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We consider the problem of learning structured causal models from observational

data. In this work, we use causal Bayesian networks to represent causal relationships

among model variables. To this effect, we explore the use of two types of

independencies—context-specific independence (CSI) and mutual independence (MI).

We use CSI to identify the candidate set of causal relationships and then use MI to

quantify their strengths and construct a causal model. We validate the learned models on

benchmark networks and demonstrate the effectiveness when compared to some of the

state-of-the-art Causal Bayesian Network Learning algorithms from observational Data.

Keywords: causal models, probabilistic learning, learning from data, structured causal models, causal Bayesian

networks

1. INTRODUCTION

Given the recent success of machine learning, specifically deep learning, in several applications
(Goodfellow et al., 2016), there is an increased interest in learning more explainable models
including causal models.

Many researchers have attempted to develop methods to infer causality from observational
data over for several years (Pearl, 1988b, 2000; Neapolitan et al., 2004). While there have been
some notable contributions in the field demonstrating the plausibility of learning causality from
non-experimental data (Granger, 1969; Sims, 1972; Pearl, 2000), learning structural causal models
from observational data is still a challenge (Guo et al., 2019). Recent advances in the field of
discovering causality has looked at learning Causal Bayesian Network (CBN). In this framework,
causations among variables are represented with a Directed Acyclic Graph (DAG) (Pearl, 2000).
The problem of learning a DAG from data is not computationally realistic as the number of
possible DAGs grows exponentially with the number of nodes. This computational complexity
has prevented the adaptation and application of causal discovery approaches to high dimensional
datasets, with a few examples.

In this work, we consider the problem of full model learning of causal models from observational
data. We are inspired by tasks in real-world where only limited knowledge could potentially be
available and hence building a full causalmodel is not possible. Similarly, the datamight be obtained
before learning, making interventions particularly, hard. In such cases, learning a probabilistic
causal model from data is preferred. However, this is a hard task with a larger number of variables.
This is the problem we tackle in this paper—how can we scale causal learning to a moderate number
of features?

To this effect, we build upon the success in using two sets of independencies for building
causal models—that of mutual independencies (MI) (Janzing et al., 2015) and context specific
independence (CSI) (Tikka et al., 2019). While MI can be used to quantify the strength of the
causal relationships, CSI has been used for causal identifiability. We employ these in the context
of learning from data. We aim to learn a causal model by first learning probabilistic dependencies
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that can identify CSI. We then adopt a heuristic measure to
remove and re-orient the edges of the probabilistic graphical
model. We employ MI and heuristics to guide the search.
The net result as we show empirically is a causal model.
This is particularly important as scaling causal learning to
large problems without interventions or bias is a significantly
challenging task.

Specifically, we leverage the success of dependency networks
(DN) (Heckerman et al., 2000; Neville and Jensen, 2007;
Natarajan et al., 2012) for learning with large data sets. Recall
that a DN is a probabilistic graphical model that approximates
the joint distribution using a product of conditionals. Hence,
compared to a Bayesian Network (BN) these are uninterpretable
and more importantly, approximate. However, their key
advantage is that since they are products of conditionals, the
conditionals can be learned in parallel and can be scaled to very
large data sets.

To scale causal model learning, we first learn a DN. To
perform this, we learn a single (probabilistic) tree for every
variable, then we identify and remove cycles from this DN.
We consider mutual information employed in causal models to
score and remove the edges. In addition, we detect and remove
cycles from the DN, if any. Contrary to popular intuition, we
employ two levels of learning to uncover a causal model—first
is on learning a DN using trees and the second is on learning
a causal model employing heuristics measures. Our evaluations
on the two synthetic and one real benchmark causal data sets
demonstrate the utility of such an approach. While we present
quantitative metrics, qualitatively, the edges that are learned in
this model uncover interesting findings. In addition, we compare
the proposed approach to three other state-of-the-art causal
learning methods employed on just the non-experimental data.
Our results demonstrate that we obtain most of the causal links
on large problems in order-of-magnitude fewer operations than
most causal approaches.

We make a few crucial contributions—we present the first
causal learning approach that leverages progress in probabilistic
methods toward learning from data. We develop heuristics on
breaking the cycles and orienting the edges based on the causal
modeling research.We learn a causal model on two synthetic and
one real benchmark causal data sets and compare with ground
truth network to understand the robustness of our approach. We
also demonstrate the efficacy and efficiency of the approach on
standard benchmark data sets compared to other state-of-the-
art constrained based methods in the literature. Our proposed
approach opens the door for a domain expert to interactively
guide the causal model learner to a better model thus allowing
a hybrid method for causal models.

The rest of the paper proceeds as follows: after reviewing
the related work on BN, followed by the discussion of some
notable work in constrained based methods for learning CBN,
we provide the background on DN learning. Next, we present
our algorithm and provide intuitions on its functionality. We
discuss the motivation of this work, that of the three benchmark
data sets which are used to learn the joint causal model over
the factors. Then we present the empirical evaluations on the
two synthetic benchmark causal data sets and one real data set

by comparing our algorithm with other commonly used Causal
learning approaches as well as the ground truth. Finally, we
conclude by outlining potentially interesting future directions.

2. BACKGROUND AND RELATED WORK

We first introduce Bayesian networks and dependency networks
and certain concepts which build the foundation for innovations
in CBN learning.

2.1. Bayesian Network
A Bayesian network (BN) is a directed acyclic graph G = 〈V, E〉
whose nodesV represent random variables and edges E represent
the conditional influences among the variables. A BN encodes
factored joint representation as, P(V) =

∏

i P
(

Vi | Pa(Vi)
)

,
where Pa(Vi) is the parent set of the variable Xi. It is well-known
that full model learning of a BN is computationally intensive,
as it involves repeated probabilistic inference inside parameter
estimation which in turn is performed in each step of structure
search (Chickering, 1996). Therefore, much of the research
has focused on approximate, local search algorithms that are
generally broadly classified as constraint-based and score-based.

