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One of the challenges of high granularity calorimeters, such as that to be built to cover the
endcap region in the CMS Phase-2 Upgrade for HL-LHC, is that the large number of
channels causes a surge in the computing load when clustering numerous digitized energy
deposits (hits) in the reconstruction stage. In this article, we propose a fast and fully
parallelizable density-based clustering algorithm, optimized for high-occupancy scenarios,
where the number of clusters is much larger than the average number of hits in a cluster.
The algorithm uses a grid spatial index for fast querying of neighbors and its timing scales
linearly with the number of hits within the range considered. We also show a comparison of
the performance on CPU and GPU implementations, demonstrating the power of
algorithmic parallelization in the coming era of heterogeneous computing in high-
energy physics.
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1. INTRODUCTION

Calorimeters with high lateral and longitudinal readout granularity, capable of providing a fine
grained image of electromagnetic and hadronic showers, have been suggested for future high-energy
physics experiments (CALICE Collaboration, 2012). The silicon sensor readout cells of the CMS
endcap calorimeter (HGCAL) (CMS Collaboration, 2017) for HL-LHC (Apollinari et al., 2017) have
an area of about 1 cm2. When a particle showers, the deposited energy is collected by the sensors on
the layers that the shower traverses. The purpose of the clustering algorithm when applied to shower
reconstruction is to group together individual energy deposits (hits) originating from a particle
shower. Due to the high lateral granularity, the number of hits per layer is large, and it is
computationally advantageous to collect together hits in 2D clusters layer-by-layer (Chen et al.,
2017) and then associate these 2D clusters in different layers (CMS Collaboration, 2017).

However, a computational challenge emerges as a consequence of the large data scale and limited
time budget. Event reconstruction is tightly constrained by a millisecond-level execution time. This
constraint requires the clustering algorithm to be highly efficient while maintaining a low
computational complexity. Furthermore, a linear scalability is strongly desired in order to avoid
bottlenecking the performance of the entire event reconstruction. Finally, it is highly preferable to
have a fully parallelizable clustering algorithm to take advantage of the trend of heterogeneous
computing with hardware accelerators, such as graphics processing units (GPUs), achieving a higher
event throughput and a better energy efficiency.
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The input to the clustering algorithm is a set of n hits, whose
number varies from a few thousands to a few millions, depending
on the longitudinal and transverse granularity of the calorimeter
as well as on the number of particles entering the detector. The
output is a set of k clusters whose number is usually one or two
orders of magnitude smaller than n and in principle depends on
both the number of incoming particles and the number of layers.
Assuming that the lateral granularity of sensors is constant and
finite, the average number of hits in clusters (m � n/k) is also
constant and finite. For example, in the CMS HGCAL,m is in the
order of 10. This leads to the relation among the number of hits n,
the number of clusters k, and the average number of hits in
clusters m as n> k≫m.

Most well-known algorithms do not simultaneously satisfy the
requirements on linear scalability and easy parallelization for
applications such as clustering hits in high granularity
calorimeters, which is characterized by low dimension and
n> k≫m. It is therefore important to investigate new, fast,
and parallelizable clustering algorithms, as well as their
optimized accompanying spatial index that can be
conveniently constructed and queried in parallel.

In this study, we describe CLUstering of Energy (CLUE), a
novel and parallel density-based clustering. Its development was
inspired by the work described in ref. (Rodriguez and Laio, 2014).
In Section 2, we describe the CLUE algorithm and its
accompanying spatial index. Then in Section 3, some details
of GPU implementations are discussed. Finally, in Section 4 we
present CLUE’s ability on nonspherical cluster shapes and noise
rejection, followed by its computational performance when
executed on CPU and GPU with synthetic data, mimicking
hits in high granularity calorimeters.

