allow more dynamic data sharing. RESTful GET service calls
have been established that allow external users to extract custom
DwC-Archive data packages from a Live Managed Symbiota
dataset based on user-defined filtering criteria (filtered prior
to export). For instance, these developments have allowed for
the scheduling of automatic data transfers that dynamically
extract a fern and fern allies DwC-Archive data package from
the University of North Carolina’s collection that is managed
as a Live Dataset within the SEINet portal and streams
the data into a Snapshot representation of the data within
the PteridoPortal.

We also have taken steps toward bi-directional data flow
with web-service support between Symbiota and an external data
management system. Through a collaboration between Symbiota
and GeoLocate (https://www.geo-locate.org/), we have developed
a set of RESTful API calls and management user interfaces
enabling the following workflow:
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e Collection managers have the means to define custom
subsets of non-georeferenced occurrence records within their
collection (e.g., Arizona Poaceae)

e Via RESTful API calls, collection managers can then push
record identifiers and verbatim locality description fields
for this dataset into a predefined GeoLocate collaborative
georeferencing project (GeoLocate CoGe, https://coge.geo-
locate.org/)

e As occurrences are georeferenced within the GeoLocate
system, coordinates and georeferencing details are streamed
back into the source records residing within the Symbiota
instance. Coordinate data are pushed into Symbiota via
RESTful API calls on a record-by-record basis with full details
of the edits maintained within versioning tables.

These projects represent concrete, production-level progress
toward a more comprehensive implementation of the features we
described earlier in this section.

Looking ahead, we also describe a new product (working
title: BioCache), which aims to function as a platform for more
narrowly circumscribed communities of practice, e.g., at the scale
of individual labs or collaborative projects, while maintaining
connectivity with the knowledge commons established by larger
and less ephemeral communities such as portals. Scientific
analyses of research datasets often take months or years,
with data annotations occurring in multiple sites across a
project team or collaborative network and creating the need
to coordinate data modifications across the network. Research
teams, e.g., may also want to ensure that their remotely managed
datasets are up-to-date with the distributed network of data
providers. At any point in the data package assembly and
validation process, mechanisms are needed to pull in additional
“upstream” modifications (analogous to a Git pull), which
would add new records, append coordinates, and incorporate
expert determinations that regularly take place within the
collection community.

BioCache therefore aims to provide data discovery tools that
allow research teams to harness an API-enabled network of
data providers and to define a remote index of occurrence
records that will be used to address a particular research project.
This data index represents a local versioning of the original,
distributed data, and provides a platform where the data can be
analyzed, modified, and extended—e.g., error correction, adding
of coordinates, occurrence record (re-)identification according to
a preferred classification, and annotation of misidentifications—
in order to establish a locally robust dataset deemed sufficiently
fit to address a specific research interest. In other words, the
data index represents a selected “fork” of individual occurrence
records analogous to how code forks are defined within GitHub.

Data annotations made in the BioCache instance would
be accessible to the original data source via API-driven
infrastructure built into the instance’s data indexer. This design
feature provides the means for the original data provider
to selectively pull annotations back into the original, live-
managed occurrence record, or at least to define a reference to
the extended data product. However, each occurrence record
therefore represents its own version fragment that will need to

be evaluated, resolved, and merged back into the original data
repository on its own terms.

In contrast to a Git code fork, a typical BioCache dataset
will consist of occurrences harvested from numerous live-
managed portals. Negotiations for a “data fork” to be merged
back into the source portals will involve a variety of evaluation
and resolution criteria defined by the various agents owning
the data. Conversely, research teams will have the means to
submit “pull requests” from the remote data fork to all live-
managing data providers at once. The latter are offered several
options for integrating data annotations back into their live-
managed collections and portal. Ideally, occurrence record
management tools are enabled with evaluation and resolution
mechanisms that can access the research instance’s API services
to selectively ingest the annotations on the specific terms of the
live-managed collection.

CONCLUSION

As first-generation projects have matured, the emerging global
biodiversity knowledge commons is reaching an important
turning point. Globalizing access to occurrence data has
generated major successes for science and decision-making,
including improved discoverability through aggregator portals
and growing adoption of minimum metadata standards such
as Darwin Core. However, important limitations have become
clear for a top-down strategy emphasizing centralized control
over data aggregation and metadata systems. National and
international biodiversity aggregators rely on a robust ecosystem
of smaller communities of practice focused on particular research
themes or collections, but the needs, views, and aims of these
communities are at best imperfectly reflected at the global scale.
The project of globalizing biodiversity knowledge depends on
minimizing harm to these communities’ ability to experiment,
specialize, and pursue the goals of local stakeholders. Reflecting
on current and past efforts in developing the Symbiota platform
and portal network, we've presented an innovative approach
that can underwrite greater decentralization without sacrificing
efficient coordination at the global scale.

Looking forward, decentralized coordination has broader
potential to strengthen integration across the biodiversity data
life cycle. The future of biodiversity rests, in this regard,
finding new ways for computational infrastructure to help
scientists and decision-makers resolve complex collective action
problems, and we should keep in mind that every technological
fix is also a social intervention. Our model emphasizes
the development of local communities of practice and data
infrastructure aimed at impacting concrete decision-making
contexts, rather than a highly standardized, global data product
intended to be fit-for-use across most contexts. Scientists are
increasingly recognizing the limitations of this latter, loading-
dock model for scientific knowledge as a way to influence
action (e.g., Cash et al, 2006): simply making all the data
available for use in one place is not sufficient to bridge the
gap to practical impact, especially if centralization undermines
key dimensions of fitness-for-use for the local situations of
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decision makers. Similarly, research analyzing how data travel
effectively across local contexts consistently demonstrate the
substantial effort required to design fit-for-use data packaging
and reinterpret external datasets for local projects (Gerson, 2008;
Leonelli, 2016). Centralized data aggregation can also undermine
the long-term value of this information for users, including
government stakeholders and conservation planners. Signal
distortion due to misaggregation across conflicting taxonomic
concepts, for example, has high-stakes implications for species-
level assessments of extinction risks.

In this regard, we've argued for the practicality and desirability
of providing local data editing rights to communities of practice
while maintaining the ability to distribute these updates in a
coordinated fashion (i.e., to “trade” in curated datasets; see
also Lee, 2017). In a centralized paradigm that forces one-
way data flow from sources to users via aggregators, important
inefficiencies arise when customization work done to situate
data for local use cannot be shared with others. We've also
argued for the importance of facilitating how communities of
practice transition from informal social networks to formalized
governance and infrastructure. A major contributor to the
success of Symbiota has been the social component of
the application design. Individuals can establish research
datasets within their own password-protected user space while
maintaining full control over data attribution and management;
however, their data are also tightly integrated into a social system
which aligns with their research identity. Maintaining full control
and ownership of data combined with the ability to exchanged
curated content with a community of knowledge experts has been
a strong motivating factor to publish data within the Symbiota
portal network.

Growing interest in the “extended specimen” program for
natural history collections provides an important context for
further validation of our approach (Webster, 2017; Lendemer
et al., 2020): the next generation of specimen-based research will
increasingly augment and integrate already digitized data as well
as adding new measurements of physical specimens. This poses
new challenges for addressing fragmented occurrence record
information across databases and managing novel metadata
categories from distributed research projects. BioCache is well-
positioned to test the scalability of API-based decentralized
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