In constraint-based methods, we learn a BN which is
consistent with conditional independencies inferred from data
(Spirtes et al., 2000). By contrast, score-based methods search
through the space of structures, and find the structure with the
highest score (Heckerman et al., 1995; Friedman et al., 1999).
Hybrid learning approaches combine the advantages of both
approaches; for example, using constraint-based techniques to
estimate the network skeleton, and using score-based techniques
to identify the set of edge orientations that best fit the data
(Tsamardinos et al., 2006).

Our work is inspired by and can be considered as extending
constraint-based methods which have been discussed extensively
in the context of causal structure discovery.

2.2. Constraint-Based Algorithms
Constraint-based methods for learning causal structure from
just the observational data typically use tests for conditional
independencies to identify the causal links that exist in the data.

Following three assumptions are employed to connect
the underlying causations that are not perceived directly to
observable probabilistic dependencies:

• The Causal Markov Assumption states that every variable in
a causal DAG Gc is (probabilistically) independent of all other
variables if all its parents are observed.
• The Faithfulness Assumption states that a causal DAGGc and

probability distribution P are faithful to one another iff the
only conditional independencies in P are those entailed by the
Causal Markov Condition on Gc.
• The Causal Sufficiency Assumption that there doesn’t exist

a common unobserved cause of one or more nodes in the
domain (no hidden cause).

The Causal Markov Assumption produces a set of (conditional
and unconditional) probabilistic independencies from a causal
graph, and the Faithfulness Assumption ensures that all of the
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probabilistic independencies in the distribution are entailed by
the causal Markov condition. The above stated three assumptions
together ensure that causal DAG Gc meets the Minimality
Condition. The minimality condition ensures that there exists
no proper subgraph of the true causal DAG Gc that can satisfy
the causal Markov assumption as well as produce the same
probability distribution (Zhang, 2008).

Consequently, the constraint-based methods for causal
discovery are both sound and complete given perfect (noise-
free) data (Spirtes and Glymour, 1991; Zhang, 2008; Colombo
and Maathuis, 2014). The well-known PC algorithm assumes
no latent variables and learns a BN consistent with conditional
independencies inferred from data (Spirtes et al., 1993;Margaritis
and Thrun, 2000). PC and a related algorithm FCI (Spirtes et al.,
2000) take a global approach to causal discovery by learning a
network to model the joint distribution. The FCI algorithm in
addition can model latent confounders. However, they require
searching over exponential space of possible causal structures.
This restricts their adaptation to high-dimensional data (Silander
andMyllymaki, 2012). Consequently, there are extensions of FCI,
RFCI (Colombo et al., 2012) that improve the efficiency at the
cost of model quality.

PC algorithm is heavily variable order dependent, i.e., if the
order of the variables changes during learning, the resultant
causal Bayesian network could potentially change. Stable-PC
(Colombo and Maathuis, 2012) is a modified version of the
PC algorithm that queries all the neighbors of each node while
computing CI tests and yields order-independent skeletons.
Modified PC is efficient enough to handle large sets of variables,
at the cost of not being provably sound and complete (Coumans
et al., 2017). To overcome the inefficiency of computing CI
test between all pairs of variables, algorithms to uncover only
local causal relationships between a specific target node and its
neighbors have been developed (Margaritis and Thrun, 2000;
Aliferis et al., 2003; Ramsey et al., 2017). A well-known work
in this line of research is Grow Shrinkage algorithm (GS)
(Margaritis and Thrun, 2000). GS is based on the idea that
the Markov blanket includes all the nodes that contain the
information about the current node being tested. Although the
PC algorithm and the GS algorithm have had a major impact
in this area of research, GS is still exponential in the size of the
Markov blanket.

Following the success of GS, several methods, such as IAMB
(Tsamardinos et al., 2003) and its variants (Yaramakala and
Margaritis, 2005) have been developed for the induction of
CBNs by identifying the neighborhood of each node. Unlike
PC and FCI, a well-known algorithm called Greedy Equivalence
Search (GES) (Meek, 1995) begins with an empty graph and
adds and removes edges iteratively. The GES algorithm falls
broadly under a score-and-search procedure, that searches
over equivalence classes of DAG and scores them (Chickering,
2002a,b). Although GES works well with moderate number of
nodes, the space of equivalence classes is exponential in the
number of nodes (Gillispie and Perlman, 2013). The Greedy
Fast Causal Inference (GFCI) combines the benefit of GES (to
learn the network) and FCI (to prune unnecessary edges as
well as orient the edges) (Ogarrio et al., 2016). Meanwhile,

there has also been more and more evidence demonstrating
the possibility of discovering causal relationships by combining
both experimental and observational data (Cooper and Yoo,
2013; Hauser and Bühlmann, 2015; Meinshausen et al., 2016).
Other notable direction involves learning from mixed data
types (continuous and discrete variables) (Andrews et al., 2018;
Tsagris et al., 2018). In principle, our approach can be naturally
adapted to handle mixed variable types, as long as an appropriate
conditional independence test is employed. However, we note
this as a future direction.

Our approach can be seen as scaling such methods to large
observational data by potentially identifying a cyclic dependency
network that can then be transformed into a causal graph.
As mentioned earlier, we move away from the data-driven
independency tests and consider model-based independency
tests which could allow us to scale to potentially large data sets.
We hypothesize that learning such a dependency network is
scalable thus reducing the complexity of causality search.

