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Phishing emails represent a major threat to online information security. While the

prevailing research is focused on users’ susceptibility, few studies have considered

the decision-making strategies that account for skilled detection. One relevant facet of

decision-making is cue utilization, where users retrieve feature-event associations stored

in long-term memory. High degrees of cue utilization help reduce the demands placed on

working memory (i.e., cognitive load), and invariably improve decision performance (i.e.,

the information-reduction hypothesis in expert performance). The current study explored

the effect of cue utilization and cognitive load when detecting phishing emails. A total

of 50 undergraduate students completed: (1) a rail control task; (2) a phishing detection

task; and (3) a survey of the cues used in detection. A cue utilization assessment battery

(EXPERTise 2.0) then classified participants with either higher or lower cue utilization.

As expected, higher cue utilization was associated with a greater likelihood of detecting

phishing emails. However, variation in cognitive load had no effect on phishing detection,

nor was there an interaction between cue utilization and cognitive load. Further, the

findings revealed no significant difference in the types of cues used across cue utilization

groups or performance levels. These findings have implications for our understanding

of cognitive mechanisms that underpin the detection of phishing emails and the role of

factors beyond the information-reduction hypothesis.

Keywords: phishing, decision-making, cue utilization, security, expertise, cognitive load

INTRODUCTION

The Phishing Problem
The accessing of sensitive and personal information by cybercriminals is one of the five most
serious risks facing the world today (World Economic Forum, 2019). The most common way that
criminals access such information is through phishing attacks. Phishing attacks involve the use of
technical mediums, such as emails whereby the sender attempts to engineer a seemingly authentic
communication that induces the recipient to open a malicious link or download a malicious
attachment (Workman, 2008).

Cybercriminals prefer to target the email user directly because they are seen as the weakest link
in the information security chain (Herzberg, 2009). Indeed, when in the workplace email users are
often under time pressure, working to deadlines, and completing multiple tasks at any given time.
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The additional strain placed on information processing is seen as
a contributing factor negatively impacting their judgement and
decision-making capacity (Wang et al., 2012).

The largest phishing-based data breach occurred at Yahoo in
2013. The attack resulted in the loss of the names, birthdates,
phone numbers, passwords, security questions, and backup
email address of all three billion customers and wiped 350
million US dollars off their sale price to Verizon Commination
(Perlroth, 2017). In response to the rising threat of cyberattacks,
organizations around the world spend 114 billion US dollars each
year on cybersecurity products and services (Moore and Keen,
2018). However, despite such efforts, between 10 and 20% of
phishing emails will still reach a user’s inbox (Wombat Security
Technology, 2019). In large organizations, this can amount to
thousands of such emails arriving in employees’ inboxes each
year, each with the potential to seriously disrupt productivity and
damage reputation (Vergelis et al., 2019).

Over the last decade, a broad range of approaches have
explored the reasons why certain users are more susceptible than
others to cyberattacks (Vishwanath et al., 2011; Yan and Gozu,
2012; Jones et al., 2015, 2019; Butavicius et al., 2016; Williams
et al., 2018; Ayaburi and Andoh-Baidoo, 2019). However, little
research has explored the cognitive-perceptual strategies that
users employ when making successful decisions about an email’s
legitimacy, such as the skilled use of cue-based associations
(Wiggins and O’Hare, 2003; Morrison et al., 2013a,b; Morrison
and Morrison, 2015; Wiggins, 2015; Johnston and Morrison,
2016). In the context of phishing detection, cue utilization is
presumed to involve an individual’s capacity to recognize features
within an email that signal (often rapidly and unconsciously)
an attempt to deceive. For instance, when tracking emails users’
eye-movements during an experimental phishing detection task,
Neupane et al. (2015) found that those users who performed
worst on the task spent significantly less time attending to
highly diagnostic cues (e.g., the URL), and more time looking at
irrelevant ones (e.g., the login field).

