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Background: The blood transcriptome is expected to provide a detailed picture of

an organism’s physiological state with potential outcomes for applications in medical

diagnostics and molecular and epidemiological research. We here present the analysis of

blood specimens of 3,388 adult individuals, together with phenotype characteristics such

as disease history, medication status, lifestyle factors, and body mass index (BMI). The

size and heterogeneity of this data challenges analytics in terms of dimension reduction,

knowledge mining, feature extraction, and data integration.

Methods: Self-organizing maps (SOM)-machine learning was applied to study

transcriptional states on a population-wide scale. This method permits a detailed

description and visualization of the molecular heterogeneity of transcriptomes and of

their association with different phenotypic features.

Results: The diversity of transcriptomes is described by personalized SOM-portraits,

which specify the samples in terms of modules of co-expressed genes of different

functional context. We identified two major blood transcriptome types where type

1 was found more in men, the elderly, and overweight people and it upregulated

genes associated with inflammation and increased heme metabolism, while type 2 was

predominantly found in women, younger, and normal weight participants and it was

associated with activated immune responses, transcriptional, ribosomal, mitochondrial,

and telomere-maintenance cell-functions. We find a striking overlap of signatures shared

by multiple diseases, aging, and obesity driven by an underlying common pattern, which

was associated with the immune response and the increase of inflammatory processes.

Conclusions: Machine learning applications for large and heterogeneous omics data

provide a holistic view on the diversity of the human blood transcriptome. It provides a

tool for comparative analyses of transcriptional signatures and of associated phenotypes

in population studies and medical applications.

Keywords: self-organizing maps, omics and phenotype integration, age, lifestyle and obesity, gene expression,

immune response, subtypes
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INTRODUCTION

Blood is the pipeline of the human organism’s physiology. The
accessibility andminimal invasiveness during sampling has made
it a feasible resource in scientific research and clinical diagnostics
as they could replace more invasive and risky tests (Sohn,
2017). Because of utility and simplicity, blood transcriptome
investigations on genome-wide scales have gained in popularity
over the past few years. They were applied in a medical context
for characterizing diseases such as ischemic stroke (Baird et al.,
2015), Alzheimer’s disease (Rembach et al., 2013), epilepsy
(Karsten et al., 2011), sepsis (Davenport et al., 2016; Burnham
et al., 2017; Scicluna et al., 2017; Hopp et al., 2018b); in
pharmacogenomics (Burczynski and Dorner, 2006) and marker
search (Hanash et al., 2011); and also in epidemiological
investigations on aging (Peters et al., 2015), obesity status
(Johannsen et al., 2010; Homuth et al., 2015), lifestyle factors
such as smoking and alcohol consumption (Dumeaux et al.,
2010), special nutrition (Burton et al., 2018), and in immune
system characterization (Chaussabel et al., 2010) (see Chaussabel,
2015 and references cited therein for a broad literature survey).
Most of these studies comprise of relatively small sample sizes of
dozens to a few hundred individuals and they focus on selected
diseases thus enabling only limited views on the variability of
transcriptomic states and the mutual associations with health
phenotypes in a broader context.

We here present the systematic analysis of the transcriptomes
obtained from whole peripheral blood specimens of more than
3,000 adult individuals collected as part of the LIFE (-adult) study
at the Leipzig Research Center for Civilization Diseases. This
project conducted one of the largest cross-sectional population
studies in Germany focusing on extensive phenotyping of urban
individuals from Leipzig city in order to discover the interplay
between molecular, environmental, and lifestyle factors and their
impact on the health status of the population (Loeffler et al.,
2015). The large number of phenotype characteristics collected
in LIFE in parallel to blood samples from the same participants
such as disease history, medication status, lifestyle factors, and
body mass index (BMI) offers the option to study their mutual
associations for women and men over an age range from about
40 to 80 years (Loeffler et al., 2015) (Table 1).

Our study aims at characterizing the diversity of
transcriptional states of the blood transcriptome and their
impact in terms of cellular functions and at studying associations
with age and health-related features, so-called phenotypes,
such as obesity, smoking, disease history, and medication

status. From a methodical point of view, integrative analysis

of molecular “omics” features and of phenotypes challenges

the computational analysis framework (de Meulder et al.,
2018). We have previously developed an omics “portrayal”
methodology based on self-organizing maps (SOM) machine
learning which takes into account the multidimensional nature
of gene regulation and pursues a modular view on co-expression,
reduces dimensionality, and supports visual perception by
delivering “personalized,” case-specific transcriptome portraits
(Wirth et al., 2011; Binder and Wirth, 2014). This method
has been applied to a series of data types and diseases (Hopp

et al., 2015b; Kunz et al., 2018; Bilz et al., 2019; Loeffler-
Wirth et al., 2019; Nikoghosyan et al., 2019), among them a
study on the blood transcriptomes of sepsis patients framed
with pneumonia (Hopp et al., 2018b). In this publication we
extend this approach to a much larger data set comprising
the blood transcriptomes of thousands of nominally healthy
individuals and of associated phenotype data. Figure 1 provides
a schematic overview: SOM-portrayal permits a detailed
description and visualization of the molecular heterogeneity
of transcriptional states and of their association with different
phenotypes. Our approach is expected to provide a detailed
view of the blood transcriptome of a healthy population
as a function of age, sex, and obesity status. It provides a
methodical framework applicable to large data sets in the
context of personalized medicine with potential impact
for applications in medical diagnostics and molecular and
epidemiological research.

MATERIALS AND METHODS

LIFE-Adult Study and Phenotype
Characteristics
The LIFE (-adult) study performed extensive phenotyping of
more than 10,000 urban individuals from Leipzig city (Loeffler
et al., 2015). The study was approved by the ethics board
of the Medical Faculty of the University of Leipzig. In this
publication we analyzed transcriptomic data of whole peripheral
blood (WPB) samples, which were obtained from 3,388 adult
participants of the study. They roughly divide equally into
women and men covering an age range between about 20 and
80 years with a strong bias toward elderly persons (Table 1).
The LIFE-adult study overall collected a broad survey of more
than 20,000 lifestyle and health items (see Loeffler et al., 2015
for details). We made use of selected lifestyle characteristics
of the participants such as smoking behavior and alcohol
consumption, medication according to ATCs (Anatomical
Therapeutic Chemicals) indexing and disease history of the
participants collected via questionnaires, blood count data
from clinical laboratory including selected serum markers, and
body mass index (BMI) (Table 1 and Supplementary Table 1

for details). A list of items and abbreviations used is provided as
Glossary in Supplementary File 1.

Blood Transcriptome Sampling, Microarray
Measurements, and Data Preprocessing
We made use of pre-processed gene expression data extracted
from WPB samples of individuals as provided by the LIFE
database. Participant’s recruitment, blood collection, storage
and mRNA preparation, microarray measurements, and
primary data pre-processing was realized by different groups
of the LIFE center (Loeffler et al., 2015). WPB was collected
in tempus blood RNA tubes (ThermoFisher, Waltham, MA,
USA) and stored at −80◦C until further processing. RNA
was isolated and then hybridized to Illumina HT-12 v4
Expression BeadChips (Illumina, San Diego, CA, USA) and
measured on an Illumina HiScan device. Raw probe level
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TABLE 1 | Participant’s characteristics of the LIFE-adult study used in this publication for association with the blood transcriptome (see also Supplementary Table 1 in

Supplementary File 1 for further details).