2.3. Dependency Networks
Dependency Networks (DN) (Heckerman et al., 2000), another
directed model is similar to a BN, except that the associated
network structure need not be acyclic. That is to say, unlike a BN,
a DN permits cycles. A DN encodes conditional independence
constraints such that each node is independent of all other
nodes, given its parents (Heckerman et al., 2000). Therefore, they
approximate the joint distribution over the variables as a product
of conditionals thus allowing for cycles. These conditionals can
be learned locally, resulting in significant efficiency gains over
other exact models, i.e., P(V) =

∏

V∈V P(V|Pa(V)), where
Pa(V) indicates the parent set of the target variable V . Since
they are approximate [unlike standard Bayes Nets (BNs)], Gibbs
sampling is typically used to recover the joint distribution;
this approach is, however, very slow even in reasonably-sized
domains. In summary, learning DNs is scalable and efficient,
especially for larger data sets, but BNs are preferable for inference,
interpretation, discovery and analysis. Recall that our goal is
to discover causal relationships between variables. In order to
develop an approach for this motivating application, we propose
an algorithm for learning a BN from DN, that can scale to a large
number of variables.

3. EXPLOITING CONTEXT-SPECIFIC
INDEPENDENCIES FOR LEARNING
CAUSAL MODELS

Given the necessary background, we now present our learning
algorithm for learning causal models from data. Our method
is purely data-driven—extending this work to exploit domain
expertise is an important immediate future direction. However,
it must be noted that incorporating human advice as inductive
bias, search constraints and/or orientation knowledge is natural
in our framework. In this work, we assume that only the data and
(if available) some ordering over the variables as inductive bias
is provided.
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FIGURE 1 | Flow Chart of the proposed framework. Given data D with V variables, a dependency network DN ≡ (V,E) is learnt on entire data. Learn a dependency

network where each conditional is a decision tree of small depth. Recollect that resultant DN may have bidirectional edges between nodes. All the bidirected edges in

the DN are converted to undirected edges (if any). For all variables with edges in between them in DN, mutual independence scores between them are computed. We

loop through all the cycles in DN, such that the shortest cycles from the DN are first identified and the appropriate edges are removed based on MI less than the

threshold δ. Our framework also allows for an expert to provide the predefined threshold δ. The process is repeated until there are no more directed cycles. Finally, the

undirected edges are oriented based on MI while preserving acyclicity.

We use bold capital letters to denote sets (e.g., V) and plain
capital letters to denote set members (e.g., Vi ∈ V). Using
this convention, we denote the set of variables as V. The goal
of our algorithm is to learn the joint distribution over all the
variables (features and the target) that models causality. Given
that there is no additional input, it is quite possible that the joint
distribution that is purely learned from data may not result in
a causal model, i.e., the learned network is a general Bayes net
(BN) instead of a causal Bayes net (CBN). To evaluate this, we
verify the learned model on a few benchmarks to demonstrate
the efficacy of the approach. Beyond empirical evaluations, we
provide some theoretical insights on why the learned model is
causal. Before explaining the procedure, let us formally define the
learning task.
Given: Data, D =

〈

〈V i
1, . . . , V i

n〉
〉m

i=1
, where n is the number of

variables,m is the number of examples, V is the set of variables,
To Do: Learn a causal joint distribution, P(V), i.e., a causal BN
〈V, E〉, where E is the set of edges in the causal BN.

One of the challenges with standard BN learners and certainly
CBN learners is that of scale. When the number of variables is
large (as in the real benchmark data set), many structure learning
algorithms do not scale viably. Hence, we propose a hybrid
approach that combines the salient features of both search and
score, namely the ability to perform local search effectively with
the ability of constraint-based methods to potentially identify
causal models. More precisely, our algorithm performs three
steps: learning a dependency network from data, detect the
cycles and then remove the edges that are mutually independent.
This process is illustrated in Figure 1. The overall intuition
behind this approach is fairly simple: use a scalable algorithm
to handle a large number of variables and learn a dense model

quickly. Since this learned model could potentially (and in
practice) contain many cycles, we detect and remove edges based
on mutual information. We then orient the edges ensuring
acyclicity. Given that previous literature has demonstrated that
an information-theoretic measure based on mutual information
between two variables X and Y can be used as a reliable measure
for quantifying the strength of an arc X → Y (Solo, 2008;
Weichwald et al., 2014; Janzing et al., 2015), we use CSI and MI
to establish the causal relationships.

We now describe each of these steps in detail before presenting
the high-level algorithm.

3.1. Learning Context-Specific
Independences
The first step of our learning algorithm is to learn distributions of
the form P(Vi|V\Vi), i.e., a conditional for a variable given all the
other variables in the data. To this effect, we employ the intuition
that a structured representation of a conditional probability table
(CPT), such as a tree can be used inside probabilistic models
to capture context-specific independence (CSI) (Boutilier et al.,
1996). Specifically, we learn a single probability tree for each
variableVi given all the other variables in the data. The tree CPDs
can capture context specific independence based on regularities
in the CPTs of a node. Tree CPD for a variable is a rooted
tree with each interior node representing tests on parent vertices
and leaf nodes have the probability conditioned on particular
configurations along the path from the root to leaf. The key idea
here is that each tree can capture the CSI that exists between
the variable’s parents and the target variable conditioned on
the values of some of the other parents. This is an important
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FIGURE 2 | First the DN is learned (notice the two bi-directed edges). All the bidirected edges in the DN are converted to undirected edges (BD and EF). The shorted

cycle A→ C→ B→ A is identified and the edge A→ C is removed based on MI. Since no more cycles exist, the undirected edges are considered next. E −−F

becomes F → E and then B−−D becomes D→ B. The resulting network is acylic and exploits both CSI and MI in becoming a causal network.

step as it has been recently demonstrated that CSI can be used
for identifying causal effects by Tikka et al. (2019). While their
work derives the calculus for identifying the causal relationships,
we go further in employing the use of CSI in larger data sets.
Further, our finally learned network can be considered as a special
case of the structural causal model proposed by Tikka et al.
where the structured representations (trees) are used to model
the CSIs and the edges of the graphical model are aligned using
information-theoretic measures.