It is believed that those proficient in the diagnosis of phishing
emails will automatically recognize features that cue useful
patterns from memory, and which “trigger” the rapid retrieval
of a plausible response (i.e., a process of recognition-primed
decision-making; Klein, 1993). The timely recognition of these
patterns will invariably reduce the demands placed on working
memory, with attentional resources being deployed selectively to
task-relevant features in the environment (Haider and Frensch,
1999). Thus, when decision-makers possess a greater capacity
for cue utilization, they have additional cognitive resources
to respond to incoming demands (Ericsson and Lehmann,
1996; Brouwers et al., 2017). This implies that greater levels
of cue utilization may “buffer” against the usually deleterious
impacts of increased cognitive load by reducing the amount of
information in the environment that needs to be processed. Such
a strategy may be particularly useful in the context of phishing
detection, since it is a process often engaged in tandem with
other complex, resource-demanding tasks. Consistent with an
information-reduction hypothesis (Haider and Frensch, 1999),
behavior associated with relatively higher cue utilization is likely
to be associated with higher levels of task performance under

increasing cognitive load (e.g., that arising from an increase in
task complexity).

Study Aims
The current study was designed to test the impact of cue
utilization and cognitive load on email users’ ability to detect
phishing emails under conditions of low, moderate, and high
cognitive load. In this article we extend on the findings
summarized in Nasser et al. (2020) incorporating a more detailed
description of our methodology, as well as additional analyses
exploring the potential relationships between cue utilization and
cue typology.

Conducted in a laboratory setting, participants were asked
to manage their attention between a rail control task on one
computer screen (Brouwers et al., 2017), and a phishing detection
task on another computer screen. Upon completion, participants
also completed task response feedback items to understand what
cues they relied on when making their decisions during the
phishing detection task.

Finally, behavior associated with the utilization of cues
was assessed using the Expert Intensive Skills Evaluation
(EXPERTise 2.0) assessment tool (Loveday et al., 2014).
EXPERTise 2.0 comprises five tasks, each of which is designed
to evaluate behavior associated with the application of cue-
based associations in memory. Since cues are task-specific, an
edition of the tool was developed through the consultation
with cybersecurity experts and incorporated features associated
with phishing emails. EXPERTise 2.0 has been used previously
to delineate behavior associated with higher and lower cue
utilization in fields as diverse a pediatric intensive care (Loveday
et al., 2013b), software engineering (Loveday et al., 2014), and
football coaching (Yee et al., 2020).

Hypotheses and Research Questions
Hypothesis one. Email users’ performance on the phishing
detection task would decline with increasing levels of cognitive
load (low, moderate, and high).

Hypothesis two. Higher cue utilization, as determined by
participants’ performance on EXPERTise 2.0, would be associated
with greater accuracy in detecting phishing emails.

Hypothesis three. An interaction would be evident between
cue utilization and cognitive load where higher cue utilization
would be associated with relatively smaller reductions in
performance as cognitive increased.

Research question one.Does a relationship exist between cue
utilization groupings (higher and lower) and responses to the
various cue typologies (i.e., sender’s email, subject of the email,
URL in the email or text in the email) when determining if an
email was either trustworthy or suspicious?

Research question two. Does a relationship exist between
decision performance groupings (high and low) on the phishing
detection task and responses to the various cue typologies (i.e.,
sender’s email, subject of the email, URL in the email or text in
the email) when determining if an email was either trustworthy
or suspicious?

Frontiers in Big Data | www.frontiersin.org 2 September 2020 | Volume 3 | Article 546860

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Nasser et al. Cues, Cognitive Load, and Phishing

METHODS

Participants
Fifty adult students (35 females, 15 males) were recruited as
a sample of convenience from Macquarie University’s SONA
research recruitment system. The participants ranged in age
from 18 to 45 years (Mage = 20.44, SDage = 4.38). The mean
age for males was 21.07 (SD = 4.21) and the mean age for
females was 20.17 (SD = 4.48). All participants were naïve
to the context of professional cybersecurity and informed that
they were participating in a study exploring how email users
utilize cues to detect phishing threats under conditions of high
workload. In return for their participation, students received
course credit. Voluntary informed consent was obtained from
all, with the research being approved by Macquarie University’s
Human Research Ethics Committee.

Materials
Expert Intensive Skills Evaluation (EXPERTise)

Program Version 2.0
EXPERTise is an online platform that consists of a battery of tests,
each based on empirical investigations of cue utilization. The
different tasks have been individually and collectively associated
with differences in performance at an operational level (Loveday
et al., 2013b). Test–retest reliability (κ = 0.59, p < 0.05) has
been demonstrated with power control operators at 6 months
intervals (Loveday et al., 2014) and with audiologists at 18
months intervals (Watkinson et al., 2018).