Features Men Women Comment

Number of participantsa 1,618 1,510

Age (mean ± SD) 58.1 ± 12.4 59 ± 13 Years

Smoker/Ex-smoker 1,000 e) 701

<30 g alcohol per day 633 218

Features Symbol # men Mean age

(± SD)

# women Mean age

(± SD)

Description

(BMI in units of kg/m2)

BMI status uwt 14 39±9 42 46±10 Underweight BMI < 18.5

nwt 375 53±15 492 54±12 Normal weight 18.5 < BMI < 25

Pre obese 590 60±12 443 60±12 25 < BMI < 30

Obese 411 63±11 311 61±11 30 < BMI

Features

Blood

Countb
Basophils; eosinophils, erythrocytes; hematocrit; hemoglobin; leucocytes; lymphocytes; mean corpuscular hemoglobin;

mean platelet volume; monocytes; neutrophils; reticulocytes; platelets

Blood Serum

markers

Human serum C-reactive protein; ferritin; transferrin; cystatin C

Medicationc Alimentary tract and metabolism; blood and blood forming organs; cardiovascular system; dermatologicals; genitourinary

system and sex hormones; systemic hormonal preparations, excl. sex hormones and insulins; anti-infective for systemic

use; antineoplastic and immuno-modulating agents; muscular-skeletal system; nervous system; antiparasitic products,

insecticides, and repellents; respiratory system; sensory organs; various

Disease

historyd
Angina pectoris; arthrosis; asthma; cancer; cataract; depression; diabetes; glaucoma; gout; heart attack; hepatitis;

hyperlipidemia; hypertension; hzoster; rheuma; sepsis; thyroid

aFor the detailed description of the LIFE-adult study see (Loeffler et al., 2015).
bAnalyses using clinical laboratory (Loeffler et al., 2015).
cMedications taken within the last 5 days before the LIFE-core program visit. Medication was classified according to Anatomical Therapeutic Chemicals (ATCs) indexing, https://www.

whocc.no~/atc_ddd_index/).
dDisease history of the participants was assessed in questionnaires (Loeffler et al., 2015).

data were extracted using Illumina GenomeStudio and then
further pre-processing including batch correction, outlier
and missing value removal, log-transformation, quantile
normalization, and centralization of the expression value of
each gene using an in-house pipeline as described in detail
in Supplementary Methods (Supplementary File 1) was
undertaken. The final transcriptome data consists of more than
48,000 probe IDs including the expression values of 19,049 genes
for each of the individuals.

Self-Organizing Maps (SOM)
Transcriptome Portrayal
Pre-processed expression values were analyzed using the
oposSOM pipeline, available as the R-package “oposSOM”
(Löffler-Wirth et al., 2015). It uses SOM neuronal network
machine learning to translate the high-dimensional expression
data of N = 19,049 gene transcripts into K = 10,000
metagene expression data per individual (Wirth et al., 2011,
2012). Each metagene represents a “micro”-cluster of co-
expressed genes showing mutually similar expression profiles
across the samples. Metagenes were arranged in a 100 ×

100 two-dimensional grid coordinate system and colored
according to their expression level for each sample thus
providing a “personalized” image of the blood transcriptome
of each individual studied (Supplementary Figure 1A, for

Supplemenatry Figures see Supplementary File 1). Size of the
SOM was chosen to be virtually insensitive for a downstream
analysis task regarding, e.g., the number of spots based on
previous systematic adjustments of the method (Binder and
Wirth, 2014). Mean portraits of transcriptome classes (see below)
were calculated by averaging metagene expression values over
all portraits of the respective group. Default color scale (red
to blue for maximum to minimum expression, respectively)
of the portraits uses log-expression values of the metagenes
(Wirth et al., 2011). The diversity of the sample portraits was
visualized using a graph representation called a “correlation
network” as implemented in “oposSOM” (Löffler-Wirth et al.,
2015). Downstream analysis of the SOM-portraits then provides
quantitative features such as modules and lists of co-regulated
genes and information about gene functions using enrichment
techniques (see next subsections) together with statistical
evaluation as described previously (Wirth et al., 2011, 2012)
and implemented in the oposSOM software (Löffler-Wirth et al.,
2015).

“Spot” Clustering of Co-expressed Genes
and Stratification of Samples
Metagenes of similar profiles clustered together forming
“spot-like” red and blue areas of over- and under-expression
in the portraits due to the self-organizing properties of the
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FIGURE 1 | Schematic overview about portrayal approach applied in this study: subject-matched transcriptome and “phenotype” data of the LIFE-adult study were

analyzed using SOM machine learning to obtain “personalized” transcriptome portraits. They were used for classification, gene-module extraction, and functional

interpretation. Phenotype features such as blood cell counts or BMI provided phenotype (vs.-transcriptome correlation) portraits. For phenotypic features analyzed in

this study see Table 1.

SOM. Each of the spots represents a cluster of mutually
correlated genes (Supplementary Figure 1B). The spots were
detected using a distance-metrics criterion making use of
Euclidean distance between neighboring metagenes, where
metagenes of maximum mutual distances form closed, halo-
like lines around the “spots” (Vesanto, 1999) (see D-map in
Supplementary Figure 1B for illustration). The spot expression
patterns obtained represents a characteristic fingerprint of
each particular sample. Lists of genes included in each of the
spot modules and lists of enriched gene sets were provided as
Supplementary Excel tables together with statistical information
(Supplementary Tables 2–4 in Supplementary File 1 and
Supplementary Files 3, 4, respectively). The overall collection
of spot-modules detected are major nodes of the co-expression
network derived from the sample series (see the spot correlation
and implication networks in Supplementary Figures 1B,C,
respectively). Spot selection criteria were developed and

described previously (Wirth et al., 2011, 2012; Binder and
Wirth, 2014) and applied and proven in numerous publications
to provide reasonable results (Binder et al., 2014, 2017;
Cakir et al., 2014, 2017; Hopp et al., 2015b,c; Hopp et al.,
2018a,b; Gerber et al., 2017; Kunz et al., 2018; Arakelyan
et al., 2019; Loeffler-Wirth et al., 2019; Nikoghosyan et al.,
2019). Based on the spots detected in the transcriptome
portraits we stratified the samples into appropriate groups.
First, the portraits were divided into 33 so-called combinatorial
pattern-types (cPATs), each defined by a certain unique
combination of over-expressed spots as described recently
(Loeffler-Wirth et al., 2019) (Supplementary Figure 2A).
Using the cPATs we estimated the tentative number of groups
(Supplementary Figures 2A–C) and used them subsequently
in a K-means clustering run, which stratifies the portraits
into three major transcriptome types and nine subtypes (STs,
Supplementary Figures 2A–C). The transcriptome strata were
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further characterized by detailed statistics about spot appearance
(Supplementary Figures 2C,D) and verified by random splits
of the cohort into training and verification subsets, resampling,
and subsequent classification using support vector machine
(Supplementary Figure 3).

Function Mining
We applied a gene set analysis to the lists of genes located in each
of the spot modules to discover their functional context using
a right-tailed Fisher’s exact test as described previously (Wirth
et al., 2012). In addition, the gene set enrichment z-score (GSZ)
was used to evaluate the impact of the gene sets in the different
transcriptomic strata (Wirth et al., 2012). The GSZ-metrics
considers the mean expression of the gene set normalized by
its variance, i.e., it provides high values for homogeneous gene
sets reflecting the activation of biological functions with high
relevance for the respective transcriptional states. Gene set maps
complement this analysis by visualizing the position of the gene
of a set within the SOM grid. According to their degree of
accumulation in or near the spots, one can deduce their potential
functional context (Wirth et al., 2011).

Phenotype Portrayal
Phenotype information of the participants comprises their blood
cell and marker counts, BMI and information about their
lifestyle (smoking and alcohol consumption), and medication
and disease history (Table 1 and Supplementary Table 1).
The enrichment of categorical phenotypic characteristics in
each of the transcriptomic classes (types and subtypes) were
estimated using a one-tailed Fisher’s exact test and visualized
as enrichment heatmaps. Phenotype-to-metagene correlation
maps were generated by correlating each of the phenotype
parameter-profiles over all participants with each of themetagene
expression profiles. For categorical phenotypes, correlation maps
were obtained by calculating the point biserial correlation
between the expression profile of each metagene and the
respective phenotype profile. Point serial correlation de facto
provides the difference of portraits between blood transcriptomes
showing the respective phenotype and all others. The matrix
of correlation coefficients obtained was visualized in the SOM-
grid as “phenotype” portraits using a red-to-blue (maximum-to-
minimum correlation) color-code. The metagene of maximum
correlation coefficient was marked in the SOM-grid of a
phenotype overview map. Expression of each of the spots was
fitted using multiple regression with the phenotype values of the
participants of each of the categories as variables. Standardized
regression coefficients and their p-values were then visualized as
heatmaps (Supplementary File).