To learn CSI at every variable, we employ the notion of DNs.
Recall that a DN is a (potentially cyclic) graphical model that
approximates the joint distribution as a product of conditionals.
To learn such a DN, we iterate through every variable and learn
a (probabilistic) decision tree for each variable given all the
other variables, i.e., the goal is to learn P(Vi|V \ Vi) for each
i where each conditional is modeling using a probabilistic tree.
We observe that in this step, one could provide an important
domain knowledge—ordering between the variables. This variable
ordering can be used to construct expert guided causal model
which introduces CSIs that satisfies the ordering constraints.
As shown by Tikka et al. (2019), the conditional distributions
induced using these CSIs can be effectively employed in
identifying do calculus.

The advantage of this approach is that it learns the qualitative
relationships (structure) and quantitative influences (parameters)
simultaneously. The structure is simply the set of all the variables
appearing in the tree and the parameters are the distributions
at the leaves which can be reused in later stages. The other
advantage is that the approach is that it is easily parallelizable
and scalable. Thus, our method can be viewed as one that could
scale up learning of causal models to real large data sets. The
third advantage of the approach is that being a separate step, this
can be integrated with other causal search methods, such as the
one proposed by Tikka et al. Exploring these connections is an
interesting future direction.

Let us denote the conditionals learned over all the variables
(potentially given some order) as DN, the dependency network
induced from the data. In most cases, this DN contains cycles
since these conditionals are learned independent of each other.
This can be an advantage and a disadvantage. The advantage
is its efficiency as the costly step of checking for acyclicity

can be avoided during learning and a disadvantage since it
is an approximate model. Shorter cycles can result in larger
approximations (Heckerman et al., 2000). After learning thisDN,
we perform an additional step. We convert edges of the form
X ← Y and X → Y to X − −Y . This is similar to the PC
algorithm (Spirtes et al., 2000) in that strong correlation between
two variables are considered as undirected and will be oriented
in the final step of our algorithm. Next, we convert the DN to an
intermediate CBN with potential undirected edges.

3.2. Detecting and Removing Cycles
To convert the DN to a CBN, the first step is to detect and
remove cycles. A naïve approach to deleting edges would be:
search for an edge, remove it, check for acyclicity and log-
likelihood (Hulten et al., 2003). The key limitation of this
approach is that the resulting model is not necessarily causal.
The use of log-likelihood does improve the training performance
but does not guarantee causality. Hence, inspired by the research
in information-theoretic approaches to causality (Solo, 2008;
Weichwald et al., 2014; Janzing et al., 2015), we employ mutual
information for identifying the edges.

For detecting cycles, several methods exist (Kahn, 1962)
including topological sorting. Any of these methods would be
compatible with our learning algorithm. For the purposes of our
data sets, we employ depth-first search (DFS). One key aspect
of our DFS is that we identify short cycles. Recall that DN
approximates a joint distribution as a product of conditionals.

P(V1, ...,Vn) ≈
∏

i

P(Vi|V \ Vi)

The theoretical analysis of the approximation is based on the
inference algorithm, specifically Gibbs sampling and on the size
of the data. In simple terms, if the Gibbs sampler converges on a
large data set, the approximation is quite effective (Heckerman
et al., 2000; Neville and Jensen, 2007). In practice, we have
previously observed that when the cycles are large, i.e., the size
of the clique in the undirected graph, the approximation is quite
robust (Natarajan et al., 2012; De Raedt et al., 2016).

With this insight, in the first step of cycle detection, we identify
the short cycles. The intuition is that short cycles lead to larger
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approximations and removing them would render the product
of conditionals closer to the true joint distribution. Once the
shortest cycle is identified, the next step is identifying the edge
to remove from this short cycle. For this purpose, we employ
mutual information (MI). As a pre-processing step, we compute
the MI between every pair of variables and sort them by the
MI. We consider MI instead of conditional MI as one of our
key goals is efficiency. Computing conditional MI requires us
to condition on a large set of related variables in the DN. This
requires both repeated computations and a large number of
conditionals. Thus, first, we detect the smallest directed cycle.
We then break the cycle by removing edges that are smaller
than a predefined threshold of δ. In our work, we simply choose
δ to be the MI with the largest difference to the previous MI
value in the sorted list. We use Maximum adjacent difference in
the sorted list, as our δ in our setting, unless a default value is
presented by an expert as domain knowledge. Large values of
δ would result in a sparse graph and lower values δ will result
in a dense graph. Once these edges are removed, the process
continues where the next smallest cycle (if one exists) is detected
and the low MI edges are removed and so on. Coupling CSI

with MI between variables X and Y quantifies the strength

of X → Y .
To summarize, from the DN, we create an initial CBN by

detecting cycles and removing edges with low dependencies.
Now the last step is to orient the bi-directed edges which
are undirected and then learn the parameters of the resulting
causal BN.

3.3. Edge Orientation and Parameter
Learning
Once the directed cycles are detected and removed, we focus
on the undirected edges (in reality bi-directed edges). Inspired
by the PC algorithm (Spirtes et al., 2000), we orient the
edges in the final step using two criteria—MI and acyclicity.
We orient the edges by removing the edge with the lowest
MI if it does not result in a cycle. As mentioned earlier,
this is similar to that of PC. After all the undirected
edges have been oriented, the resulting CBN is our casual
network skeleton.