As cue-based associations are highly contextualized, domain-
specific phishing stimuli were created for each of the EXPERTise
tasks. For instance, most tasks presented users with images of
emails, some of which held features that may be predictive
of phishing threats (e.g., sender’s address, typographical errors,
prompt for action, etc.). The stimuli were reviewed by a subject-
matter expert in the field of cyber-security. The EXPERTise
battery comprised five separate tasks.

1. The Feature Identification Task (FIT) included a series of 15
phishing emails. Upon viewing each email, participants were
asked to select as quickly as possible whether the email was
trustworthy or untrustworthy. If untrustworthy they were to
click on the part of the email that aroused their suspicion.
If trustworthy, they clicked on the “Trustworthy Email” icon
at the bottom right hand corner of the email. Participants’
optimal use of the available cues in the email would allow for
the rapid identification of its relative trustworthiness. Thus,
higher levels of cue utilization are associated with a faster
response latency for accurate responses (Loveday et al., 2014).

2. In the Feature Recognition Task (FRT) participants were
presented with 10 phishing emails. In contrast to the
previous task, each email would appear for 1,000ms with the
subsequent screen asking the participant to determine, on the
basis of the information they observed, whether the email
was “trustworthy,” “untrustworthy,” or if it was “impossible to
tell.” Given the restriction placed on participants’ information
processing, greater response accuracy is associated with higher
levels of cue utilization.

3. The Feature Association Task (FAT) involves simultaneously
presenting pairs of words for 1,000ms that were related to
cybersecurity. Participants then indicated the extent that the
two terms (e.g., Email and Malware) were related on a seven-
point Likert-type scale (from 1= “Extremely unrelated” to 7=
“Extremely related”). Higher levels of cue utilization attend to
be associated with greater variance in the perceived relatedness
of cybersecurity terms (Morrison et al., 2013b).

4. The Feature Discrimination Task (FDT) asked participants to
read through two unique scenarios relating to an incoming
email and then decide regarding the email’s legitimacy.
Following their decision, participants were presented with a
list of 10 features (such as the date of email, email address and
lack of detail) and using a 10-point Likert-type scale (from 1=
“Not important at all” to 10 = “Extremely important”), were
asked to rate the influences of these features in reaching their
conclusions. Higher cue utilization is associated with greater
variance within the feature-relevance ratings (Pauley et al.,
2009).

5. In the Feature Prioritization Task (FPT) participants
determined whether an email was a phish or not. Information
regarding the sender and email content is broken up into
different segments that are accessible by clicking on separate
tabs. Clicking on a tab would reveal the relevant information
(and close any tabs previously opened). Participants had
30 s to complete their search before they would be required
to decide about the email. This task assesses the capacity
to acquire cues from the environment in a prioritized and
non-linear pattern. Individuals with lower cue utilization are
more likely to select information in the sequence in which
they are presented. Higher cue utilization is associated with
a relatively lower proportion of menu items accessed in the
sequence they were presented (Wiggins and O’Hare, 1995).
The scores are presented as a ratio ranging from 0 to 1, with
lower ratios indicating greater levels of cue utilization.

Rail Control Task
In the rail control task, participants manage the movement
of trains using a simplified simulation (example screenshot
seen in Figure 1; Brouwers et al., 2017). The task consisted
of four green horizontal lines that represent the railway track.
Various intersections occur between these lines (depicted by
white portions displayed on the tracks), with the option to change
the track onto a new line. Trains are depicted as red lines and
assigned either an odd or even three-digit code (e.g., 555, 888).
The first and third train line run from right to left, while the
second and fourth train line run from left to right. The goal is to
ensure that even-numbered trains terminate on even terminals
and odd-numbered trains terminate at odd terminals. To correct
the programmed route of the train, participants must select the
“Change” icon located above each train line. The direction of the
track also appears under this icon. All trains progressed at the
same speed with participants having 7 s to decide whether to re-
route the train. Participants engaged three separate conditions
(each comprising 21 trains), which varied in the number of train
tracks being controlled at any one time. The ordering was linear,
whereby cognitive load progressively increased throughout the
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FIGURE 1 | The simulated rail control task display for the high load condition.

task, which commenced with the top two train lines (low
condition), then the top three train lines (moderate condition),
and finally all four train lines (high condition).