Availability of Data and Software
Processed transcriptomic data of this study are available as
“SOM-data” via the Leipzig Health Atlas under the link https://
www.health-atlas.de/data_files/76?version=1 and https://www.
health-atlas.de/som_browser/201611_LIFE_Transcriptome/
Summary.html (pdf and html reports). Data can be interactively
discovered using the oposSOM browser functionality available
under https://www.izbi.uni-leipzig.de/opossom-browser/ and

https://apps.health-atlas.de/opossom-browser/?dataset=6. Raw
expression data and participants information can be requested
from the LIFE Consortium (www.life.uni-leipzig.de/en/). The
oposSOM program (Löffler-Wirth et al., 2015) is available
under https://rdrr.io/github/hloefflerwirth/oposSOM/.

RESULTS

The Blood Transcriptome Splits Into Three
Types
SOM analysis provided one portrait for each of the 3,388 LIFE-
adult participant’s WPB transcriptomes (Supplementary File 2

and Supplementary Figure 1A). For the stratification of samples
we made use of the so-called combinatorial spot patterns
approach (cPATs, see also next subsection), which largely
reduces the dimension of the data, and subsequent clustering
as described in detail previously (Loeffler-Wirth et al., 2019),
in the methods part and in Supplementary Figure 2. The
associated cluster tree is shown in Supplementary Figure 2A

and Figure 2A. Overall, we identified three major strata of
transcriptomes called type 1, type 2, and type M (q = 0.003,
Anova; classification error: 10% of samples after resampling
and SVM-based re-classification, see Supplementary Figure 3B).
The pairwise correlation map illustrates the similarities between
the types in terms of Pearson’s correlation coefficients between
the expression portraits (Figure 2A). Type 1 and type 2 show
pronounced anti-correlated expression portraits while type M
forms an intermediate group. The network presentation reveals
that WPB transcriptomes of type 1 and type 2 split into separate
clusters while typeM samples overlap between them (Figure 2B).
The functional context of activated genes were estimated using
gene set analysis (Figure 2A, part below). Type 1 was associated
with functional categories related to oxygen transport, heme
metabolism, neutrophil accumulation, and repressed chromatin
states of T cells while the type 2 group was related to immune
response, transcriptional activity, T cell accumulation, and active
chromatin states (see below). A higher percentage of men were
found in type 1 (29% vs. 19% for women) while this reverses for
type 2 (percentage of women: 37% vs. 51%; Figure 2C). Type 1
was more populated with elderly persons compared with type 2,
while the distribution with age was different between women and
men (Figure 2D). The composition of types for women changed
virtually monotonously with a steadily increasing percentage of
type 1 in contrast to men, who showed a maximum of type
composition in the age range of 50–55 years. Note also that the
age dependence of typeMmore resembled that of type 1 than that
of type 2 which suggests a functional correspondence between
types M and 1 (see below). The type-composition of men and
women was virtually independent of BMI (body mass index)
except for very obese persons (BMI > 35 kg/m2) which seemed
to be more present in type 1 transcriptomes (Figure 2D).

Taken together, we identified two major blood transcriptome
types and an intermediate type partly resembling type 1. Type 1
included more men, elderly participants, and upregulated genes
associated with inflammation and increased heme metabolism,
while type 2 included more women and younger participants.
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FIGURE 2 | Stratification of the blood transcriptome into three types: (A) The pairwise correlation heatmap divides the samples into three transcriptome types

according to the mutual correlations between their SOM expression patterns. The part below associates the samples of all three types to selected functional categories

by means of gene set overexpression. The samples are sorted into clusters according to different combinatorial pattern types (cPATs) which gives rise to the striped

patterns in the map (see below). (B) Network presentation of the similarity relations illustrates that the samples of type 1 and type 2 form almost separate data clouds

while type M overlaps with both. (C) Stratification of the samples into women and men shows essentially similar correlation heatmaps and thus similar expression

patterns. Women however are more frequently found in type 2. (D) The composition of types changes with age in a gender specific way but does not with BMI (body

mass index). The percentage of type 2 women permanently decreases with age while the relative amount of type 2 men older than 55 years again increases.

It was associated with activated immune responses and
transcriptional activity. The composition of types changes in a
gender- and age-specific fashion.

A Modular Map of Gene Activation
Clusters of genes with correlated expression profiles appear
as red spot-like areas in the transcriptomic portraits, which
indicate their overexpression in the respective samples
(Supplementary Figure 1A). Overall we identified 13 suchmajor
overexpression spots and labeled them with capital letters A–M
(Figure 3A, for spot lists of genes see Supplementary Table 3

and Supplementary File 3 and for enriched gene sets
Supplementary File 4). It roughly divides into two major

areas containing spots predominantly upregulated either in
type 1 (and partly also type M) or type 2 samples, respectively,
and a third area with mixed spot assignment as illustrated by
mean portraits of the transcriptomic types (Figure 3B), the
spot profiles (Figure 3C and Supplementary Figure 4), and
their correlation network (Figure 3D). Gene maps indicate
the positions of genes taken from selected functional gene
sets within the SOM grid of metagenes (Figure 3A). For
example, genes upregulated in erythrocytes and platelets
accumulate in spots C and N (up in type 1), respectively,
while genes associated with mitochondrial function and
RNA processing are found in spot E and G. Signature genes
of T cells and of ribosomal function accumulate in and
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FIGURE 3 | The landscape of the blood transcriptome: (A) The spot overexpression summary map shown in the center of (A) provides an overview about

spot-clusters of co-expressed genes labeled with capital letters A–M. The map divides into areas, which contain spots upregulated predominantly in type 1 and type 2

(Continued)
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FIGURE 3 | transcriptomes, respectively. A selection of gene sets illustrates the functional context of the spots by showing their profiles and gene maps. These maps

indicated the location of the genes of the respective gene set by dots. Their accumulation in and near spot areas are shown by arrows and dashed ellipses (see also

Table S2). The expression profiles of the gene sets reveal their distinct up and downregulation in the different sample types. (B) Profiles of the spots are shown as

heatmaps together with their major functional context (see also Table S 2). (C) The correlation map indicates positive and negative correlations between the spots by

red and blue lines, respectively. Correlations were calculated using the weighted overlap measure (Hopp et al., 2013). (D) Mean portraits of types and subtypes (STs)

reveal the mutual up and downregulation of genes located in different parts of the map. (E) Samples of different STs accumulate in well-separated data clouds in the

similarity net.

near spots I and J (up in type 2). Spot H accumulates the
signature of CD4 cytotoxic T lymphocytes (CTLs) including
the marker genes GZMA and PRF1, which were recently found
to be associated with extreme longevity (Hashimoto et al.,
2019). Genes with functions in interferon (IFN) response
accumulate in spot L without preferential upregulation
in one of the three types. Differential gene expression
analysis between the types revealed a considerably larger
number of genes upregulated in type 1 compared with type 2
(Supplementary Figure 5).

Typically, each of the individual sample portraits show
more than one spot, which reflects the parallel activation
of different transcriptional programs and/or their mutual
couplings. We subsume frequently observed combinations
of expressed spots as so-called combinatorial pattern types
(cPATs) using a method described previously (Loeffler-Wirth
et al., 2019). Overall we identified 33 cPATs, which were
then used to sub-stratify each of the major transcriptomic
types into three subtypes (STs, annotated by 1.1, 1.2, 1.3,
M.1, M.2, M.3, and 2.1, 2.2, 2.3, respectively) differing
in their mean expression portraits (Figure 3D) and spot
expression (Figure 3B and Supplementary Figure 2). Part
of the spot profiles show marked expression differences
between the STs (e.g., spots A, B, D, F) while others
change continuously (e.g., spots H- J). Most of the spots
upregulate either in type 1 or 2 samples. Interestingly,
spot F enriching genes encoding ribosomal subunit S26
proteins showed specific expression patterns with strong
upregulation in part of STs without preference to either
type 1 or type 2. Spot co-occurrence analysis indicates that
adjacent spots are often observed together, but also spots
from different areas can co-occur, especially in samples of
type M, which supports their intermediate position between
type 1 and type 2. Part of the STs are dominated by samples
expressing only one spot while others, especially of type M,
show a broader distribution owing to more heterogeneous
expression patterns (Supplementary Figure 2C). The sample
similarity net indicates that most samples of the different
STs accumulate into well-localized clouds reflecting their
mutual similarity (Figure 3E and Supplementary Figure 2F).
The ST-composition is virtually age-independent except ST
1.1, which collects an increasing percentage of men and
women at an age above 65 years (Supplementary Figure 6).
In summary, the diversity of transcriptional states can be
described by the combinatorics of about one dozen modules
of co-expressed genes of different functional context,
which decompose each of the transcriptional types into
three subtypes.