We estimate the parameters of this CBN using standard MLE
(Pearl, 1988a). All our data sets are fully observed and hence
MLE suffices for learning the conditional distributions. For the
parameters, we learn a decision tree locally and in parallel using
only the variables in the parent set of every node to capture
the conditional distribution. Extending this to handle missing
data is a significant extension as it does not merely affect the
parameter learning but the structure search as well. Once the
parameters are learned, we now have the full causal BN learned
from data.

3.4. DN2CN Algorithm
Before we provide the algorithm, we present an example in
Figure 2. There are six variables 〈A, ..., F〉. First, a DN is
learned where there are cycles and bi-directed edges. Next,
the smallest cycle 〈A,B,C〉 is detected and the edge with
least MI A → C is removed. Now, there are no directed

cycles in the CBN (in the general case, there could be more
cycles that need to be removed). Note that there are two
undirected edges between B and D, and between E and F.
First, the edge between D and B is oriented based on MI
and the fact that this does not create a cycle. Finally, the
edge between E and F is oriented to obtain the CBN. The
parameters are then learned by learning a decision-tree for
each conditional.

This approach is formally presented in Algorithm 1 and as
a flow chart in Figure 1. As can be seen in the algorithm, the
first step is to learn the DN (line 4). The LEARNPARENTSET
function in line 3 of Algorithm 2 learns a tree and collects
the set of parents from that set. It can optionally take an
ordering among the variables provided by a domain expert (if
any). Then the algorithm computes the mutual information
(MI) for all the edges. One could instead simply wait till the
cycles are detected and then compute the MI but we compute it
outside the cycle detection step. The algorithm then iteratively
removes the least informative edges till no more cycles are
present in the graph. We orient the undirected edges (If any)
ensuring acyclicity. Then the parameters are then learned from
the data.

3.4.1. Theoretical Analysis

A natural question to ask is—what is the complexity of our
approach? We present an initial analysis of this work, by
adapting the arguments from the literature [see for instance
the original reducibility result (Karp, 1972)]. We present
our result by analyzing each component of the algorithm.
Tightening these bounds with appropriate heuristics is left for
future work.

Let v be the number of vertices (features), n be the number
of training examples. In Algorithm 1, while learning DN, we
learn a decision tree locally [line 4]. This requires O(n2d) where
d is the depth of the tree (Su and Zhang, 2006). While this
can be reduced to O(n · d), this requires making independence
assumptions among the variables. Our tree growing procedure
is fairly standard without much optimization. Hence the
complexity of learning a full DN is O(v · n2d). However, the
trees can be learned in parallel, thus reducing the complexity
to O(n2d).

Cycle detection (line-12) has a complexity of O(v(v +
e)), where v is no. of nodes and e is number of edges
in the network (e is asymptotically O(v2). A single cycle
detection running a DFS to search for the cycle thus
is O(v2). Doing this for all the variables will result in
O(v3) for the entire cycle detection. Sorting the edges
to compute the MI requires O(v2log(v)). Edge orientation
is O(v2).

Thus the complexity DN2CN is dominated by two
terms—O(v3) the cube of the number of edges and
O(n2d), the term that depends on the data. Since,
typically, n > v2 to learn a meaningful model, our
final complexity is O(n2d). Optimizing the tree learner
to lower this complexity and better cycle detection
methods to reduce the cubic complexity can significantly
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improve the asymptotic bound. These are open
research directions.

3.4.2. Discussion

The proposed approach has some salient advantages—(1) One
could parallelize the learning of the DN to scale it up to
very large data sets. (2) The computation of the MI can also
be parallelized. (3) Any traversal algorithm could be used to
detect cycles in the graph for pruning. (4) There are two
levels of independence used in this algorithm;—(a) context
specific independence (CSI) to identify potentially independent
influences. Inspired by the work of Tikka et al. (2019), we rely
on the ability of CSI to model interventions; in the context of
interventions, any influences that otherwise have a causal effect
thereon variable, are removed. Learning a BN as a series of
trees for every interacting variable facilitates the ability to model
such CSI and so are able to represent interventions in sufficient
detail to reason about conditional independence properties,
(b) Mutual independence which when combined with expert
domain knowledge can potentially yield even causal influences.
(5) The algorithm also has two types of controls (similar to
regularizations) to combat overfitting. First is to control the
depth of trees and second is selecting the number of edges to
remove. (6) Finally, the use of both local search and constraint
based methods inside the algorithm enables it to learn effectively
at scale.

Before presenting our empirical results, we briefly discuss
the interpretability of the resulting network. DN2CN
represents causal dependencies using BNs that provide an
intuitive visualization by modeling features as nodes and
the statistical association between the features as edges. This
statistical interpretability is similar in spirit to traditional
interpretability. This allows to answer questions, such as
“does BMI influence susceptibility to Covid?” Moreover, it has
been argued that developing an effective CBN for practical
applications requires expert knowledge when data collection is
cumbersome (Fenton and Neil, 2012). This applies to domains,
such as medicine, similar to our experimental evaluation.
A typical characteristic of these domains is that they can
be data-poor and knowledge-rich due to several decades of
research. Kahneman et al. showed that human beings tend to
interpret events in terms of cause-effect relations (Kahneman
et al., 1982; Pennington and Hastie, 1988). Also, causal
models are easier to construct, easier to modify and easier
to interpret by humans (Henrion, 1987; Pennington and
Hastie, 1988). Following these observations, our framework
can incorporate both data-driven and human inputs, thus
allowing to learn a more robust hypothesis. Lipton explains that
with interpretable models it becomes imperative to guarantee
fairness (Lipton, 2018). It must be noted that we can extend
DN2CN’s interactive framework and leverage the Bayesian
networks learnt to assess the bias as well as compare multiple
models in terms of their fairness and performance (Chiappa
and Isaac, 2018). In summary, our framework can leverage
interpretability as a tool to verify causal assumptions and
relationships. We verify the above claims empirically in a real

data set and two synthetic benchmark causal data sets in the
next section.

