
Detecting Group Anomalies in
Tera-Scale Multi-Aspect Data via
Dense-Subtensor Mining
Kijung Shin1*, Bryan Hooi2, Jisu Kim3 and Christos Faloutsos4

1Graduate School of AI and School of Electrical Engineering, KAIST, Daejeon, South Korea, 2School of Computing and Institute of
Data Science, National University of Singapore, Singapore, Singapore, 3DataShape, Inria Saclay, Palaiseau, France, 4School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States

How can we detect fraudulent lockstep behavior in large-scale multi-aspect data
(i.e., tensors)? Can we detect it when data are too large to fit in memory or even on a
disk? Past studies have shown that dense subtensors in real-world tensors (e.g., social
media, Wikipedia, TCP dumps, etc.) signal anomalous or fraudulent behavior such as
retweet boosting, bot activities, and network attacks. Thus, various approaches, including
tensor decomposition and search, have been proposed for detecting dense subtensors
rapidly and accurately. However, existing methods suffer from low accuracy, or they
assume that tensors are small enough to fit in main memory, which is unrealistic in many
real-world applications such as social media and web. To overcome these limitations, we
propose D-CUBE, a disk-based dense-subtensor detection method, which also can run in a
distributed manner across multiple machines. Compared to state-of-the-art methods,
D-CUBE is (1) Memory Efficient: requires up to 1,561× less memory and handles 1,000×
larger data (2.6TB), (2) Fast: up to 7× faster due to its near-linear scalability, (3) Provably
Accurate: gives a guarantee on the densities of the detected subtensors, and (4) Effective:
spotted network attacks from TCP dumps and synchronized behavior in rating data most
accurately.

Keywords: tensor, dense subtensor, anomaly detection, fraud detection, out-of-core algorithm, distributed
algorithm

1 INTRODUCTION

Given a tensor that is too large to fit in memory, how can we detect dense subtensors? Especially, can
we spot dense subtensors without sacrificing speed and accuracy provided by in-memory algorithms?

A common application of this problem is review fraud detection, where we aim to spot suspicious
lockstep behavior among groups of fraudulent user accounts who review suspiciously similar sets of
products. Previous work (Maruhashi et al., 2011; Jiang et al., 2015; Shin et al., 2018) has shown the
benefit of incorporating extra information, such as timestamps, ratings, and review keywords, by
modeling review data as a tensor. Tensors allow us to consider additional dimensions in order to
identify suspicious behavior of interest more accurately and specifically. That is, extraordinarily
dense subtensors indicate groups of users with lockstep behaviors both in the products they review
and along the additional dimensions (e.g., multiple users reviewing the same products at the exact
same time).

In addition to review-fraud detection, spotting dense subtensors has been found effective for
many anomaly-detection tasks. Examples include network-intrusion detection in TCP dumps

Edited by:
Meng Jiang,

University of Notre Dame,
United States

Reviewed by:
Kai Shu,

Illinois Institute of Technology,
United States
Kun Kuang,

Zhejiang University, China
Tong Zhao,

University of Notre Dame,
United States

*Correspondence:
Kijung Shin

kijungs@kaist.ac.kr

Specialty section:
This article was submitted to

Big Data Networks,
a section of the journal

Frontiers in Big Data

Received: 13 August 2020
Accepted: 17 December 2020

Published: 29 April 2021

Citation:
Shin K, Hooi B, Kim J and Faloutsos C
(2021) Detecting Group Anomalies in

Tera-Scale Multi-Aspect Data via
Dense-Subtensor Mining.
Front. Big Data 3:594302.

doi: 10.3389/fdata.2020.594302

Frontiers in Big Data | www.frontiersin.org April 2021 | Volume 3 | Article 5943021

ORIGINAL RESEARCH
published: 29 April 2021

doi: 10.3389/fdata.2020.594302

http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2020.594302&domain=pdf&date_stamp=2021-04-29
https://www.frontiersin.org/articles/10.3389/fdata.2020.594302/full
https://www.frontiersin.org/articles/10.3389/fdata.2020.594302/full
https://www.frontiersin.org/articles/10.3389/fdata.2020.594302/full
http://creativecommons.org/licenses/by/4.0/
mailto:kijungs@kaist.ac.kr
https://doi.org/10.3389/fdata.2020.594302
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2020.594302

(Maruhashi et al., 2011; Shin et al., 2018), retweet-boosting
detection in online social networks (Jiang et al., 2015), bot-
activity detection in Wikipedia (Shin et al., 2018), and genetics
applications (Saha et al., 2010; Maruhashi et al., 2011).