Phishing Detection Task
Phishing emails were taken from Berkeley PhishTank and
modified to an Australian context. The emails included 45
phishing emails and 45 legitimate emails (see Figure 2 for a
sample phishing email). Participants responded to the emails
at their own pace, and the task finished when all three
conditions of the rail control task had been completed. The
participants were required to respond to the emails, which
varied in legitimacy as either: Trustworthy or Suspicious. After
participants made a decision, they selected the Next button at the
bottom of the screen, which opened a new email. This task was
administered through a web-based email client simulator that
was programmed to randomize the presentation of emails for
each participant.

Task Response Feedback
This exercise consisted of two self-reported feedback items about
the phishing detection task. Participants were asked to indicate
from a list the cues in the email that most influenced their
decisions when identifying an email as trustworthy and when
identifying an email as suspicious. These responses included
either the sender’s email, subject of the email, URL in the email
or text in the email (Williams et al., 2018).

Apparatus
Two LG R© IPSTM EA53s Desktop Monitors (24

′′
display size; LG

Display, Yeongdeungpo District, Seoul, South Korea) were used
in this experiment. The monitors connected to two Lenovo R©

IdeacentreTM 310S-07F (Lenovo, Quarry Bay, Hong Kong)
workstations each equipped with 8GB of RAM and running a
Windows 10 operating system. Each computer connected to a
Microsoft R© Optical wired mouse (Redmond, Washington, USA)

that enabled participants to complete the tasks. The screen on
the left of the participant operated the rail control task and the
computer on the right of the participant operated the phishing
detection task. EXPERTise operated through the same computer
as the phishing detection task.

Procedure
The participants completed the study in individual sessions of
1 h. They were seated in front of a desk with the two monitors
positioned at eye level and at an approximate distance of 45 cm
away from the participant. The monitor positioned on the left
operated the rail control task. Prior to its commencement,
participants were taken through a practice simulation of the
low load condition. This task required participants to correctly
re-direct an “odd” number train traveling toward an “even”
numbered terminal. The second train in the practice task did
not require re-directing. After completing the practice run,
participants were asked if they understood the instructions.
If still unsure of the task requirements, the practice task was
repeated. Participants were then informed that the task would
progressively increase in complexity, starting with two active
train lines, then increasing to three active train lines and finishing
with all four train lines active. While no specific information
about the number of trains in each condition was provided, they
were informed the task took 15min to complete.

The computer screen positioned on the right of the participant
was rotated into a vertical position. This position allowed
participants to view and respond to the emails without having
to scroll down the page. Access to the phishing detection
task, required a unique URL link. Prior to completing the
task, participants were instructed that they were to correctly
identify the incoming emails as either “Trustworthy” or
“Suspicious.” Once they had indicated a response, a “Next”
button would appear at the bottom of the screen. This design
allowed participants to respond to emails at their own pace.
Participants were instructed not to attend to the rail control
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FIGURE 2 | An example of a phishing email used in the phishing detection task.

task at the expense of the phishing detection task, and that
equal attention should be directed to both tasks. The task
would finish at the completion of the rail control task (after
15min), at which point they must stop responding to the
email on the phishing detection task. Participants’ performance
on the phishing detection task contained unique timestamps
information for each response. This timecode was used to match
to their decision performance with each corresponding level of
cognitive load.

After completing this task, participants were directed to
complete a series of questionnaires on the computer screen
located to their right. This process began with a task response
feedback question that asked participants to indicate the cue
typology they relied on when identifying emails as either
trustworthy or suspicious. Finally, on the same computer,
participants were instructed to complete EXPERTise, which
operated through an online platform, with each of the five
tasks (FIT, FAT, FDT, FPT, and FAT) accompanied by a detailed
description of the task requirements on the initial screen.
Participants were to independently work through the tasks and
if the descriptions were unclear, to seek additional clarification
from the researcher.

To avoid participants feeling that they were being scrutinized
during the experiment, the researcher positioned himself in a way
that prevented direct observation of their performance.