2. CLUSTERING ALGORITHM

Clustering data is one of the most challenging tasks in several
scientific domains. The definition of cluster is itself not trivial, as
it strongly depends on the context. Many clustering methods have
been developed based on a variety of induction principles
(Maimon and Rokach, 2005). Currently popular clustering
algorithms include (but are not limited to) partitioning,
hierarchical, and density-based approaches (Maimon and
Rokach, 2005; Han et al., 2012). Partitioning approaches, such
as k-mean (Lloyd, 1982), compose clusters by optimizing a
dissimilarity function based on distance. However, in the
application to high granularity calorimeters, partitioning
approaches are prohibitive because the number of clusters k is
not known a priori. Hierarchical methods make clusters by
constructing a dendrogram with a recursion of splitting or
merging. However, hierarchical methods do not scale well
because each decision to merge or split needs to scan over
many objects or clusters (Han et al., 2012). Therefore, they are
not suitable for our application. Density-based methods, such as
DBSCAN (Ester et al., 1996), OPTICS (Ankerst et al., 1999), and
Clustering by Fast Search and Find Density Peak (CFSFDP)
(Rodriguez and Laio, 2014), group points by detecting
continuous high-density regions. They are capable of

discovering clusters of arbitrary shapes and are efficient for
large spatial database. If a spatial index is used, their
computational complexity is O(nlogn) (Han et al., 2012).
However, one of the potential weaknesses of the currently
well-known density-based algorithms is that they intrinsically
include serial processes that are hard to parallelize: DBSCAN has
to iteratively visit all points within an enclosure of density-
connectedness before working on the next cluster (Ester et al.,
1996); OPTICS needs to sequentially add points in an ordered list
to obtain a dendrogram of reachability distance (Ankerst et al.,
1999); CFSFDP needs to sequentially assign points to clusters in
order of decreasing density (Rodriguez and Laio, 2014). In the
application to high granularity calorimeters, as discussed in
Section 1, linear scalability and full parallelization are essential
to handle a huge dataset efficiently by means of heterogeneous
computing.

In order to satisfy these requirements, we propose a fast and
fully parallelizable density-based algorithm (CLUE) inspired by
CFSFDP. For the purpose of the algorithm, each sensor cell on a
layer with its energy deposit is taken as a 2D point with an
associated weight equaling its energy value. As in CFSFDP, two
key variables are calculated for each point: the local density ρ and
the separation δ defined in Eqs 3 and 4, where δ is the distance to
the nearest point with higher density (“nearest-higher”), which
is slightly adapted from that in CFSFDP in order to take
advantage of the spatial index. Then cluster seeds and
outliers are identified based on thresholds on ρ and δ.
Differing from cluster assignment in CFSFDP, which sorts
density and adds points to clusters in order of decreasing
density, CLUE first builds a list of followers for each point
by registering each point as a follower to its nearest-higher.
Then it expands clusters by passing cluster indices from the
seeds to their followers iteratively. Since such expansion of
clusters is fully independent from each others’, it not only
avoids the costly density sorting in CFSFDP, but also enables
a k-way parallelization. Unlike the noise identification in
CFSFDP, CLUE rejects noise by identifying outliers and their
iteratively descendant followers, as discussed in Section 4.1.

2.1. Spatial Index With Fixed-Grid
Query of neighborhood, which retrieves nearby points within a
distance, is one of the most frequent operations in density-based
clustering algorithms. CLUE uses a spatial index to access and
query spatial data points efficiently. Given that the physical layout
of sensor cells is a multi-layer tessellation, it is intuitive to index
its data with a fixed-grid, which divides the space into fixed
rectangular bins (Levinthal, 1966; Bentley and Friedman, 1979).
Comparing with the data-driven structures such as KD-Tree
(Bentley, 1975) and R-Tree (Guttman, 1984), space partition
in fixed-grid is independent of any particular distribution of
data points (Rigaux et al., 2001), thus can be explicitly predefined
before loading data points. In addition, both construction and
query with a fixed-grid are computationally simple and can be
easily parallelized. Therefore, CLUE uses a fixed-grid as spatial
index for efficient neighborhood queries.