Due to these wide applications, several methods have been
proposed for rapid and accurate dense-subtensor detection, and
search-based methods have shown the best performance.
Specifically, search-based methods (Jiang et al., 2015; Shin et al.,
2018) outperformmethods based on tensor decomposition, such as
CP Decomposition and HOSVD (Maruhashi et al., 2011), in terms
of accuracy and flexibility with regard to the choice of density
metrics. Moreover, the latest search-based methods (Shin et al.,
2018) provide a guarantee on the densities of the subtensors it
finds, while methods based on tensor decomposition do not.

However, existing search methods for dense-subtensor
detection assume that input tensors are small enough to fit in
memory. Moreover, they are not directly applicable to tensors
stored in disk since using them for such tensors incurs too many
disk I/Os due to their highly iterative nature. However, real
applications, such as social media and web, often involve disk-
resident tensors with terabytes or even petabytes, which in-
memory algorithms cannot handle. This leaves a growing gap
that needs to be filled.

1.1 Our Contributions
To overcome these limitations, we propose D-CUBE a dense-
subtensor detection method for disk-resident tensors. D-CUBE

works under the W-Stream model (Ruhl, 2003), where data
are only sequentially read and written during computation. As
seen in Table 1, only D-CUBE supports out-of-core computation,
which allows it to process data too large to fit in main memory.
D-CUBE is optimized for this setting by carefully minimizing the
amount of disk I/O and the number of steps requiring disk
accesses, without losing accuracy guarantees it provides.
Moreover, we present a distributed version of D-CUBE using the
MAPREDUCE framework (Dean and Ghemawat, 2008), specifically
its open source implementation HADOOP .

The main strengths of D-CUBE are as follows:

• Memory Efficient: D-CUBE requires up to 1,561× less memory
and successfully handles 1,000× larger data (2.6TB) than its
best competitors (Figures 1A,B).

• Fast: D-CUBE detects dense subtensors up to 7× faster in real-
world tensors and 12× faster in synthetic tensors than its
best competitors due to its near-linear scalability with all
aspects of tensors (Figure 1A).

• Provably Accurate: D-CUBE provides a guarantee on the
densities of the subtensors it finds (Theorem 3), and it
shows similar or higher accuracy in dense-subtensor
detection than its best competitors on real-world tensors
(Figure 1B).

• Effective: D-CUBE successfully spotted network attacks from
TCP dumps, and lockstep behavior in rating data, with the
highest accuracy (Figure 1C).

Reproducibility: The code and data used in the paper are
available at http://dmlab.kaist.ac.kr/dcube.

1.2 Related Work
We discuss previous work on (a) dense-subgraph detection, (b)
dense-subtensor detection, (c) large-scale tensor decomposition,
and (d) other anomaly/fraud detection methods.

Dense Subgraph Detection. Dense-subgraph detection in
graphs has been extensively studied in theory; see Lee et al.
(2010) for a survey. Exact algorithms (Goldberg, 1984; Khuller
and Saha, 2009) and approximate algorithms (Charikar, 2000;
Khuller and Saha, 2009) have been proposed for finding
subgraphs with maximum average degree. These have been
extended for incorporating size restrictions (Andersen and
Chellapilla, 2009), alternative metrics for denser subgraphs
(Tsourakakis et al., 2013), evolving graphs (Epasto et al.,
2015), subgraphs with limited overlap (Balalau et al., 2015;
Galbrun et al., 2016), and streaming or distributed settings
(Bahmani et al., 2012, 2014). Dense subgraph detection has
been applied to fraud detection in social or review networks
(Beutel et al., 2013; Jiang et al., 2014; Shah et al., 2014; Shin et al.,
2016; Hooi et al., 2017).