Algorithm 1 |DN2CN: dependency network to causal network.

1: Given: Data D; Variables V; Ordering among variables (if
any)O : = ∅; Threshold δ : = 0

2: function DN2CN(D,V,O)

3: E ← ∅ ⊲ Initialize edge set

4: DN ≡ (V, E) = LEARNDN(D, V,O)
5: for all edge ∈ E do

6: MI[edge] ← COMPUTEMUTUALINFO(edge)
7: end for

8: SortedMI[edge] ← SORTED(edge, reverse = True) ⊲
Sort in descending order

9: if δ = 0 then
10: δ = ARGMAX_ABSDIFF(SortedMI[edge]) ⊲Max

absolute diff of 2 contiguous elements in array SortedMI

11: end if

12: C ← DETECTCYCLES(DN) ⊲Using any sort

13: for all cycle ∈ C do

14: for all e ∈ cycle do

15: if SortedMI[e] ≤ δ then

16: E ← E \ e ⊲ Remove edges if exist inDN
17: end if

18: end for

19: C ← C \ cycle
20: ⊲Update cycles list after each iteration

21: if C = ∅ then ⊲Nomore cycles left

22: break

23: end if

24: end for

25: V̂, Ê : = ORIENTEDGES(V,E) ⊲ Introduce directions

ensuring acyclicity as required

26: return (V̂, Ê)
27: end function

4. EMPIRICAL EVALUATION—DOMAINS

To assess the effectiveness of our method, we perform extensive
evaluations on both synthetic as well as real benchmark causal
data sets. In all our data sets, we have the underlying true causal
graph, and we apply our method as well baseline approaches to
reconstruct the causal network from the data to demonstrate
the effectiveness. We first describe the data sets used before
discussing the baselines used.

4.1. Benchmark1: LUCAS—(LUng CAncer
Simple Data Set)
The LUCAS (LUng CAncer Simple set) data set from causality
challenge (Guyon et al., 2008) represents a synthetic medical
diagnosis problem, where the task is to identify patients with
lung cancer given a set of socioeconomic and clinical factors
of putative causal relevance. The generative model is a Markov
process, so the value of the children node is stochastically
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Algorithm 2 |LEARNDN: learn dependency network.

1: function LEARNDN(D, V, O)

2: E ← ∅ ⊲ Initialize edge set

3: for all var ∈ V do

4: P(var) ← LEARNPARENTSET(var, {V \ var}O, D)
⊲ Parent set {V \ var} is

constrained by O (if any)

5: for all parent ∈ P(var) do
6: E ← E ∪ {parent→ var}
7: ⊲ Add new directed edge between parent and var

8: end for

9: end for

10: return (V,E)
11: end function

dependent on the values of the parent nodes’. The data set
consists of 2000 observations. Ground-truth consists of 12
binary variables that include anxiety, peer pressure, day of birth,
smoking, genetics, yellow finger, lung cancer, attention disorder,
cough, fatigue, allergy, car accidents, and their causal relations.
There are no missing values in the data set. As the data are
generated artificially by causal BN with variables, the true nature
of the underlying causal relationships is known. Hence we use
this benchmark data set for illustrating the effectiveness of
our approach.

4.2. Benchmark2: Asia Data Set
The ASIA Network is an expert-designed causal network with
logical links. This BN was originally presented by Lauritzen
and Spiegelhalter (Lauritzen and Spiegelhalter, 1988), who have
specified reasonable transition properties for each variable given
its parents. It is an eight node BN that describes the effect
of visiting Asia and smoking behavior of an individual on the
probability of contracting tuberculosis, cancer or bronchitis. The
underlying structure expresses the known qualitative medical
knowledge. Each node in the network represents a feature that
relates to the patient’s condition. The example is motivated
as follows: “Shortness-of-breath (called dyspnea) may be due to
tuberculosis, lung cancer or bronchitis, or none of them, or more
than one of them. A recent visit to Asia increases the chances of
tuberculosis, while smoking is known to be a risk factor for both
lung cancer and bronchitis. The results of a single chest X-ray do
not discriminate between lung cancer and tuberculosis, as neither
does the presence or absence of dyspnea.” The data set contains
10,000 observations and eight binary variables whose values are 0
or 1. There are no missing values in the data set.

4.3. Causal Protein-Signaling Networks in
Human T Cells Data Set
This data analyzed and published by Sachs et al. (2005) is
a multivariate proteomics data set, widely used for research
on causal discovery methods. This is a biological dataset with
different proteins and phospholipids in human immune system
cells. The data comprises of the simultaneous measurements of
11 phosphorylated proteins and phospholipids (PKC, PKA, P38,
Jnk, Raf,Mek, Erk, Akt, Plcg, PIP2, PIP3) derived from thousands

of individual primary immune system cells. In the data set we
considered, there are (1) 1,800 observational data points subject
only to general stimulatory cues, so that the protein signaling
paths are active; (2) 600 interventional data points with specific
stimulatory and inhibitory cues for each of the following four
proteins: pmek, PIP2, Akt, PKA; and (3) 1,200 interventional data
points with specific cues for PKA. Overall, the data set consists
of 5,400 instances with no missing value. The 11 variables are
discretized into three bins (low, medium, and high) for each
feature, respectively. A network consisting of 18 well-established
causal interactions between these molecules has been constructed
supported with biological experiments and literature (Sachs et al.,
2005). This data is a good fit to test our proposed causal discovery
method, as the knowledge about the “ground truth” is available,
which helps verification of results. Hence the goal of the data
set is to unearth protein signaling networks, originally modeled
as CBN.