For each layer of the calorimeter, a fixed-grid spatial index is
constructed by registering the indices of 2D points into the square
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bins in the grid according to the 2D coordinates of the points.
When querying Nd(i), the d-neighborhood of point i, CLUE only
needs to loop over points in the bins touched by the square
window (xi ± d, yi ± d) as shown in Figure 1. We denote those
points as Ωd(i), defined as:

Ωd(i) � {j : j ∈ tiles touched by the square window [xi ± d, yi ± d]}.
(1)

Here, Ωd(i) is guaranteed to include all neighbors within a
distance d from the point i. Namely,

Nd(i) � {j : dij < d, j ∈ Ωd(i)}4Ωd(i). (2)

Here, dij is the distance between points i and j. Without any
spatial index, the query ofNd(i) requires a sequential scan over all
points. In contrast, with the grid spatial index, CLUE only needs
to loop over the points in Ωd(i) to acquire Nd(i). Given that d is
small and the maximum granularity of points is constant, the
complexity of querying Nd(i) with a fixed-grid is O(1).

2.2. Clustering Procedure of CLUE
CLUE requires the following four parameters: dc is the cut-off
distance in the calculation of local density; ρc is the minimum
density to promote a point as a seed or the maximum density to
demote a point as an outlier; δc and δo are the minimum separation
requirements for seeds and outliers, respectively. The choice of these
four parameters can be based on physics: for example, dc can be
chosen based on the shower size and the lateral granularity of
detectors; ρc can be chosen to exclude noise; δc and δo can be chosen
based on the shower sizes and separations. These four parameters

allowmore degrees of freedom to tune CLUE for the desired goals of
physics.

Figure 2 illustrates the main steps of CLUE algorithm. The
local density ρ in CLUE is defined as:

ρi � ∑
j:j ∈ Ndc(i)

χ(dij)wj, (3)

wherewj is the weight of point j, χ(dij) is a convolution kernel, which
can be optimized according to specific applications. Obvious possible
kernel options include flat, Gaussian, and exponential functions.

The nearest-higher and the distance to it δ (separation) in
CLUE are defined as:

nhi �
⎧⎪⎨
⎪⎩

arg min
j ∈ N ′

dm
(i)
dij, if

∣∣∣∣∣∣N′
dm
(i)

∣∣∣∣∣∣≠ 0
−1, otherwise

,

δi �
⎧⎪⎨
⎪⎩

di,nhi, if
∣∣∣∣∣∣N′

dm
(i)

∣∣∣∣∣∣≠ 0
+∞, otherwise

,

(4)

where dm � max(δo, δc) and N′
dm
(i) � {j : ρj > ρi, j ∈ Ndm(i)} is a

subset of Ndm(i), where points have higher local densities than ρi.
After ρ and δ are calculated, points with density ρ> ρc and large

separation δ > δc are promoted as cluster seeds, while points with
density ρ< ρc and large separation δ > δo are demoted to outliers.
For each point, there is a list of followers defined as:

Fi � {j : nhj � i}. (5)

The lists of followers are built by registering the points that
are neither seeds nor outliers to the follower lists of their
nearest-highers. The cluster indices, associating a follower
with a particular seed, are passed down from seeds through
their chains of followers iteratively. Outliers and their
descendant followers are guaranteed not to receive any
cluster indices from seeds, which grants a noise rejection as
shown in Figure 3. The calculation of ρ, δ, and the decision of
seeds and outliers both support n-way parallelization, while
the expansion of clusters can be done with k-way
parallelization. Pseudocode of CLUE is included in
Supplementary Material.