Dense Subtensor Detection. Extending dense subgraph
detection to tensors (Jiang et al., 2015; Shin et al., 2017a,
2018) incorporates additional dimensions, such as time, to
identify dense regions of interest with greater accuracy and
specificity. Jiang et al. (2015) proposed CROSSSPOT, which starts
from a seed subtensor and adjusts it in a greedy way until it
reaches a local optimum, shows high accuracy in practice but
does not provide any theoretical guarantees on its running time
and accuracy. Shin et al. (2018) proposed M-ZOOM, which starts
from the entire tensor and only shrinks it by removing attributes
one by one in a greedy way, improves CROSSSPOT in terms of speed
and approximation guarantees. M-BIZ, which was proposed in
Shin et al. (2018), starts from the output of M-ZOOM and repeats
adding or removing an attribute greedily until a local optimum is
reached. Given a dynamic tensor, DENSEALERT and DENSESTREAM,

TABLE 1 | Comparison of D-CUBE and state-of-the-art dense-subtensor detection methods. ✓denotes ‘supported’.

M-ZOOM and
M-BIZ (Shin
et al., 2018)

DENSESTREAM and
DENSEALERT (Shin
et al., 2017a)

CROSSSPOT (Jiang
et al., 2015)

MAF (Maruhashi
et al., 2011)

FRAUDAR (Hooi
et al., 2017)

D-CUBE (proposed)

High-order tensors ✓ ✓ ✓ ✓ ✓
Flexibility in density measures ✓ ✓ ✓ ✓
Accuracy guarantees ✓ ✓ ✓ ✓
Out-of-core computation ✓
Distributed computation ✓

Frontiers in Big Data | www.frontiersin.org April 2021 | Volume 3 | Article 5943022

Shin et al. Detecting Group Anomalies in Tensors

http://dmlab.kaist.ac.kr/dcube
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

which were proposed in Shin et al. (2017a), incrementally compute
a single dense subtensor in it. CROSSSPOT, M-ZOOM, M-BIZ, and
DENSESTREAM require all tuples of relations to be loaded into
memory at once and to be randomly accessed, which limit their
applicability to large-scale datasets. DENSEALERT maintains only the
tuples created within a time window, and thus it can find a dense
subtensor only within the window. Dense-subtensor detection in
tensors has been found useful for detecting retweet boosting (Jiang
et al., 2015), network attacks (Maruhashi et al., 2011; Shin et al.,
2017a, 2018), bot activities (Shin et al., 2018), and vandalism on
Wikipedia (Shin et al., 2017a), and also for genetics applications
(Saha et al., 2010; Maruhashi et al., 2011).

Large-Scale Tensor Decomposition. Tensor decomposition
such as HOSVD and CP decomposition (Kolda and Bader,
2009) can be used to spot dense subtensors, as shown in
Maruhashi et al. (2011). Scalable algorithms for tensor
decomposition have been developed, including disk-based
algorithms (Shin and Kang, 2014; Oh et al., 2017), distributed
algorithms (Kang et al., 2012; Shin and Kang, 2014; Jeon et al.,
2015), and approximate algorithms based on sampling
(Papalexakis et al., 2012) and count-min sketch (Wang et al.,
2015). However, dense-subtensor detection based on tensor
decomposition has serious limitations: it usually detects
subtensors with significantly lower density (see Section 4.3)
than search-based methods, provides no flexibility with regard
to the choice of density metric, and does not provide any
approximation guarantee.

Other Anomaly/Fraud Detection Methods. In addition to
dense-subtensor detection, many approaches, including those
based on egonet features (Akoglu et al., 2010), coreness (Shin
et al., 2016), and behavior models (Rossi et al., 2013), have been
used for anomaly and fraud detection in graphs. See Akoglu et al.
(2015) for a survey.

1.3 Organization of the Paper
In Section 2, we provide notations and a formal problem
definition. In Section 3, we propose D-CUBE, a disk-based

dense-subtensor detection method. In Section 4, we present
experimental results and discuss them. In Section 5, we offer
conclusions.