Footprints of Functions: Cellular Programs,
Infections, Telomeres, and Epigenetics
Next, we performed functional analysis of the transcriptome
strata using gene sets taken from the functional categories
“biological process” (Subramanian et al., 2005) (Figure 4A),
“hallmarks of cancer” offering disease characteristics
in a more general context (Liberzon et al., 2015)
(Supplementary Figure 8), “telomere maintenance” (Barthel
et al., 2017), and “epigenetic states” (Figures 4A–E). Telomere
expression signatures were chosen because mean telomere
length in blood cells is associated with lifestyle and disease
characteristics. In human leukocytes it negatively correlates
with lifespan and BMI (Rode et al., 2015; Gielen et al.,
2018) and it associates with heart diseases, type 2 diabetes,
cancer (Oeseburg et al., 2010; Haycock et al., 2014; Polonis
et al., 2019), lifestyle factors (Townsend et al., 2016),
diet (Leung et al., 2018), and psychological stress (Epel
and Prather, 2018). Hence, we are interested whether
genes with telomere functions activate differently in the
transcriptomic types or not. Moreover, such expression
changes might reflect changed chromatin organization leading
to altered cell function in type 1 compared with type 2 as
discussed, e.g., as epigenetic mechanisms accompanying
aging (Ciccarone et al., 2018) and inflammation (Busslinger
and Tarakhovsky, 2014; Daniel et al., 2018; Ray and Yung,
2018; Lorente-Sorolla et al., 2019) and are associated with
changes of DNA-methylation and histone-marks governing
gene activity.

Profiling function-signatures splits them into two major

clusters either upregulated in type 1 (marked with green color in

the figures) or type 2 (apricot color), respectively. Gene signatures

taken from the gene ontology category “biological process”

reveal that type 2 associates with the activation of cell cycling,

MYC-target genes, oxidative phosphorylation (oxphos), while

inflammation, hypoxia, coagulation, reactive-oxygen species,
and the pathway signaling of TNFalpha-, TGFbeta-, PI3K-

Akt-MTOR-, and IL6-JAK-Stat3 activate in type 1. A third
cluster (blue color) accumulates signatures related to interferon
(IFN) response, which eventually suggests an association with
viral infections (Figure 4A). We analyzed expression signatures
derived recently to differentiate between bacterial and viral
infections (Néemeth et al., 2003; Foster et al., 2007; Coates
et al., 2008; Pena et al., 2014; Andres-Terre et al., 2015; Sweeney
et al., 2016) (Figures 4B,C, respectively). The former signatures
associated with the “inflammatory” spots A, O, and M, which
were upregulated in type 1 samples. In contrast, viral signature
genes accumulated strongly in the IFN-response spot L, which
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FIGURE 4 | Functional characteristics and previous signatures of the blood transcriptome: (A) Signatures of the GO-term biological process (BP) roughly group into

processes upregulated in type 1 (green), type 2 (apricot color), and in samples showing high expression in all types (blue) (see also Supplementary Figure 7). (B)

(Continued)
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FIGURE 4 | Gene signatures associated with bacterial (Néemeth et al., 2003; Foster et al., 2007; Coates et al., 2008; Pena et al., 2014) and (C), with viral infections

(Andres-Terre et al., 2015; Sweeney et al., 2016) associate with distinct spots in the SOM and profiles. Clustering of samples reveals that about 30%/13% of

specimens had elevated levels of transcriptomic footprints of bacterial/viral infections. (D) Signatures of telomere length maintenance (TM) taken from GO-repository

(Subramanian et al., 2005) and a meta-analysis of cancer induced TM (Barthel et al., 2017). Both signatures activate in type 2 (spots I, J) where the cancer-derived

signature also contained genes located in spot M associated with inflammation (see also Supplementary Figure 9). (E) Expression of genes assigned to different

epigenetic states of healthy blood cells (see Roadmap Epigenomics Consortium et al., 2015) reflects that transcriptionally active states (active promoters and

transcribed genes) upregulate predominantly in type 2 while repressed states become upregulated in type 1 that suggests their reprogramming into active ones (see

also Supplementary Figure 10). (F) Expression signatures extracted from the blood transcriptomes of sepsis patients framed within community acquired pneumonia

(CAP) (Hopp et al., 2018b) also express clear footprints in the LIFE-adult cohort. (G) A repertoire of functionally annotated transcriptional modules (Altman et al., 2019)

reveals agreement with our typing scheme. The heatmap of the 50 most variant modules indicates concerted regulation with our types where modules overexpressed

in type 1 further split into 3 clusters C1–C3 associating with specific ST expression patterns. Interestingly, modules which upregulate in type 2 show a less diverse

cluster structure (see also Supplementary Figure 14). (H) Correlation between spot expression profiles and signature expression of a collection of 22 blood cell

compounds taken from Cibersort (Newman et al., 2015). They upregulate either in type 1 or type 2 blood transcriptomes or resemble the IFN-response characteristics

(dendritic cells and macrophages M1). These patterns are commonly found also for collections of other signatures thus reflecting major features of the intrinsic

modular structure of the blood transcriptome (see Supplementary Figure 15). GSZ-patterns differences (red vs. blue) refer to q < 10−3 (Anova, B–E) and spot

differences (F, p < 10−9, t-test).

was found upregulated in about 10% of all samples. Next, we
studied genes which are involved in telomere length maintenance
(TM) via activation of telomerase. TM-genes were more active
in type 2 transcriptomes, which suggests that they strongly
counteracted telomere shortening in younger (and healthier)
individuals (Figure 4D). TM expression was associated with
cell cycle activity, starvation, oxidative stress, aging, DNA-
methylation, and other functions related to spots I and J
indicating mutual coupling between TM and our transcriptome
types (see also Supplementary Figure 9).

Next we analyzed the expression sets of genes assigned
to distinct chromatin states in blood cells under healthy
conditions, among them T-, B-,and T-regulatory-cells
(Figure 4E and Supplementary Figure 10). States involving
genes with an active promoter (TssA) and a completed
transcription (Tx) were expected to show high expression,
while repressed promoter states were expected to show
low expression levels. This relation was indeed observed in
type 2 transcriptomes, however it reversed in type 1. This
reversal suggests de-repression of nominally repressed states
and repression of active states in type 1 transcriptomes by
epigenetic chromatin re-modeling. We recently demonstrated
that differentiation and adjustment of cellular programs
are governed by subtle cooperation of transcription factor
(TF-) networks and epigenetics, e.g., via regulation of the
polycomb repressive complex 2 (PRC2) and its targets
(Thalheim et al., 2018). We found that signatures related
to TF-networks regulate cell function requiring relatively
high expression levels of their major regulatory genes such
as cell cycle, oxphos, and transcription predominantly in
type 2 transcriptomes (Supplementary Figure 11). On the
contrary, repressive epigenetic signatures related to PRC2
function, repressive histone (H3K27me3) marks, and DNA-
methylation antagonistically changed compared with those of
the TF-networks. Interestingly, these profiles show moderate
and low expression levels according to the accumulation of
their signature genes in the central region of the map. On
the other hand, we found an asymmetry of differentially
regulated genes and functions, namely a markedly larger
number of genes (Supplementary Figure 5) and spot-modules

(see below) which upregulated in type 1. It suggests a more
distributed and heterogeneous network of transcriptional
regulation under epigenetic control in type 1. In summary,
type 2 transcriptomes were associated with cell cycle, oxphos-
metabolism, telomere maintenance, and immune system activity
regulated mainly via transcription factor networks, which
become repressed in type 1 transcriptomes in parallel with
epigenetic de-repression of inflammatory cellular programs
including responses to infections.