3. GPU IMPLEMENTATION

To parallelize CLUE on GPU, one GPU thread is assigned to each
point, for a total of n threads, to construct spatial index, calculate ρ

and δ, promote (demote) seeds (outliers), and register points to
the corresponding lists of followers of their nearest-highers. Next,
one thread is assigned to each seed, for a total of k threads, to
expand clusters iteratively along chains of followers. The block
size of all kernels, which in practice does not have a remarkable
impact on the speed performance, is set to 1,024. In the test in
Table 1, changing the block size from 1,024 to 256 on GPU leads
to only about 0.14 ms decrease in the sum of kernel execution

FIGURE 1 | 2D points are indexed with a grid for fast neighborhood
query in CLUE. Construction of this spatial index only involves registering the
indices of points into the bins of the grid according to points’ 2Dspatial positions.
To query d-neighborhoodNd(i) defined inEq. 2, taking the red (blue) point
for example, we first locate itsΩd(i) defined inEq. 1, a set of all points in the bins
touched by a square window [xi ± d, yi ± d]. The [xi ± d, yi ± d] window is
shown as the orange (green) square, while Ωd(i) is shown as orange (green)
points. Then, we examine points in Ωd(i) to identify those within a distance d
from point i, shown as the ones contained in the red (blue) circle.
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times. The details of parallelism for each kernel are listed in
Table 2. Since the results of a CLUE step are required in the
following steps, it is necessary to guarantee that all the threads are
synchronized before moving to the next stage. Therefore, each
CLUE step can be implemented as a separate kernel. To optimize
the performance of accessing the GPU global memory with
coalescing, the points on all layers are stored as a single
structure-of-array (SoA), including information of their layer

numbers and 2D coordinates and weights. Thus, points on all
layers are input into kernels in one shot. The total memory
required to run CLUE with up to 1M hits is about 284MB.
This includes the memory needed to store the input data, the
output results, and all the intermediate structures needed by the
algorithm.

When parallelizing CLUE on GPU, thread conflicts to access
and modify the same memory address in global memory could
happen in the following three cases:

i. multiple points need to register to the same bin
simultaneously;

ii. multiple points need to register to the list of seeds
simultaneously;

iii. multiple points need to register as followers to the same
point simultaneously.

Therefore, atomic operations are necessary to avoid the race
conditions among threads in the global memory. During an
atomic operation, a thread is granted with an exclusive access
to read from and write to a memory location that is
inaccessible to other concurrent threads until the atomic
operation finishes.

FIGURE 2 |Demonstration of CLUE algorithm. Points are distributed inside a 6 × 6 2D area and CLUE parameters are set to dc � 0.5, ρc � 3.9, δc � δo � 1. Before
the clustering procedure starts, a fixed-grid spatial index is constructed. In the first step, shown as (A), CLUE calculates the local density ρ for each point, which is defined
inEq. 3. The color and size of points represent their local densities. In the second step, shown as (B), CLUE calculates the nearest-higher nh and the separation δ for each
point, which are defined in Eq. 4. The black arrows represent the relation from the nearest-higher of a point to the point itself. If the nearest-higher of a point is −1,
there is no arrow pointing to it. In the third step, shown as (C), CLUE promotes a point as a seed if ρ, δ are both large, or demote it to an outlier if ρ is small and δ is large.
Promoted seeds and demoted outliers are shown as stars and gray squares, respectively. In the fourth step, shown as (D), CLUE propagates the cluster indices from
seeds through their chains of followers defined inEq. 5. Noise points, which are outliers and their descendant followers, are guaranteed not to receive any cluster ids from
any seeds. The color of points represents the cluster ids. A gray square means its cluster id is undefined and the point should be considered as noise.

FIGURE 3 | Examples of CLUE clustering on synthetic datasets. Each
sample includes 1000 2D points with the same weight generated from certain
distributions, including uniform noise points. The color of points represent their
cluster ids. Black points represent outliers detached from any clusters.
The links between pairs of points illustrate the relationship between nearest-
higher and follower. The red stars highlight the cluster seeds.