RESULTS

Data Reduction
Consistent with the process outlined by Wiggins et al. (2019),
EXPERTise raw scores were standardized to z-scores and
aggregated together to create a total EXPERTise score for each
participant. In preparation for a comparison of performance,
a median split was employed to categorize participants as
demonstrating either relatively higher or lower levels of cue
utilization (Wiggins et al., 2019).

Cue Utilization, Cognitive Load, and
Phishing Detection
A 2 × 3 mixed-repeated ANOVA, incorporating two categories
of cue utilization (high and low) as a between-groups variable,
and three levels of cognitive load (low, moderate, and high)
as a within-groups variable examined whether any significant
difference existed in performance on the phishing detection task.
The decision performance values on the phishing detection task
were taken from the efficiency scores, which considered the
number of correctly identified phishing emails as a proportion
of the total number of emails to which participants responded.

The ANOVA results revealed no main effect for cognitive load
on the phishing detection task, F(2,48) = 2.84, p = 0.06 (two-
tailed), ηp

2 = 0.06. As the result was in the opposite direction
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FIGURE 3 | The overall mean performance for high and low cue utilization groups on the phishing detection task (mean scores are in percentages; error bars are

95% CI).

to our hypothesis, a decision was made not to correct the p-value
for one-tail. This means that increases in cognitive load had no
adverse impact on participants’ performance during the phishing
detection task and hypothesis one was not supported. The results
revealed a statistically significant main effect for cue utilization,
F(1, 48) = 4.15, p= 0.02 (one-tailed), ηp

2 = 0.08 (medium effect),
with higher cue utilization (M = 0.54, SE= 0.03) associated with
greater accuracy on the phishing detection task in comparison to
participants with lower cue utilization (M = 0.46, SE= 0.03) (see
Figure 3). This result supported hypothesis two.

As participant could respond to the emails at their own pace
(and therefore, potentially manage their cognitive load via their
rate of response the phishing email task), an independent t-
test was used to test for a difference in the number of emails
reviewed between the higher and lower cue utilization groups.
The results did not reveal a statistically significant difference,
t(48) = −0.31, p = 0.761. The higher cue utilization group
responded to a mean of 40.80 (SD = 14.60) emails and the
low cue group responded to a mean of 39.50 (SD = 15.87)
emails. Hypothesis three explored whether an interaction existed
between cue utilization and cognitive load, and performance on
the phishing detection task. However, the results failed to reveal
any statistically significant interaction between cue utilization
and cognitive load, F(2, 48) = 0.25, p = 0.391. Therefore, there
were no differences in accuracy based on cue utilization and
accounting for differences in cognitive load (see Figure 4).

Participants were asked to indicate what features they relied
on when deciding about the legitimacy of an email. They were
given four cue typology options (text in the email, URL in the
email, subject of the email and senders email; Williams et al.,
2018) to choose from. Participants were directed to choose the
cue they deemed the most trustworthy and a separate question
to indicate the cue they deemed most suspicious. Two, two-way
Chi-square analyses measured if a relationship existed between
(1) cue utilization groups and suspicious cue typology and/or (2)
between cue utilization groups and trustworthy cue typology. An
examination of the assumptions for expected frequency revealed
that more than 20% of the counts were <5. Therefore, any

subsequent interpretation of the results must be reviewed with
a degree of caution (Field, 2017).

The first two-way Chi-Square analysis revealed no significant
relationship between cue utilization groups and suspicious cue
typologies, χ2

(3, N=50)
= 1.10, p= 0.753. Furthermore, the second

two-way Chi-Square revealed no significant relationship between
cue utilization groups and trustworthy cue typology χ

2
(3, N=50)

=

3.30, p= 0.349.
The following two-way Chi-square analysis focused on

decision performance groups. Performance groups were derived
from the mean efficiency scores on the overall task. A median
split created a high (above the median) and low (below the
median) decision performance groups. An examination of the
assumptions for expected frequency revealed that more than 20%
of the counts were <5. Therefore, any subsequent interpretation
of the results must be reviewed with a degree of caution
(Field, 2017). The results revealed no significant relationships
between high or low performers on the phishing detection task
and responses to suspicious cue typology χ

2
(3, N = 50)

= 6.13, p

= 0.105. A final Chi-squared analysis revealed no significant
relationships between high or low decision performance on the
phishing detection task and trustworthy cue typology χ

2
(3, N = 50)

= 4.88, p= 0.299.