2 PRELIMINARIES AND PROBLEM
DEFINITION

In this section, we first introduce notations and concepts used in
the paper. Then, we define density measures and the problem of
top-k dense-subtensor detection.

2.1 Notations and Concepts
Table 2 lists the symbols frequently used in the paper. We use
[x] � {1, 2, . . . , x} for brevity. Let R(A1, . . . ,AN ,X) be a relation
with N dimension attributes, denoted by A1, . . . ,AN , and a
nonnegative measure attribute, denoted by X (see Example 1
for a running example). For each tuple t ∈ R and for each
n ∈ [N], t[An] and t[X] indicate the values of An and X, resp.,
in t. For each n ∈ [N], we useRn � {t[An] : t ∈ R} to denote the

FIGURE 1 | Strengths of D-CUBE . ‘O.O.M’ stands for ‘out of memory’. (A) Fast and Scalable: D-CUBE was 12× faster and successfully handled 1,000× larger data
(2.6TB) than its best competitors. (B) Efficient and Accurate: D-CUBE required 47× less memory and found subtensors as dense as those found by its best competitors
from English Wikipedia revision history. (C) Effective: D-CUBE accurately spotted network attacks from TCP dumps. See Section 4 for the detailed experimental settings.

TABLE 2 | Table of symbols.

Symbol Definition

R(A1 , . . . ,AN ,X) Relation representing an N-way tensor
N Number of the dimension attributes in R
An nth dimension attribute in R
X Measure attribute in R
t[An] (or t[X]) Value of attribute An (or X) in tuple t in R
B a subtensor in R
ρ(B,R) Density of subtensor B in R
Rn (or Bn) Set of distinct values of An in R (or B)
MR (or MB) Mass of R (or B)
B(a, n) Set of tuples with attribute An� a in B
MB(a,n) Attribute-value mass of a in An

k Number of subtensors we aim to find
θ Mass-threshold parameter in D-CUBE

[x] {1,2, . . . , x}

Frontiers in Big Data | www.frontiersin.org April 2021 | Volume 3 | Article 5943023

Shin et al. Detecting Group Anomalies in Tensors

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

set of distinct values of An in R. The relation R is naturally
represented as an N-way tensor of size |R1|×/×|RN |. The value
of each entry in the tensor is t[X], if the corresponding tuple t exists,
and 0 otherwise. Let Bn be a subset ofRn. Then, a subtensor B inR
is defined as B(A1, . . . ,AN ,X) � {t ∈ R : ∀n ∈ [N], t[An] ∈ Bn},
the set of tuples where each attribute An has a value in Bn. The
relation B is a ‘subtensor’ because it forms a subtensor of size |B1| ×
/ × |BN | in the tensor representation of R, as in Figure 2B. We
define the mass ofR asMR � ∑t ∈ Rt[X], the sum of attribute X in
the tuples ofR.We denote the set of tuples ofB whose attributeAn�
a byB(a, n) � {t ∈ B : t[An] � a} and its mass, called the attribute-
value mass of a in An, by MB(a,n) � ∑t ∈ B(a,n)t[X].

EXAMPLE 1. (Wikipedia Revision History). As in Figure 2,
assume a relation R(user , page , date , count), where each tuple
(u, p, d, c) in R indicates that user u revised page p, c times, on date
d. The first three attributes, A1 � user, A2 � page, and A3 � date,
are dimension attributes, and the other one, X�count, is the
measure attribute. Let B1 � {Alice,Bob}, B2 � {A,B}, and
B3 � {May − 29}. Then, B is the set of tuples regarding the
revision of page A or B by Alice or Bob on May-29, and its
mass MB is 19, the total number of such revisions. The attribute-
value mass of Alice (i.e., MB(Alice,1)) is 9, the number of revisions on
A or B by exactly Alice on May-29. In the tensor representation, B
composes a subtensor in R, as depicted in Figure 2B.