TABLE 1 | Decomposition of CLUE execution time in the case of 104 points per layer with 100 layers. The time of subprocesses on GPU is measured with NVIDIA profiler,
while that on CPU ismeasured with std::chrono timers in the C++ code. The uncertainties are the standard deviations of 200 trial runs of the same event (10,000 trial runs
if GPU). The uncertainties of subprocesses on GPU are negligible given that the maximum and minimum kernel execution time measured by NVIDIA Profiler are very close.
With respect to the single-threaded CPU, the speed-up factors of the multi-threaded CPU with TBB and the GPU are given in the bracket. “mem mgmt + overhead”
represents the time spent in handling and copying data, together with the overhead of issuing instructions to the GPU.

CLUE step CPU [1T] (baseline) CPU TBB [10T] GPU

Build fixed-grid spatial index 59.3 ± 1.6 ms 117.7 ± 6.4 ms (0.50x) 0.28 ms (208.6x)
Calculate local density 218.4 ± 2.5 ms 33.7 ± 2.6 ms (6.48x) 0.51 ms (430.6x)
Calculate nearest-higher and separation 326.9 ± 2.9 ms 45.5 ± 2.5 ms (7.19x) 0.89 ms (368.5x)
Decide seeds/outliers, register followers 54.4 ± 2.5 ms 109.4 ± 7.7 ms (0.50x) 0.34 ms (162.4x)
Expand clusters 17.4 ± 1.5 ms 6.1 ± 1.3 ms (2.86x) 0.35 ms (49.7x)
Mem mgmt + overhead 29.1 ± 1.7 ms 44.9 ± 15.7 ms 4.27 ms
TOTAL (10,000 points per layer) 705.5 ± 7.9 ms 357.2 ± 19.7 ms (2.0x) 6.63 ± 0.63 ms (106.4x)
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This inevitably leads to some microscopic serialization among
threads in race. The serialization in cases (i) and (iii) is negligible
because bins are usually small as well as the number of followers of a
given point. In contrast, serialization in case (ii) can be costly because
the number of seeds k is large. This can cause delays in the execution
of kernel responsible for seed promotion. Since the atomic pushing
back to the list of seeds is relatively fast inGPUmemory comparing to
the data transportation between host and device, the total execution
time ofCLUE still does not suffer significantly from the serialization in
case (ii). The speed performance is further discussed in Section 4.

4. PERFORMANCE EVALUATION

4.1. Clustering Results
We demonstrate the clustering results of CLUE with a set of
synthetic datasets, shown in Figure 3. Each example has 1,000 2D
points and includes spatially uniform noise points. The datasets
in Figures 3A,C are from the scikit-learn package (Pedregosa
et al., 2011). The dataset in Figure 3B is taken from (Rodriguez
and Laio, 2014). Figures 3A,B include elliptical clusters and
Figure 3C contains two parabolic arcs. CLUE successfully
detects density peaks in Figures 3A–C.

In the induction principle of density-based clustering, the
confidence of assigning a low-density point to a cluster is
established by maintaining the continuity of the cluster. Low-
density points with large separation should be deprived of
association to any clusters. CFSFDP uses a rather costly
technique, which calculates a border region of each cluster and

defines core-halo points in each cluster, to detach unreliable
assignments from clusters (Rodriguez and Laio, 2014). In
contrast, CLUE achieves this using cuts on δo and ρc, while
expanding a cluster, as described in Section 2. The example in
Figure 4 shows how cutting at different separation values helps to
demote outliers. Figure 4A represents the decision plot on the
ρ − δ plane. Points with density below ρc � 80, shown on the left
side of the vertical blue line, could be demoted as outliers if their δ
is larger than a threshold. Once an outlier is demoted, all its
descendant followers are disallowed from attaching to any
clusters. While keeping ρc � 80 fixed, the effect of using three
different values of δo (10, 20, 60), shown as orange dash lines in
Figure 4A, has been investigated. The corresponding results are
shown in Figures 4B–D, respectively.