Previous Gene Expression Signatures of
the Blood Transcriptome
Next, we analyzed a series of expression signatures taken
from previous, independent studies of blood transcriptomes
(Chaussabel et al., 2008; Peters et al., 2015; Hopp et al., 2018b;
Altman et al., 2019) in our data to assign previous functional
annotations, to draw parallels between blood transcriptomes
of healthy and diseased individuals, and to also verify our
data and classification scheme in the light of independent
data. Modules of co-regulated genes taken from Chaussabel
et al. (2008) well-agreed with our spot clusters and further
specified functional interpretation in terms of associated
blood compounds such as cytotoxic plasma-, T and B cells
(upregulated in type 2) and erythrocytes, platelets, neutrophils,
and cells of myeloid lineage (up in type 1) (Figure 3A
and Supplementary Figure 12). Another study extracted aging
signatures of the blood transcriptome (Peters et al., 2015).
Genes of decreasing expression (“age_dn”) accumulated near
spots I and J (up in type 2) while genes of increasing
expression (age_up) were found in wider areas around spots
A, M, and H (up in type 1) (Supplementary Figure 13).
This asymmetry of the numbers of spots suggests that
age_up involves a more heterogeneous collection of molecular
mechanisms than age_dn (see below), which is also supported
by the larger number of genes differentially upregulated
(Supplementary Figure 5). Another set of signatures was
obtained recently in a study of the blood transcriptomes collected
from patients of sepsis framed with CAP (community acquired
pneumonia) (Hopp et al., 2018b) (Figure 4F). These signatures
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FIGURE 5 | Association of selected features (phenotypes) with the transcriptome landscape of blood: (A) Phenotype (correlation) portraits visualize the correlation

between metagene expression profiles and the profiles of selected phenotypes in a red-to-blue color scale. The correlation overview maps for each of the categories

mark the metagene of maximum correlation coefficient for each of the phenotypes studied [see the legend in (C) and also Table S 1 for assignment of phenotypes].

(Continued)
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FIGURE 5 | (B) Distribution of samples of each of the phenotypes among the transcriptome types. Obese men and men consuming alcohol (>30 g/day) accumulate

(red circles) in type 1 transcriptomes. Also participants with different disease histories enrich in type 1 in a gender-specific fashion while medication is most prevalent in

women of type 1. Type 2 and type M refer to underweight and normal weight women and to smoking men, respectively. Enrichment of blood count data is provided in

Supplementary Figure 20. Correlation maps and further details are presented for each of the phenotype categories in Supplementary Figures 21–25.

surprisingly corresponded to signatures of nominally healthy
individuals, e.g., patients with less severe CAP show signatures
of type 2 transcriptomes, and while more severe CAP cases
show type 1 transcriptomes associating partly with the activation
of inflammatory and endotoxin tolerance characteristics (Hopp
et al., 2018b).

Next, we made use of a repertoire of 382 functionally
annotated expression modules extracted from a recent meta-
analysis of the blood transcriptomes of 16 disease and
physiological states (Altman et al., 2019) (Figure 4G and
Supplementary Figure 14). Clustering of these signatures sub-
stratified them into three of type 1-like clusters which were
strongly affected by spot O (C1 in Figure 4G), A (C2), or
C (C3), respectively. Their profiles resemble those of the
different severe CAP transcriptomes and reflect inflammatory
signatures, which are modulated by increased and decreased
erythrocyte (spot C) and thrombocyte (spot N) activation
patterns, respectively. Further, the 382 modules provided a
rich repertoire of functional annotations, which supported the
interpretation of our data (see example profiles in Figure 4G and
Supplementary File 5 for the full set of profiles). For example,
age_dn modules agreed with DNA-methylation signatures in the
blood. Methylation of CpG’s in the promoters or enhancers upon
aging obviously repressed the transcription of the respective
downstream gene (see also Supplementary Figure 1), which is
in agreement with the finding that altered methylation sites
enrich in aging genes (Peters et al., 2015). Moreover, we found
strong enrichment of 91 of these modules in at least one of our
spots (Supplementary Figure 14A). Hence, the spots provided a
sort of basis set of co-regulated genes, which further expanded
into a rich collection of functional annotations of different
categories via a multitude of combinations as considered by our
cPATs (see above).

Correlation analysis of different previous blood signature sets
(Chaussabel et al., 2008; Newman et al., 2015; Peters et al., 2015;
Hopp et al., 2018b; Altman et al., 2019) and our spot profiles
provide very similar patterns in support of the assumption
of a common modular structure of the blood transcriptome
(Figure 4H and Supplementary Figure 15). Particularly, the
independently obtained signatures split into two groups either
positively correlating with our spot-signatures upregulated
in type 1 or positively correlating with our spot-signatures
upregulated in type 2 transcriptomes, respectively. Importantly,
this result reflects the strikingly similar characteristics of the
blood transcriptomes as seen by independent studies and verifies
our blood types in the light of independent data sets.

In summary, the comparison of previous blood signatures
with our data show that our spot-modules represent a
sort of minimum set describing co-expression of the blood
transcriptome. It expands into a rich collection of functional

annotations including molecular mechanisms, cellular programs,
and cell types but also lifestyle factors, diseases, and aging effects
and, finally, it verifies our blood types using independent data.

Blood Cell Signatures and Seasonal Effects
Gene sets implemented in blood cell deconvolution algorithms
such as Cibersort (Newman et al., 2015) show the characteristic
correlation patterns also observed in the other blood signatures
(compare Figure 4H and Supplementary Figure 16). They
link the expression patterns of 22 blood cell types with
our spot profiles. Elevated expression (and cell fractions,
Supplementary Figure 17) of monocytes, neutrophils, and
eosinophils was observed in type 1 transcriptomes while overall
expression of T and B cells were upregulated in type 2. Expression
of M1 macrophages and dendritic cells associate with the
IFN-response signature (spot L). Furthermore, signatures of
monocytes, M0, and M2 macrophages were also enriched in
spot L, however in combination with the inflammatory spot O,
supporting the pro-inflammatory impact of these cells.

Recent studies report seasonal changes of gene expression
of the blood transcriptome and of blood cell counts (de
Jong et al., 2014; Goldinger et al., 2015). We found a
slight shift of transcriptome characteristics toward type 1 in
winter compared with summer, both for men and women
(Supplementary Figure 18). It was characterized by increased
expression levels of inflammation (spot A) and erythrocyte
expression (spot C) and counts and decreased levels of
thrombocyte characteristics (spot N) and reticulocyte and
eosinophil counts (Supplementary Table 5 in Supplementary
File 1). Overall, the seasonal changes of type compositions were
relatively small (<3% in men and 1% in women) and were not
considered further.

Phenotype Portrayal: Blood Cell Counts,
Lifestyle, Medication, and Disease History
Previous blood transcriptome studies also extracted gene
signatures which were associated with health-related features
such as BMI (body mass index) and smoking status and
also with the development of different diseases such as
heart failure (Tan et al., 2002), dental caries (McLachlan
et al., 2005), schizophrenia, and neoplasms (Altman et al.,
2019). We find that they predominantly upregulate in type
1 transcriptomes showing characteristics of aging and/or
inflammation (Supplementary Figure 19). The LIFE-adult
study provided a series of features characterizing health
and lifestyle of the participants in terms of the so-called
phenotypes (Supplementary Table 1). We associated them
with the blood transcriptomes in a participant-matched fashion
using phenotype portraits, which typically showed areas of
positive (colored in red) and negative (in blue) correlation
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between phenotype features and expression profiles in the
transcriptome landscape with metagene resolution (Figure 5A,
and for details Supplementary Figures 21–25). For example,
phenotype associations with expression patterns of type 1
(red in the lower left part of the map) or type 2 (red in the
upper right part) can be distinguished. In addition, overview
maps were generated for each of the phenotype categories,
which mark the metagene of maximum (and minimum)
correlation for each of the phenotypes studied. The enrichment
of phenotypes was evaluated in terms of the distribution
of cases among the transcriptome types (Figure 5C, for
enrichment significance evaluation using Fishers exact test see
Supplementary Figures 21D–25D).