2.2 Density Measures
We present density measures proven useful for anomaly
detection in past studies. We use them throughout the
paper although our dense-subtensor detection method,
explained in Section 3, is flexible and not restricted to
specific measures. Below, we slightly abuse notations to
emphasize that the density measures are the functions of
MB , {|Bn|}Nn�1, MR, and {|Rn|}Nn�1, where B is a subtensor of
a relation R.

Arithmetic Average Mass (Definition 1) and Geometric
Average Mass (Definition 2), which were used for detecting
network intrusions and bot activities in Shin et al. (2018), are
the extensions of density measures widely-used for graphs
(Kannan and Vinay, 1999; Charikar, 2000).

DEFINITION 1 (Arithmetic Average Mass ρari). The arithmetic
average mass of a subtensor B of a relation R is defined as

ρari(B,R) � ρari(MB, {|Bn|}Nn�1,MR, {|Rn|}Nn�1) � MB
1
N ∑N

n�1|Bn|
.

DEFINITION 2 (Geometric Average Mass ρgeo). The geometric
average mass of a subtensor B of a relation R is defined as

ρgeo(B,R) � ρgeo(MB, {|Bn|}Nn�1,MR, {|Rn|}Nn�1) � MB

(∏N
n�1|Bn|) 1

N
.

Suspiciousness (Definition 3), which was used for detecting
‘retweet-boosting’ activities in Jiang et al. (2014), is the
negative log-likelihood that B has mass MB under the
assumption that each entry of R is i.i.d from a Poisson
distribution.

DEFINITION 3 (Suspiciousness ρsusp). The suspiciousness of a
subtensor B of a relation R is defined as

ρsusp(B,R) � ρsusp(MB, {|Bn|}Nn�1,MR, {|Rn|}Nn�1)
� MB(logMB

MR
− 1) +MR ∏N

n�1

|Bn|
|Rn| −MB log⎛⎝∏N

n�1

|Bn|
|Rn|

⎞⎠.

Entry Surplus (Definition 4) is the observed mass of B subtracted
by α times the expected mass, under the assumption that the value
of each entry (in the tensor representation) in R is i.i.d. It is a
multi-dimensional extension of edge surplus, which was
proposed in Tsourakakis et al. (2013) as a density metric for
graphs.

DEFINITION 4 (Entry Surplus). The entry surplus of a subtensor
B of a relation R is defined as

ρes(α)(B,R) � ρes(α)(MB, {|Bn|}Nn�1,MR, {|Rn|}Nn�1)
� MB − αMR ∏N

n�1

|Bn|
|Rn|.

Subtensors with high entry surplus are configurable by adjusting
α. With high α values, relatively small compact subtensors have

FIGURE 2 | Pictorial description of Example 1. (A) Relation R where the colored tuples compose relation B. (B) Tensor representation of R where the relation B
forms a subtensor.

Frontiers in Big Data | www.frontiersin.org April 2021 | Volume 3 | Article 5943024

Shin et al. Detecting Group Anomalies in Tensors

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

higher entry surplus than large sparse subtensors, while the
opposite happens with small α values. We show this tendency
experimentally in Section 4.7.

2.3 Problem Definition
Based on the concepts and density measures in the previous
sections, we define the problem of top-k dense-subtensor
detection in a large-scale tensor in Definition 1.

Problem 1 (Large-scale Top-k Densest Subtensor
Detection). (1) Given: a large-scale relation R not fitting in
memory, the number of subtensors k, and a density measure ρ,
(2) Find: the top-k subtensors of R with the highest density in
terms of ρ.

Even when we restrict our attention to finding one subtensor
in a matrix fitting in memory (i.e., k � 1 and N � 2), obtaining an
exact solution takes O((∑N

n�1|Rn|)6) time (Goldberg, 1984;
Khuller and Saha, 2009), which is infeasible for large-scale
tensors. Thus, our focus in this work is to design an
approximate algorithm with (1) near-linear scalability with all
aspects ofR, which does not fit in memory, (2) an approximation
guarantee at least for some density measures, and (3) meaningful
results on real-world data.