The physics requirements of the clustering for the CMS
HGCAL can be summarized as collecting a high fraction of the
energy deposited by a single shower in a single cluster. The
algorithm should form separate clusters of separate showers
even when the showers overlap, as far as the granularity of the
detector and the shower lateral size allows, but not split the energy
deposited by a single shower into more that one cluster. This
requirement is most easily definable for electromagnetic showers
that have a regular and repeatable form, and slightly less obvious in
hadronic showers, which in the fine granularity of the HGCAL
frequently have the form of a branching tree of subshowers.

It is found that the CLUE algorithm can be tuned to well satisfy
these physics requirements by adjusting its parameters to the
cluster characteristics in the calorimeter. In particular, the
convolution kernel described in Section 2.2, is approximated
to a highly simplified description of the lateral shower shape.

4.2. Execution Time and Scaling
We tested the computational performance of CLUE using a
synthetic dataset that resembles high-occupancy events in high
granularity calorimeters operated at HL-LHC. The dataset
represents a calorimeter with 100 sensor layers. A fixed
number of points on each layer are assigned a unit weight in
such a way that the density represents circular clusters of energy
whose magnitude decreases radially from the center of the cluster
according to a Gaussian distribution with the standard deviation,
σ, set to 3 cm. 5% of the points represent noise distributed

TABLE 2 | Kernels and parallelism.

Kernels Parallelism Total
threads

Block
size

Build fixed-grid spatial index 1 point/thread n 1,024
Calculate local density 1 point/thread n 1,024
Calculate nearest-higher and
separation

1 point/thread n 1,024

Decide seeds/outliers, register
followers

1 point/thread n 1,024

Expand clusters 1 seed/thread k 1,024

FIGURE 4 | Noise rejection using different values of δo. Noise is either an outlier or a descendant follower of an outlier. In this dataset (Rodriguez & Laio, 2014),
4,000 Points are distributed in 500 × 500 2D square area. (A) represents the decision plot on the ρ − δ plane, where fixed ρc 80 and δc 40 values are shown as vertical and
horizontal blue lines, respectively. Three different values of δo (10, 20, 60) are shown as orange dash lines. (B−D) show the results with δo 10, 20, 60, respectively,
illustrating how increasing δo loosens the continuity requirement and helps to demote outliers. The level of denoise should be chosen according to the user’s needs.
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uniformly over the layers.When clustering with CLUE, the bin size
is set to 5 cm comparable with the width of the clusters, and the
algorithm parameters are set to dc � 3 cm, δo � δc � 5 cm, ρc � 8.
To test CLUE’s linear scaling, the number of points on each layer is
incremented from 1,000 to 10,000 in 10 equaling steps. A total of
100 layers are input to CLUE simultaneously, which simulates the
proposed CMS HGCAL design (The Phase-2 Upgrade of the CMS
Endcap Calorimeter, 2017). Therefore, the total number of points
in the test ranges from 105 to 106. The linear scaling of execution
time is validated in Figure 5.

The single-threaded version of the CLUE algorithm on CPU
has been implemented in C++, while the one on GPU has been
implemented in C with CUDA (Nvidia Corporation, 2010). The
multi-threaded version of CLUE on CPU uses the Threading
Building Blocks (TBB) library (Reinders, 2007) and has been
implemented using the Abstraction Library for Parallel Kernel
Acceleration (Alpaka) (Zenker et al., 2016). The test of the
execution time is performed on an Intel Xeon Silver 4114
CPU and NVIDIA Tesla V100 GPU connected by PCIe Gen-3
link. The time of each GPU kernel and CUDA API call is
measured using the NVIDIA profiler. The total execution time

is averaged over 200 identical events (10,000 identical events if
GPU). Since CLUE is performed event-by-event and it is not
necessary to repeat memory allocation and release for each event
when running on GPU, we perform a one-time allocation of
enough GPU memory before processing events and a one-time
GPU memory deallocation after finishing all events. Therefore,
the one-time cudaMalloc and cudaFree are not included in the
average execution time. Such exclusion is legit because the
number of events is extremely massive in high-energy physics
experiments and the execution time of the one-time cudaMalloc
and cudaFree reused by each individual event is negligible.