We found that most blood count data correlate either with
type 1 (e.g., erythrocytes, reticulocytes, platelets, neutrophils)
or type 2 (lymphocytes) transcriptomes in agreement with the
blood cell transcriptomes analyzed above. Smokers, alcohol
consumers (>30 g/day), obese and elderly people, men, and
participants taking different categories of medication according
to the ATC (Anatomical Therapeutic Chemicals) classification
and also participants with different self-reported lifetime diseases
show preferences for type 1 (and partly type M) transcriptomes
while younger, under- and normal-weight participants, women,
and non-consumers of medication associated preferentially with
type 2. The degree of correlation with metagene expression was
markedly higher for blood counts compared with the other
phenotypes (Figure 5C).

Part of the blood count portraits indicated fingerprint-like
correlation patterns specific for the different blood compounds
(Figures 5A,B, Supplementary Figures 20, 21, and Figure 4H).
The portraits of the phenotypes of the other categories partly
resembled those of blood counts, this way reflecting close
association between them. For example, the “aging” portrait
(visualizing the correlation between age and transcriptome)
can be understood as the superposition of the red blood cell
(RBC)- and neutrophil (NE)-phenotype portraits indicating the
increased levels of RBC and NE in elderly people (see next
subsection). The “alcohol consumption” portrait also resembled
the RBC-portrait while smoking revealed an eosinophil (EO)-
like pattern. Increased eosinophil counts in smokers associated
with lung function were reported for humans (Jensen et al., 1998;
Higuchi et al., 2016) and in mouse models (Botelho et al., 2011).

Part of the medication and disease history portraits can
be interpreted similarly. Namely they reflect the fact that
increased usage of medication and incidences for diseases
are more prevalent in elderly people (see the mean age data
of each of the phenotypes listed in Supplementary Table 1)
and consequently were associated with increased RBC-
and NE-levels and decreased lymphocyte (LY) counts
(Supplementary Figures 24, 25).

Other phenotype portraits, e.g., those of different age ranges
(see next subsection) and of different medications, cannot be
simply interpreted as composites of the blood count portraits.
For a more detailed view we performed correlation and multiple
regression analysis to estimate the particular effect of phenotypes
on spot expression (Supplementary Figures 21C–F, 25C–F). We
found a close relationship between high correlation coefficients

and significant contributions of phenotype-coefficients (p <

10−6) especially for spots located in the lower left and upper right
corners of the map. These refer, first of all, to age, obesity, gender,
RBC, and white blood cell (WBC) counts, and LY, medications
of the groups C (cardiovascular system) and B (blood forming
organs) and the previous diseases HL (hyperlipidemia), DIA
(diabetes), HT (hypertension), and CAN (cancer).

In summary, phenotype portrayal visualizes fine structures
of the effect of health and lifestyle factors on the blood
transcriptome. They reflect alterations of blood cell composition
and presumably also the specifics of the transcriptional
programs activated in the different cells. The transcriptome
types (and subtypes) resolve the heterogeneity of blood
transcriptomes while the spot modules provide a metric
for its quantification. Overall, the phenotype portraits
enable an intuitive, perception-based interpretation in
terms of function and mutual associations between the
different features.

Portrayal of Aging
Aging and alterations of the BMI are accompanied by changes
of the composition of transcriptome types in a gender-specific
fashion (Figure 2D). Functional analysis shows that expression of
type 1_up transcriptomes gains with age while the expression of
type 2_up decays on average (see the plots of age-ranked samples
in Supplementary Figures 7–13, all showing enrichment of type
2 transcriptomes at younger ages and of type 1 transcriptomes
at higher ages). Plots of spot expression as a function of age
and BMI reveal further details (Figure 6A). Spot expressions
related to red blood (spot C) and platelet (spot N) characteristics
increase as a function of age and BMI with differences between
the mean LOESS-curves for men and women (compare the red
and blue curves) in correspondence with the blood count data
(Supplementary Figure 20). In turn, the expression curves of
spots related to immunity (I and J) decay with age and BMI in
a nearly sex-independent fashion. On the other hand, the curves
show similar courses at different levels for the transcriptomic
types, which suggests type-independent aging tendencies. The
aging curves are partly non-linear where the slopes get steeper
for ages above 55–60 years (e.g., for spot A and I, indicative
for inflammation and immune response, respectively) or above
65–70 years (spot L, IFN response), which suggests altered
mechanisms in elderly people above certain age thresholds.
Importantly, individual expression values of the spots show high
variance about the LOESS-curves largely exceeding the mean
changes observed over the age range studied between 40 and
80 years. This result suggests that the inter-individual variability
of the activity of underlying molecular programs exceeds the
intra-individual changes upon aging. Recent longitudinal follow-
up studies on different molecular markers indeed show that
inter-individual age-dependencies strongly scatter about the
mean aging curve and presumably better describe aging trends
than the overall curve (Alpert et al., 2019; Ahadi et al.,
2020).

Note also that the scattering of individual values about the
LOESS-curve is larger for spots showing increasing expression
with age (e.g., spots A, C, and N) than for spots of decaying mean
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FIGURE 6 | Aging and BMI characteristics of the blood transcriptome: (A) Expression of selected spots as a function of age and BMI. Separate LOESS (local

weighted scatterplot smoothing) fits for women and men (red and blue curves) and for types 1, M, and 2 visualize mean spot expressions as a function of age and

BMI. The course is mostly non-linear and change slope at different turning points (see arrows). (B) Genes from previous aging sets (Peters et al., 2015) spread either

over a heterogeneous (age_up) or a more homogeneous (age_dn) distribution of spots (letters and dashed circles). The latter set correlates with the expression of

spots I and J (correlation plots at the right). (C) The overall aging portrait (of correlations between the ages of the participants and the transcriptome “metagene”

landscape) roughly can be understood as superposition of (increasing with age in red) RBC- and NE-like fingerprints and (decreasing with age in blue) LY-patterns.

Stratification into decade intervals shows that NE-fingerprints apply mainly to elderly people (>60 years) while elevation of RBC is relevant mostly for participants

younger than 60 years. (D) Portraits of different BMI strata reveal the continuous change from type 2 (under- and normal-weight participants) to type 1 (obese)

transcriptomes. (E) Selected blood cell count and serum marker portraits reveal fingerprint-like patterns. Characteristic “landmark” spots are indicated by dashed

circles and the respective spot letters.

expression (e.g., spots I, J) which is in parallel with the larger
heterogeneity of associated processes (see below). Gene maps
of previous aging signatures (Peters et al., 2015) also revealed

an asymmetrical distribution of aging_up and aging_dn genes
(Figure 6B). The latter ones accumulated within a narrow area
in and around spots I and J in the right upper corner of the map
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giving rise to strong correlations between signatures’ expression
and that of these spots. Deactivation of associated cellular
functions such as immune response, telomere maintenance,
and/or ribosomal andmitochondrial activities with age obviously
proceed homogenously, presumably driven via mechanisms
such as DNA hyper-methylation (Supplementary Figure 14). In
contrast, aging_up genes distributedmuchmore heterogeneously
between different spot-regions where each of them showed a
specific profile of expression gaining with age (see curves of
spots A, O, N, M, L, and H in Figure 6A). Aging is obviously
accompanied or even driven by the activation of a multitude
of inflammatory mechanisms involving different molecular and
cellular components (see spot characteristics), which combine in
a patient-specific fashion giving rise to a relatively heterogeneous
aging_up signature.