3 PROPOSED METHOD

In this section, we propose D-CUBE, a disk-based dense-
subtensor detection method. We first describe D-CUBE in
Section 3.1. Then, we prove its theoretical properties in
Section 3.2. Lastly, we present our MAPREDUCE

implementation of D-CUBE in Section 3.3. Throughout these
subsections, we assume that the entries of tensors (i.e., the
tuples of relations) are stored on disk and read/written only in
a sequential way. However, all other data (e.g., distinct
attribute-value sets and the mass of each attribute value)
are assumed to be stored in memory.

3.1 Algorithm
D-CUBE is a search method that starts with the given relation and
removes attribute values (and the tuples with the attribute
values) sequentially so that a dense subtensor is left.
Contrary to previous approaches, D-CUBE removes multiple
attribute values (and the tuples with the attribute values) at a
time to reduce the number of iterations and also disk I/Os. In
addition to this advantage, D-CUBE carefully chooses attribute
values to remove to give the same accuracy guarantee as if
attribute values were removed one by one, and shows similar or
even higher accuracy empirically.

3.1.1 Overall Structure of D-Cube (Algorithm 1)
Algorithm 1 describes the overall structure of D-CUBE . It first copies
and assigns the given relationR toRori (line 1); and computes the
sets of distinct attribute values composingR (line 2). Then, it finds
k dense subtensors one by one fromR (line 6) using its mass as a
parameter (line 5). The detailed procedure for detecting a single
dense subtensor fromR is explained in Section 3.1.2. After each
subtensor B is found, the tuples included in B are removed from
R (line 7) to prevent the same subtensor from being found
again. Due to this change inR, subtensors found fromR are not
necessarily the subtensors of the original relation Rori. Thus,
instead of B, the subtensor inRori formed by the same attribute
values forming B is added to the list of k dense subtensors (lines
8–9). Notice that, due to this step, D-CUBE can detect overlapping
dense subtensors. That is, a tuple can be included in multiple
dense subtensors.

Based on our assumption that the sets of distinct attribute
values (i.e., {Rn}Nn�1 and {Bn}Nn�1) are stored inmemory and can be
randomly accessed, all the steps in Algorithm 1 can be performed
by sequentially reading and writing tuples in relations (i.e., tensor
entries) in disk without loading all the tuples in memory at once.
For example, the filtering steps in lines 7–8 can be performed by
sequentially reading each tuple from disk and writing the tuple to
disk only if it satisfies the given condition.

Algorithm 1 | D-CUBE

Frontiers in Big Data | www.frontiersin.org April 2021 | Volume 3 | Article 5943025

Shin et al. Detecting Group Anomalies in Tensors

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Note that this overall structure of D-CUBE is similar to that of
M-ZOOM (Shin et al., 2018) except that tuples are stored on disk.
However, the methods differ significantly in the way each dense
subtensor is found fromR, which is explained in the following section.

3.1.2 Single Subtensor Detection (Algorithm 2)
Algorithm 2 describes how D-CUBE detects each dense subtensor
from the given relation R. It first initializes a subtensor B to R
(lines 1–2) then repeatedly removes attribute values and the
tuples of B with those attribute values until all values are
removed (line 5).

Specifically, in each iteration, D-CUBE first chooses a dimension
attribute Ai that attribute values are removed from (line 7). Then,
it computes Di, the set of attribute values whose masses are less
than θ(≥ 1) times the average (line 8). We explain how the
dimension attribute is chosen, in Section 3.1.3 and analyze the
effects of θ on the accuracy and the time complexity, in Section
3.2. The tuples whose attribute values of Ai are in Di are removed

from B at once within a single scan of B (line 16). However,
deleting a subset of Di may achieve higher value of the metric ρ.
Hence, D-CUBE computes the changes in the density of B (line 11)
as if the attribute values in Di were removed one by one, in an
increasing order of their masses. This allows D-CUBE to optimize
ρ as if we removed attributes one by one, while still benefiting
from the computational speedup of removing multiple
attributes in each scan. Note that these changes in ρ can be
computed exactly without actually removing the tuples from B
or even accessing the tuples in B since its mass (i.e.,MB) and the
number of distinct attribute values (i.e., {|Bn|}Nn�1) are
maintained up-to-date (11–12). This is because removing an
attribute value from a dimension attribute does not affect the
masses of the other values of the same attribute. The orders that
attribute values are removed and when the density of B is
maximized are maintained (lines 13–15) so that the
subtensor B maximizing the density can be restored and
returned (lines 17–18), as the result of Algorithm 2.