5. EXPERIMENTAL RESULTS

In our experiments, we aim to answer the following questions
explicitly:

Q1: Does the learned model identify influencing variables as in
the “Ground truth” network?

Q2: How does the resulting network produced by DN2CN
compare to standard constraint based approaches
qualitatively?

Q3: How does the resulting network produced by DN2CN
compare to standard constraint based approaches
quantitatively?

Specifically, we consider two different types of experiments—
the first on evaluating goodness of the model on the synthetic
benchmark data sets and the second on verifying if the approach
can learn a good causal model on the real data set.

5.1. Setup
In DN2CN, we used a tree depth of 2 for all the experiments. We
set δ as 0.015 for both LUCAS and Asia data sets and 0.25 for the
real T cells data set.

We compare DN2CN to three of the well-known
computational methods for causal discovery (Glymour et al.,
2019). Two of these algorithms are commonly employed
constraint-based algorithms—PC and Fast Causal Inference
(FCI) (Spirtes et al., 2000). The third algorithm is a score-based
algorithm—Fast Greedy Equivalence Search (FGES) (Ramsey
et al., 2017). It must be mentioned that PC, FCI and FGES,
are widely applicable as they handle various types of data
distributions as well as causal relations, given reliable conditional
independence testing methods. We strongly believe that these
attributes make them a strong as well as a fair baseline for
DN2CN as suggested by Glymour et al. (2019).

We further discuss each of the baseline approaches
and their corresponding experimental settings used,
as follows:

• PC algorithm (denoted PC) (Spirtes et al., 2000) starts
with a fully connected undirected graph, tests all possible
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FIGURE 3 | The learned network for (A) Our Approach DN2CN, (B) PC algorithm, (C) Fast Greedy Equivalence Search algorithm (FGES), and (D) Fast Causal

Inference algorithm (FCI) and the summary results on LUCAS data set (best viewed in color). Each node represents a feature and the arcs represent causal

relationships, i.e., X→ Y represents that X is a cause of Y. As can be seen, our DN2CN and FGES had a 100% true positive rate with a 0 false positive and false

negative rates. PC and FCI missed two edges each. PC and FCI also introduced spurious edges (incorrect edge orientation).

conditioning set for every order of conditioning and then
finally orients the edges. Test statistic we used is the mutual
information for PC algorithm, to keep the comparison fair.We
used type I error rate; α = 0.05 in our setting.
• Fast Greedy Equivalence Search algorithm (denoted FGES)

(Ramsey et al., 2017) is an optimized and parallelized version
of an algorithm developed by Meek (Meek, 1995) called the
Greedy Equivalence Search (GES). GES is a CBN learning
algorithm that starts with an empty graph, heuristically
performs a forward stepping search over the space of CBNs
and stops with the one with the highest score. GES finally
performs a backward stepping search that iteratively removes
edges until no single edge removal can increase the Bayesian
score. We use the modified BIC (Bayesian information
criterion) (Schwarz, 1978) score rewritten as ScoreBIC(B :D) =
2L(D; θ̂ ,B)− k log |D|, where L is the likelihood, k the number
of parameters, and |D| the sample size. So higher BIC scores
will correspond to greater dependence.
• Fast Causal Inference algorithm (denoted FCI) (Spirtes et al.,

2000) is a constraint-based algorithm which learns an
equivalence class of CBNs that entail the set of conditional
independencies that are true in the data. FCI then orients the
edges using the stored conditioning sets that led to the removal

of adjacencies earlier. We use the same modified BIC score as
with the other baseline, i.e., FGES algorithm.

For PC algorithm we used the open-source implementation, i.e.,
stable-PC in bnlearn (Scutari, 2009) while TETRAD (Spirtes et al.,
2000) was used to run FGES and FCI algorithms; a reliable tool
for causal explorations. Data set details are presented in section
3 which describes the number of variables and the number of
training examples.

5.2. Results
Recall that our goal is faithful modeling of underlying data. In
addition, we also demonstrate the training log-likelihood of the
learned model for (1) ground truth model, (2) model learnt using
DN2CN algorithm, (3) model learnt using PC algorithm, (4)
model learnt using FGES algorithm, and (5) model learnt using
the FCI algorithm. This is to say that our analysis is qualitative as
well as quantitative.

To answer Q1 and Q2, consider the networks presented
in Figures 3A–D–5A–D, respectively. These are the learned
networks obtained by our approach DN2CN and baseline
methods PC, FGES & FCI summarized together with the ground
truth network. To evaluate the validity of the proposed approach,
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FIGURE 4 | The learned network for (A) Our Approach DN2CN, (B) PC algorithm (C) Fast Greedy Equivalence Search algorithm (FGES), and (D) Fast Causal

Inference algorithm (FCI) and the summary results on ASIA data set (best viewed in color). Each node represents a feature and the arcs represent causal relationships,

i.e., X→ Y represents that X is a cause of Y. As can be seen, our DN2CN and FGES had a 100% true positive rate with a 0 false positive and false negative rates. PC

and FCI both missed two edges. Also, PC introduced two spurious causal edges in the resultant network.

we compared the model arcs with those present in the ground
truth. An arc is correct, if and only if the same arc exists in the
ground truth graph and the orientation of the arc aligns with
the orientation in the ground truth graph; an arc is considered
incorrect, if the arc does not exist in the ground truth graph or if
it exists but its orientation is the opposite of the true orientation.
Hence, in all the data sets, to understand the effectiveness of
DN2CN, motivated by Sachs et al. (2005), Gao and Ji (2015),
and Yu et al. (2019) we summarize the arcs learned by our
method as well as PC, FGES and FCI for each data set using the
following metrics:

• True Edge Rate, is the fraction of the true connections in the
ground truth network that our approach (or PC or FGES or
FCI) captures correctly, i.e., true positive.
• False Edge Count, for connections that are not in the ground

truth network, but which were captured by our approach (or
PC or FGES or FCI), i.e., false positive.
• Missed Edge Rate, is the fraction of the true edges missed in the

ground network by our approach (or PC or FGES or FCI), i.e.,
a false negative.