DISCUSSION

The current study tested the effects of cue utilization and
cognitive load on the detection of phishing emails. The purpose
was to investigate the decision-making strategies of skilled email
users when formulating accurate assessments as to the legitimacy
of an email.

Cognitive Load
Contrary to the hypothesis, email users’ performance on the
phishing detection task was not adversely impacted by increasing
levels of cognitive load (low, moderate, and high). Instead, the
results indicated a trend whereby performance on the phishing
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FIGURE 4 | The mean performance on the phishing detection task for high and low cue utilization groups across the three levels of cognitive load (error bars are 95%

CI).

task increased with each additional level of cognitive load. The
observed trend may be due to a practice effect on the rail control
task (Falleti et al., 2006). All participants began the task with
the low load condition and progressively increased to the high
condition. The initial exposure to the low load condition is likely
to have familiarized participants with the task and naturally
improved their performance on the subsequent conditions,
despite increases in task demands. Furthermore, the improved
performance suggests that the cognitive load task might not have
been sufficiently challenging to disrupt participants’ cognitive
resources. Instead, the task may have increased participants
arousal to a level that improved decision performance. Indeed,
Jackson et al. (2014) explored the relationship between cognitive
load, arousal and performance on a cognitive task. They found
low levels of cognitive load reduced arousal and performance
and that high levels of load led to an overload of cognitive
resources and reduced performance (Cassady and Johnson,
2002). However, if exposed to moderate levels of cognitive load,
participants arousal increased to a level that optimized decision
performance on the cognitive task (Derakshan and Eysenck,
2010). Another possible explanation is that while germane load
was manipulated in relation to the complexity of the task
(Morrison et al., 2015), we did not assess any other measure of
cognitive load. Alternative measures would give an indication
of the relative load experienced by participants (e.g., pupil
dilation from an eye-tracker). This data would be beneficial
in establishing a more precise picture of the overall effect of
cognitive load.

Cue Utilization
Consistent with the hypothesis, higher cue utilization was
associated with greater accuracy in discriminating phishing from
non-phishing emails. This suggests that behavior associated with
the utilization of cue-based associations in memory is associated

with an increased likelihood in detecting phishing emails while
undertaking a concurrent task.

These results are broadly consistent with previous research
where the detection of phishing emails is presumed to be
dependent upon the capacity to identify key features, such
as spelling and email addresses that signify the possibility
that an email is untrustworthy (Williams et al., 2018). These
results are also consistent with previous editions of EXPERTise,
where a greater capacity for cue utilization increased decision
performance in aviation pilots (Wiggins and O’Hare, 2003),
power system controllers (Loveday et al., 2013a), software
engineers (Loveday et al., 2014), air traffic controllers (Wiggins
and Loveday, 2015), and drivers (Brouwers et al., 2017).

Cue Utilization, Cognitive Load, and
Phishing Detection
Hypothesis three was not supported insofar as no interaction was
evident between cue utilization and cognitive load. The result
suggests that performance on the phishing email task was not
due to differences in the capacity of participants with higher cue
utilization to better manage the cognitive load associated with the
rail control task, but was due possibly to an inherent capability
to either recognize or maintain an awareness that enabled the
discrimination of phishing from non-phishing emails (Loveday
et al., 2014; Brouwers et al., 2017).

These results have implications for an explanation of phishing
email detection based on an information-reduction hypothesis
(Haider and Frensch, 1999). Indeed, it suggests that alternative
theoretical perspectivesmay be involved, including the possibility
that respondents are making judgements based on a template or
prototype of trustworthy emails, and/or the detection of phishing
emails is dependent upon a heightened level of awareness
for features that characterize emails that are untrustworthy.
However, an alternative explanation is that the advantage of cue
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utilization was not evident due to the limited number of features
contained within a phishing email. Previous studies that have
observed the benefits of the information-reduction hypothesis
typically contain complex and dynamic environments with
several task-relevant and task-irrelevant features to discriminate
between (Wiggins, 2015). In Schriver et al. (2008) expert pilots
were able to moderate their attention toward the most diagnostic
cues when presented with a dense environment that included
a range of relevant and non-relevant cues. These results were
supported by Morrison et al. (2013b), where expert criminal
investigators were able to decompose a complex crime scene
and attend to the task-relevant cues that contained the most
predictive validity to identify the unknown offender. Therefore,
the narrower window of assessable features within an email
means that participants might not rely on cues to minimize load
since the nature of the phishing emails only requires minimal
attentional resources.