Algorithm 3 | select_dimension by cardinality

Algorithm 2 | find_one in D-CUBE

Frontiers in Big Data | www.frontiersin.org April 2021 | Volume 3 | Article 5943026

Shin et al. Detecting Group Anomalies in Tensors

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Note that, in each iteration (lines 5–16) of Algorithm 2, the
tuples of B, which are stored on disk, need to be scanned only
twice, once in line 6 and once in line 16. Moreover, both steps
can be performed by simply sequentially reading and/or
writing tuples in B without loading all the tuples in
memory at once. For example, to compute attribute-value
masses in line 6, D-CUBE increases MB(t[An],n) by t[X] for each
dimension attribute An after reading each tuple t in B
sequentially from disk.

3.1.3 Dimension Selection (Algorithms 3 and 4)
We discuss two policies for choosing a dimension attribute that
attribute values are removed from. They are used in line 7 of
Algorithm 2 offering different advantages.

Maximum Cardinality Policy (Algorithm 3): The dimension
attribute with the largest cardinality is chosen, as described in
Algorithm 3. This simple policy, however, provides an accuracy
guarantee (see Theorem 3 in Section 3.2.2).

Maximum Density Policy (Algorithm 4): The density of B when
attribute values are removed from each dimension attribute is
computed. Then, the dimension attribute leading to the
highest density is chosen. Note that the tuples in B, stored
on disk, do not need to be accessed for this computation, as
described in Algorithm 4. Although this policy does not
provide the accuracy guarantee given by the maximum
cardinality policy, this policy works well with various
density measures and tends to spot denser subtensors than
the maximum cardinality policy in our experiments with real-
world data.

3.1.4 Efficient Implementation
We present the optimization techniques used for the efficient
implementation of D-CUBE.

Combining Disk-Accessing Steps. The amount of disk I/O can
be reduced by combining multiple steps involving disk accesses. In
Algorithm 1, updating R (line 7) in an iteration can be combined
with computing the mass ofR (line 5) in the next iteration. That is,
if we aggregate the values of the tuples ofR while they are written
for the update, we do not need to scan R again for computing its
mass in the next iteration. Likewise, in Algorithm 2, updating B
(line 16) in an iteration can be combined with computing attribute-
value masses (line 6) in the next iteration. This optimization
reduces the amount of disk I/O in D-CUBE about 30%.

Caching Tensor Entries in Memory. Although we assume that
tuples are stored on disk, storing them in memory up to the
memory capacity speeds up D-CUBE up to 3 times in our
experiments (see Section 4.4). We cache the tuples in B,
which are more frequently accessed than those in R or Rori,
in memory with the highest priority.

3.2 Analyses
In this section, we prove the time and space complexities of D-CUBE and
the accuracy guarantee provided by D-CUBE . Then, we theoretically
compare D-CUBE with M-ZOOM and M-BIZ (Shin et al., 2018).

3.2.1 Complexity Analyses
THEOREM 1 states the worst-case time complexity, which equals to
the worst-case I/O complexity, of D-CUBE .