The mean aging portrait (“all ages” in Figure 6C) corresponds
to the distribution of aging_up and aging_dn genes of the
aging signature (Peters et al., 2015) (compare the respective
gene set maps with the red and blue areas in Figure 6B,
respectively). Moreover, the aging portrait can be roughly
interpreted by the superposition of increasing RBC- and
NE-like (positive correlation in red, see Glossary below
and in Supplementary File 1) and decaying LY-like (negative
correlation in blue) contributions (compare with the cell count
portraits in Figure 6E) in agreement with the increase/decrease
of the expression of the respective landmark spots C, O, and I,
J, respectively. Inspection of gender- and age (decade)-stratified
portraits revealed that elderly women and men (>60 years)
are similarly affected by an increase of NE- and IFN-related
(found especially for subtype M.3) characteristics while the
RBC-like pattern (typical for subtype 1.3) is more pronounced
for mid-aged men (40–60 years). Hence, mean spot signatures
show either increasing or decreasing expression with age
where the former was associated with inflammatory processes,
red blood cell transcriptional characteristics, de-repression
of epigenetically repressed cellular programs, and a higher
variability of individual data compared with the decaying curves,
which, in turn, associated with decaying immune response and
telomere maintenance.

Obesity and Serum Markers
The mean BMI-portrait (“all BMI” in Figure 6D) shows
characteristics of type 1 transcriptomes without the NE-like
patterns and the elevated expression of spot L (IFN-response)
observed in the respective aging portrait. Interestingly, the BMI-
stratified portraits “switch” from type 2 into type 1 for obese
women and men (BMI > 30 kg/m2), due to gained (positive)
correlations between BMI and inflammatory (spot A), RBC-
(spot C), and platelet (spot N) characteristics, on one hand, and
decaying immune response (spots I, J) expression signatures on
the other one. Interestingly, this behavior is possibly associated
with the so-called obesity-paradox claiming that an intermediate
BMI about 25 kg/m2 is associated with minimum health risk
(Wild and Byrne, 2016) and thus switches from positive to a
negative effect of increasing BMI on health.

For further comparison, we generated phenotype (correlation)
portraits of four selected serum protein markers (Figure 6E).

The portraits of hsCRP (human serum C-reactive protein) and
of cytostatin C reflect footprints of inflammation (spot O) and
IFN-response (spot L) in the blood transcriptomewere associated
with NE-like patterns of the blood counts. The portrait of ferritin
closely resembled that of RBC reflecting correspondence between
the level of stored iron and erythrocyte expression (spot C). The
transferrin portrait revealed a different patterns associating with
the diminished spots O (inflammation) and especially L (IFN-
response) and the enhanced spot N (thrombocytes), possibly due
to the role of platelets in iron transport (Brieland et al., 1989).
In summary, aging and obesity associate with characteristic
alterations of the blood transcriptome reflecting a fine interplay
between inflammatory and iron physiology as mediated by
molecular (as IFN-response), cellular (e.g., WBC and RBC), and
serum protein compounds.

DISCUSSION

We “portrayed” the diversity of the blood transcriptome of a
cohort of more than 3,000 nominally healthy adult individuals
included in the Leipzig Health “LIFE-adult” Study in terms
of intuitive SOM-images and classified them into three major
transcriptome types. The expression patterns decomposed into a
minimum set of modules of co-regulated genes. Their functional
impact can be interpreted based on the results of previous
blood transcriptome studies. Finally, we associated the blood
transcriptomes with a series of phenotype-features collected in
the study for the same participants such as age, obesity-status,
blood cell count, disease history, and medication by means
of phenotype portraits. Overall, machine learning provided a
comprehensive characterization of the diversity of the blood
transcriptome taking into account the whole spectrum of
transcriptional states on a population-wide scale in the context
of health and lifestyle factors.

Overall, the strength of the study consisted in the large and
novel set of molecular and associated phenotype data and in the
comprehensive description of the blood transcriptome in terms
of a holistic approach, which extracts, describes, and visualizes
the multidimensional relationships between intrinsic modes of
variation and their associations with health and lifestyle factors.
Its limitations, on the other hand, can be seen in the fact
that the visualization capabilities partly mask the evaluation of
rigor and stringency in comparing different conditions, which
require separate ways of presentation. Another limitation is the
solely cross-sectional design, which impedes full entanglement of
relations between individual and population-averaged trends.

SOM-Portrayal Reduces Dimensions of the
Blood Transcriptome
Dimension-reduction and feature extraction are important issues
in high-throughput data analysis (Binder et al., 2015; de Meulder
et al., 2018). Our machine-learning approach reduces the
dimensionality of data into a handful transcriptome types and
subtypes (Binder and Wirth, 2014). Their expression patterns
were governed by about one dozen expression (spot-) modules
in close correspondence and agreement with previous signatures
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of the blood transcriptome (Chaussabel et al., 2008; Peters
et al., 2015; Hopp et al., 2018b; Altman et al., 2019). Moreover,
data portrayal transforms high-dimensional data landscapes
into easy-to-interpret images. Their visual inspection strongly
supports analytic tasks on different levels of stratification
ranging from individual “personalized” to subtype- and type-
averaged expression portraits. Our study thus provided a sort
of album of transcriptomic “faces” of the LIFE participants
(Supplementary File 2). Importantly, the phenotype portrayal
projects low dimensional features such as age or BMI onto
the high-dimensional transcriptome landscape, which generates
highly granular correlation images serving as a “fingerprint” of
the respective phenotype.

The tree in Figure 7A illustrates the similarities between the
subtype portraits, which are virtually linearly arranged along a
common backbone. The portraits at the left and right margins
(type 1-vs.-type 2) differ mainly in the antagonistic expression
of genes located in opposite corners of their portraits. Our
analysis thus uncovered a striking simplicity of the transcriptome
at the coarsest level of approximation. It reflects characteristic
alterations of transcriptional programs referring to different cell
components, namely a decrease in signatures of myeloid-lineage
cells and an increase of signatures of lymphocytes from the
left to the right. The transcriptional (spot-) modules diversify
these basic patterns in a subtype-specific fashion. Namely it
indicates continuous expression change along the subtypes
related to immune response (spots I, J) and cytotoxic cells
(H) with potential impact for longevity, and, in addition,
also subtype-specific expression related to erythrocytes and
platelets (C, N) giving rise to gender-specific differences. A
third category shows the activation patterns spread over all
subtypes related to IFN-response reflecting partly viral infections.
It increases, on average, in elderly people especially above
65 years.

Footprints of Aging, Telomere
Maintenance, and Epigenetics
On a cross sectional population scale our data provide
information about aging between mid-life (30–50 years) and
elderly (70–80 years) women and men. In addition to the
systematic changes of inflammation characteristics and immune
response, aging relates to epigenetic factors and to telomere
length dynamics (Figure 7B). Telomeres serving as protective
nucleoprotein structures that cap the ends of chromosomes
shorten systematically with age in result of repeated cell divisions
(Mather et al., 2010). Telomere maintenance mechanisms
counteract this process and thus their activation can be
indicative for counteracting cell aging (Shawi and Autexier,
2008; Codd et al., 2013). We found that the expression of genes
involved in the telomerase-maintenance pathway (Nersisyan
et al., 2019) were more active in type 2 transcriptomes, which
associated with younger and healthy individuals. The drop
of telomere maintenance activity in type 1 transcriptomes
indicates that aging and the worsening of health status is
associated with the weakening of telomere maintenance, which
associates with the shortening of leukocyte telomere lengths

in the course of age-related diseases (Oeseburg et al., 2010;
Haycock et al., 2014). Moreover, decay of telomere length
with age (Lapham et al., 2015) resembles the decay of the
amount of type 2 transcriptomes with age. Women, having
a higher fraction of type 2 transcriptomes with activated
telomere maintenance mechanisms possess on average longer
telomeres than men (Gardner et al., 2014; Lapham et al., 2015).
Overall, a cell’s ability to maintain telomeres is associated with
better immune responsibility and a general health constitution
especially in younger, non-obese, non-smoking, and non-alcohol
consuming people.