In Figure 5 (upper), the scaling of CLUE is linear, consistent
with the expectation. The execution time on the single-threaded
CPU, multi-threaded CPU with TBB, and GPU increases linearly
with the total number of points. The stacked bars represent the
decomposition of execution time. In the decomposition, unique
to the GPU implementation is the latency of data transfer
between host and device, which is accounted for in the grey
narrower bar, while common to all the three implementations are
the five CLUE steps. Comparing with the single-threaded CPU,
when building spatial index and deciding seeds, shown as red and

FIGURE 5 | (Upper) Execution time of CLUE on the single-threaded CPU, multi-threaded CPU with TBB, and GPU scale linearly with number of input points,
ranging from 105 to 106 in total. Execution time on single-threaded CPU is shown as blue circle dots and on 10 multi-threaded CPU with TBB is shown as blue square
dots, while the time on GPU is shown as green circle dots, scaled up by a factor 50 to fit the same vertical scale. The stacked bars represent the decomposition of
execution time. The gray narrower bars are latency for data traffic and memory management; wider bars represent time of essential CLUE steps (Lower)
Comparing with the single-threaded CPU, the speed-up factors of the GPU range from 48 to 112, while the speed-up factors of the multi-threaded CPU with TBB range
from 1.2 to 2.0, which is less than the number of concurrent threads on CPU because of atomic pushing to the data containers discussed in Section 3. Table 1 shows
the details of the decomposition of the execution time in the case of 104 points per layer.
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pink bars, the multi-threaded CPU using TBB does not give a
notable speed-up due to the implementation of atomic operations
in Alpaka (Zenker et al., 2016) as discussed in Section 3, while the
GPU has a prominent outperformance thanks to its larger
parallelization scale. For the GPU case, the kernel of seed-
promotion in which serialization exists due to atomic
appending of points in the list of seeds, does not affect the
total execution time significantly if compared with other
subprocesses. In the two most computing-intense steps,
calculating density and separation, there are no thread
conflicts or inevitable atomic operations. Therefore, both the
multi-threaded CPU using TBB and the GPU provide a
significant speed-up. The details of the decomposition of
execution time in the case of 104 points per layer are listed in
Table 1.

Figure 5 (lower) shows the speed-up factors. Compared to the
single-threaded CPU, the CUDA implementation on GPU is
48–112 times faster, while the multi-threaded version using TBB
via Alpaka with 10 threads on CPU is about 1.2–2.0 times faster.
The speed-up factors are constrained to be smaller than the
number of concurrent threads because of the atomic operations
that introduce serialization. In Table 1, the speed-up factors of
multi-threaded CPU using TBB reduce to less than one in the
subprocess steps of building spatial index and promoting seeds
and registering followers, where atomic operations happen and
bottleneck the overall speed-up factor.

5. CONCLUSION

The clustering algorithm is an important part in the shower
reconstruction of high granularity calorimeters to identify hot
regions of energy deposits. It is required to be computationally
linear with data scale n, independent from prior knowledge of the
number of clusters k and conveniently parallelizable when
n> k≫m ≡ n/k in 2D. However, most of the well-known
algorithms do not simultaneously support linear scalability
and easy parallelization. CLUE is proposed to efficiently
perform clustering tasks in low-dimension space with
n> k≫m, including (and beyond) the applications in high
granularity calorimeters. The clustering time scales linearly
with the number of input hits in the range of multiplicity that
is relevant for, e.g., the high granularity calorimeter of the CMS
experiment at CERN. We evaluated the performance of CLUE on
synthetic data and demonstrated its capability on nonspherical
cluster shape with adjustable noise rejection. Furthermore, the

studies suggest that CLUE on GPU outperforms single-thread
CPU by more than an order of magnitude within the data scale
ranging from n � 105 to 106.
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