As can be observed our algorithm DN2CN and baseline
algorithm FGES had a 100% true positive rate with a 0 false
positive and false negative rates in both LUCAS and ASIA data
sets. However, the other baselines methods PC and FCI both
missed two edges in LUCAS as well as ASIA data sets. In

addition, the PC algorithm introduced spurious causal flows in
both LUCAS and ASIA data sets. This clearly establishes that our
framework is indeed capable of retrieving the full causal model
while learning only from the data.

In the real benchmark data set, i.e., Causal Protein-Signaling
Network in human T cells, the ground truth network and the
reconstruction by employing DN2CN, PC, FGES and FCI are
illustrated in Figures 5A–D, respectively. It can be observed
that our approach DN2CN performs significantly better than
all the baselines, i.e., PC, FGES and FCI. DN2CN missed
four edges and introduced four spurious edges. Whereas,
the baseline algorithms PC, FGES, and FCI, had significantly
worse performance with 13, 11, 14 missed edges and 6, 15,
8 spurious ones, respectively. On closer inspection at the
unexpected edges in our acyclic causal model reconstruction,
one can see that they actually explain the data quite well.
Especially, both arcs, PKC H⇒ PKA and Erk H⇒

Akt, can be understood qualitatively in rat ventricular myocytes
(Wilhelm et al., 1997) and colon cancer cell lines (Lemaire
et al., 1997), respectively. However, We hypothesize that, our
DN2CN method missed four causal relationships, that are
all involved in cycles. As BNs are acyclic by definition, our
inference missed these arcs, which is one of the caveats of
this approach. Extending this to dynamic causal bayesian
network to handle feedback loops, remains an interesting future
research direction.

Frontiers in Big Data | www.frontiersin.org 10 October 2020 | Volume 3 | Article 535976

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Ramanan and Natarajan Learning Causal Models

FIGURE 5 | The learned network for (A) Our Approach DN2CN, (B) PC algorithm, (C) Fast Greedy Equivalence Search algorithm (FGES), and (D) Fast Causal

Inference algorithm (FCI) and the summary results on T-Cell data set (best viewed in color). Each node represents a feature and the arcs represent causal relationships,

i.e., X→ Y represents that X is a cause of Y. This is a challenging data set where DN2CN had missed one edge and introduced two spurious edges. PC, on the other

hand, had significantly worse performance with 10 missed edges and four spurious ones.

Table 1 presents quantitative comparisons between the

different methods. In all our experiments, we present the

numbers in bold whenever they are better than all the other

baselines on a data set. It must be mentioned that in some
cases, PC, FGES, and FCI did not yield a directed arc, and we

chose a direction (ensuring acyclicity) to compute the overall

joint log-likelihood on the training set. As can be seen from

the table, the proposed DN2CN approach produces a network

with significantly better joint log-likelihood on the training set
than the baseline algorithms PC and FCI learning method in
all the domains. We can see that FGES has better joint log-
likelihood than DN2CN in T-Cell data set. One key reason
is that the resultant network using FGES is relatively denser
than other models. FGES introduces 14 spurious causal edges
leading to increased likelihood. It is well-known in the Bayes net
learning literature that denser the graph is, higher the training
set likelihood. As can be seen from the table in the Figure 5, the
false edge count of FGES is significantly higher than the other
methods. Hence, the denser network can yield a much higher
training set loglikelihood. This answers Q3 affirmatively: that

TABLE 1 | Table comparing the log-likelihood estimate in CBN learned using

DN2CN and baseline approach, i.e., PC algorithm, Fast Greedy Equivalence

Search algorithm (FGES) and Fast Causal Inference algorithm (FCI) learned directly

from data.

Methods

Data sets Ground truth DN2CN PC FGES FCI

Lucas −12130.83 −12130.83 −12178.59 −12130.83 −12161.49

Asia −22212.85 −22212.85 −22212.85 −22212.85 −23747.1

Sachs −38723.1 −38081.29 −41930.74 −35782.43 −40822.13

Numbers are presented in bold text whenever they are better than all the other baselines

on a data set.

DN2CN is more effective in modeling than the causal method,
such as PC, FGES, and FCI.

6. CONCLUSIONS

We introduced a scalable causal learning algorithm that is capable
of exploiting two types of independencies—context-specific
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independence (CSI) and conditional independence (CI). To
exploit CSI, we learn a single tree for each variable in the model.
Each tree can locally model and capture the CSI. Next, we
orient and remove edges from this potentially cyclic model by
computing the mutual information which allows for capturing
the CIs. The intuition is that these two independence metrics
have previously been explored in the context of causal learning
and combining them will allow for learning a robust causal
model. Our empirical evaluations in the standard data sets
clearly demonstrate that the proposed DN2CN method does
retrieve the true causal model in most of the domains. Most
importantly, it does not introduce a denser model than what
is necessary even if it means sacrificing the training likelihood.
Thus, a natural regularization is achieved by controlling the
depth of the trees and the orienting of edges as against other
information-theoretic methods, such as BIC that employs a
model complexity penalty.

There are several possible extensions of future work—
adapting and applying these models to real problems in
the lines of our previous work (Ramanan and Natarajan,
2019) is an important direction. Developing the theoretical
underpinnings between CSI and CI with causal models is
the next immediate direction. Converting the CSI from
our models to do calculus and employing them in the
context of learning from both observational and experimental
data is another important problem. Finally, allowing for
rich domain knowledge and inductive bias to guide the
learner to a better causal model is possibly the most
interesting direction.
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