Our analysis also emphasizes the importance of epigenetic
mechanisms, particularly of chromatin (re-) organization for
changes of the blood transcriptome. We found a pronounced
mutual switching between type 1 and type 2 transcriptomes
using gene expression of nominally repressed and activated
chromatin states in blood cells as an indicator of gene activity.
This result suggests that part of active states in type 2 become
repressed in type 1 and vice versa, that part of repressed states in
type 2 become activated in type 1. Hence, part of the expression
changes observed were associated with changed chromatin
organization leading to altered cell function as discussed in
the context of aging (Ciccarone et al., 2018) and inflammation
(Busslinger and Tarakhovsky, 2014; Daniel et al., 2018; Ray and
Yung, 2018; Lorente-Sorolla et al., 2019). DNA-methylation is
typically linked to chromatin states by different mechanisms
(Hopp et al., 2015a,c). Indeed, DNA-methylation signatures
change expression in parallel with the chromatin state signatures
particularly between type 1 and type 2 transcriptomes. The
DNA-methylation maintenance methyltranferase DNMT1
is part of the type2_up (spot J) signature showing decaying
expression with age and correlating with the DNA-methylation
signature (Supplementary Figure 14). This finding supports
previous assumptions that aging methylation signatures,
so-called DNA-methylation clocks, reflect the activity of
the epigenetic maintenance system (Horvath, 2013). Note
however, that there is only weak correlation between DNA-
methylation and transcriptome age predictors, which were
obtained independently (Peters et al., 2015). Transcriptomic
and the epigenetic predictors describe probably different aspects
of biological aging. One possible reason can be seen in the
fact that transcriptomic and epigenetic mechanisms partly
decouple upon aging in a similar way as reported for cancer
development (Hopp et al., 2018a; Binder et al., 2019) and cell
differentiation (Thalheim et al., 2018). Coupled transcription,
DNA-methylation, and telomere length epidemiological studies
are required to better disentangle the relationship between these
features of the blood transcriptome (Bell et al., 2019).

Transcriptome typing and modularization describes the effect
of age and BMI on the blood transcriptome, and in a wider
context, on a human’s physiology via association with lifestyle
characteristics. The percentage of type 1 transcriptomes in the
population relating to inflammation gains with age and, to a less
degree, with BMI in a non-linear, gender-specific fashion. It is
known that obesity is associated with leukocytosis representing
a state of chronic low-grade inflammation (Herishanu et al.,
2006; Johannsen et al., 2010), which, in turn is considered
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FIGURE 7 | Portrayal of the blood transcriptome: (A) The similarity tree reflects a virtually linear arrangement of subtypes due to a continuum of transcriptional states

ranging from type 1 to type 2. Selected phenotype portraits illustrate correlation of the respective features with the transcriptomes of different types. (B) Main functions

and phenotypes associating with the transcriptome types.
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a driver of many age-related disorders (inflammo-aging) (Wu
et al., 2015). We found a striking overlap of signatures shared
by multiple diseases, aging, and obesity driven by an underlying
common pattern in agreement with (Wang et al., 2016). We also
found an agreement with the blood transcriptomes of patients
suffering from severe sepsis framed by community acquired
pneumonia (Hopp et al., 2018b), which revealed tree axes of
variation, namely an inflammatory-vs.-immune response one
(endotoxin tolerance, cytotoxic cells), a “blood-disturbance” axis
including mostly erythrocyte and thrombocyte characteristics,
and the IFN-response axis. They combine in different relations
where the number of states is higher in type 1 compared
with type 2 transcriptomes. This asymmetry reflects multi-
factorial activation mechanisms potentially accompanying aging,
disease development, and unhealthy lifestyle factors such as
smoking and alcohol consumption (see Peters et al., 2015 and
Supplementary Figure 13). On the other hand, these results
suggest that the diversity of the blood transcriptome is governed
by a relatively high inter-individual variability along these axes
on a first level. Age- and lifestyle-related systematic trends form a
second layer, which is further modulated by the actual health (or
disease) status of the individuals, e.g., in the case of severe sepsis
by the strong activation of inflammatory signatures (Hopp et al.,
2018b). Recent longitudinal studies revealed that individuals are
more similar to their own expression profiles later in life than to
profiles of other individuals of their own age (Alpert et al., 2019;
Balliu et al., 2019; Ahadi et al., 2020). Individual aging patterns,
so-called “ageotypes” can be defined on the basis of molecular
pathways that changed over time in a given individual reflecting
personal aging as a result of personal lifestyle and medical history
(Ahadi et al., 2020). Longitudinal follow-up studies over different
age ranges are required to study individual “life-courses” of the
blood transcriptome and their impact for lifetime-risk prediction.

CONCLUSIONS

Machine learning offers a promising option to analyze omics
data sets in the epidemiological context. We characterized the
human blood in terms of transcriptome types and functional
gene modules and their association with health-, lifestyle- and
age-related phenotypes. It has impacts for future applications for
diagnosis and prognosis via the refinement of existing and the
development of novel predictors for age, lifestyle, and disease
outcomes. The individual portrayal of transcriptomes and of
their associations with phenotype features in terms of easy-
to-interpret images offers perspectives for visual perception-
based personalized diagnostics. Large scale longitudinal studies
and paired transcriptome-epigenome investigations are needed
to better understand lifetime courses, causal relationships, and
mechanisms of (epi-)genomic regulation.
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GLOSSARY

A, Alimentary tract and metabolism; AP, Angina pectoris;
ALC > 30, Participants consuming more than 30g alcohol per
day; ALC ≤ 30, Participants consuming less than 30g alcohol
per day; ALC, Alcohol consumption; ART, Arthrosis; AST,
Asthma; ATC, Anatomical Therapeutic Chemical classification
system of medication; B, Blood and blood forming organs;
BA, Basophils absolute (109/l); BAP, Basophils (%); BD, Sepsis
type “blood disturbant”; BMI, Body mass index; BP, GO-term
“biological process”; C, Cardiovascular system; CAN, Cancer;
CAP, Community acquired pneumonia; CAT, Cataract; cPAT,
Combinatorial pattern type; CTL, Cytotoxic T lymphocytes; D,
Dermatologics; DEP, Depression; DIA, Diabetes; DNMT1, DNA-
methylation maintenance methyltranferase; EO, Eosinophils
absolute (109/l); EOP, Eosinophils (%); EXSMO, Ex-smoker; G,
Genitourinary system and sex hormones; GLA, Glaucoma; GO,
Gene ontology; GOU, Gout; GSZ, Gene set enrichment z-score;
H, Systemic hormonal preparations, excl. sex hormones and
insulins; HA, Heart attack; HCT, Hematocrit (l/l); HEP, Hepatitis;
HGB, Hemoglobin (SI units, mmol/l); HGBK, Hemoglobin
(conv. units, g/dl); HL, Hyper-lipidemia; HS, Sepsis type
“high severity”; hsCRP, Human serum C-reactive protein; HT,
Hypertension; HZO, Hzoster; IFN, Interferon; J, Anti-infective
for systemic use; L, Antineoplastic and immunomodulating
agents; LIFE(-adult), Leipzig Research Center for Civilization
Diseases; LOESS, Locally estimated scatterplot smoothing; LS,
Sepsis type “healthy and low severity”; LY, Lymphocytes absolute
(109/l); LYP, Lymphocytes (%); M, Muscular-skeletal system;
MCH, Mean corpuscular hemoglobin (SI units, fmol); MCHC,
Mean corpuscular hemoglobin concentration (SI units, mmol/l);
MCHCK, Mean corpuscular hemoglobin concentration (conv.
units, g/dl); MCHK, Mean corpuscular hemoglobin (conv. units,
pg); MCV, Mean corpuscular volume (fl); MO, Monocytes
absolute (109/l); MOP, Monocytes (%); MPV, Mean platelet
volume (fl); MS, Sepsis type “medium severity”; N, Nervous
system; NE, Neutrophils absolute (109/l); NEP, Neutrophils (%);
NONSMO, Non-smoker; nwt, Normal weight; ob, Obese; P,
Antiparasitic products, insecticides, and repellents; PLT, Platelets
(109/l); PRC2, Polycomb repressive complex 2; pre-ob, Pre-
obese; R, Respiratory system; RBC, Erythrocytes (1012/l); RETI,
Reticulocytes (/1000); RHE, Rheuma; S, Sensory organs; SEP,
Sepsis; SMO, Smoker; SMO, Smoking; SOM, Self-organizing
maps; ST, Subtype; TF, Transcription factor; THY, Thyroid;
TM, Telomere length maintenance; TssA, Genes with active
promoter; Tx, Genes with completed transcription; uwt,
Underweight; V, Various; WBC, Leucocytes (109/l); WPB, Whole
peripheral blood.
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