Cue Typology and Performance
The investigation into whether a relationship exists between cue
utilization groups (higher and lower) or decision performance
groups (high and low) and responses to the various cue typologies
(i.e., sender’s email, subject of the email, URL in the email
or text in the email; Williams et al., 2018) resulted in no
significant findings. The results indicate that when high cue
utilizers were determining whether an email was trustworthy
or suspicious, they were not relying on a specific phishing-
related cue. Moreover, when ignoring cue utilization groups, and
classifying participants by their performance on the phishing
detection task, the results were the same. This seemingly
indicated that all participants were considering the same cues,
with the majority relying on the text within the email as a
trustworthy cue. These findings support the claim that the
perceptual-cognitive skill in the cybersecurity domain may be
different to other areas (Brams et al., 2019). Thus, in contrast
to other domains (e.g., pilots or criminal investigators; Schriver
et al., 2008; Morrison et al., 2013b), skilled performance does
not appear to be as reliant on the acquisition of a specific
set of highly diagnostic cues. Instead, difference are seemingly
due to other aspects of cue-utilization behaviors, which were
effectively captured via the EXPERTise 2.0 battery. However, due
to design limitations, any conclusions should be interpreted with
some caution. The concept of cue utilization is associated with
automatic, intuitive and unconscious processing (Klein, 1993),
and asking participants to select the cues they employed from a
list renders the data vulnerable to rationalization (Kelley et al.,
2003).

Limitations
In addition to the limitations discussed previously, a further
notable limitation of the current work was the use of an equal
number of phishing and legitimate emails in the Phishing
Detection Task. Most users will receive far fewer phishing
emails than legitimate ones. As such, the ratio adopted may be
problematic when considering a truth-default theory in human
communication (Levine, 2014). However, achieving realistic
base-rates in an experimental design is challenging, as it would
require participants to assess a significantly greater number of

emails overall. Future studies may wish to address this limitation,
as well as other experimental artifacts that may impact the
generalizability of the findings to real-world environments.

Additionally, certain artifacts may have influenced the way
participants engaged with the experiment (Landsberger, 1958;
Finn and Jakobsson, 2007; Nichols and Maner, 2008). This
included informing the participants about the research aims
prior to their participation and conducting the experiment in a
laboratory setting. These factors have been shown to naturally
arouse suspicion levels and induce System 2 (i.e., analytical)
cognitive processing (Caputo et al., 2014; Oliveira et al., 2019).
Moreover, participants had no time constraints when completing
the phishing detection task. The freedom provided participants
ample time to assess the contents of the email, which naturally
increases decision performance (Jones and Towse, 2018). Jones
et al. (2019) found users are more likely to fall victim to a
phishing email when under time pressure than when no time
pressure was applied. The authors reasoned that time pressures
forced participants to rely on their intuitive judgment, which is
more prone to error. When conducting our experiment, these
factors may have combined to create an artificial environment
that induced more rational decision-making styles. Indeed,
in naturalistic settings users typically employ System 1 (i.e.,
intuitive) processing when falling victim to a phishing attack
(Dennis and Minas, 2018; Jones et al., 2019).

Finally, as the “low” cognitive load level was presumed to
induce a negligible degree of cognitive load on participants,
the study’s design did not incorporate a control group (i.e., a
group of participants only tasked with the phishing email task).
However, it should be noted that there may still exist differences
in performance based on the mere presence of secondary task,
irrespective of the degree of demands placed on participants
during the task. Future studies would benefit from the inclusion
of such a group in their design.

Conclusion
The current study provides an exploration of the cognitive
processes associated with decision making in cybersecurity. We
found an improvement in phishing email detection based on
participants’ degree of cue utilization. These results provide
support for the proposition that the detection of phishing
emails is based on the recognition of specific features that
reflect untrustworthy emails. The use of cue-based training
interventions has proven effective in other domains (e.g.,
Morrison et al., 2018), and these findings imply potential value
in their adoption in the cyber-security domain.
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