LEMMA 1 (MaximumNumber of Iterations in Algorithm 2). Let
L � maxn ∈ [N]|Rn|. Then, the number of iterations (lines 5–16) in
Algorithm 2 is at most

Nmin(logθL, L).
PROOF In each iteration (lines 5–16) of Algorithm 2, among the

values of the chosen dimension attribute Ai, attribute values
whose masses are at most θ MB

|Bi |, where θ ≥ 1, are removed. The

Algorithm 4 | select_dimension by density

Frontiers in Big Data | www.frontiersin.org April 2021 | Volume 3 | Article 5943027

Shin et al. Detecting Group Anomalies in Tensors

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

set of such attribute values is denoted by Di. We will show that, if
|Bi|> 0, then ∣∣∣Bi\Di

∣∣∣< |Bi|/θ (1)

Note that, when
∣∣∣Bi\Di

∣∣∣ � 0, Eq. (1) trivially holds. When∣∣∣Bi\Di
∣∣∣> 0, MB can be factorized and lower bounded as

MB � ∑
a ∈ Bi\Di

MB(a,i) + ∑
a ∈ Di

MB(a,i)

≥ ∑
a ∈ Bi\Di

MB(a,i) >
∣∣∣Bi\Di

∣∣∣ · θMB
|Bi|,

where the last strict inequality is from the definition of Di and that∣∣∣Bi\Di
∣∣∣> 0. This strict inequality impliesMB > 0, and thus dividing

both sides by θ MB
|Bi| gives Eq. 1. Now, Eq. 1 implies that the number

of remaining values of the chosen attribute after each iteration is
less than 1/θ of that before the iteration. Hence each attribute can
be chosen at most logθL times before all of its values are removed.
Thus, the maximum number of iterations is at mostN logθL. Also,
by Eq. 1, at least one attribute value is removed per iteration.
Hence, the maximum number of iterations is at most the number
of attribute values, which is upper bounded by NL. Hence the
number of iterations is upper bounded by Nmax(logθL, L).∎

THEOREM 1 (Worst-case Time Complexity). Let

L � maxn ∈ [N]|Rn|. If θ � O(e(N |R|
L)), which is a weaker condition

than θ � O(1), the worst-case time complexity of Algorithm 1 is

O(kN2|R|min(logθL, L)). (2)

PROOF From Lemma 1, the number of iterations (lines 5–16) in
Algorithm 2 is O(Nmin(logθL, L)). Executing lines 6 and
16 O(Nmin(logθL, L)) times takes O(N2|R|min(logθL, L)),
which dominates the time complexity of the other parts. For
example, repeatedly executing line 9 takes O(NL log2 L), and by
our assumption, it is dominated by O(N2|R|min(logθL, L)).
Thus, the worst-case time complexity of Algorithm 2 is
O(N2|R|min(logθL, L)), and that of Algorithm 1, which
executes Algorithm 2, k times, is O(kN2|R|min(logθL, L)).∎

However, this worst-case time complexity, which allows the
worst distributions of the measure attribute values of tuples, is too
pessimistic. In Section 4.4, we experimentally show that D-CUBE

scales linearly with k, N, andR; and sub-linearly with L even when
θ is its smallest value 1.

Theorem 2 states the memory requirement of D-CUBE . Since the
tuples do not need to be stored in memory all at once in D-CUBE, its
memory requirement does not depend on the number of tuples
(i.e., |R|).

THEOREM 2 (Memory Requirements). The amount of memory
space in Algorithm 1 is O(∑N

n�1|Rn|).
PROOF In Algorithm 1, {{MB(a,n)}a ∈ Bn

}Nn�1, {Rn}Nn�1, and
{Bn}Nn�1 need to be loaded into memory at once. Each has at

most ∑N
n�1|Rn| values. Thus, the memory requirement is

O(∑N
n�1|Rn|). ∎

3.2.2 Accuracy in Dense-Subtensor Detection
We show that D-CUBE gives the same accuracy guarantee with in-
memory algorithms proposed in Shin et al. (2018), if we set θ to 1,

although accesses to tuples (stored on disk) are restricted in
D-CUBE to reduce disk I/Os. Specifically, Theorem 3 states that the
subtensor found by Algorithm 2 with the maximum cardinality
policy has density at least 1

θN of the optimum when ρari is used as
the density measure.

THEOREM 3 (θN-Approximation Guarantee). Let Bp be the
subtensor B maximizing ρari(B,R) in the given relation R. Let
~B be the subtensor returned by Algorithm 2 with ρari and the
maximum cardinality policy. Then,

ρari(~B,R)≥ 1
θN

ρari(Bp,R).
PROOF First, the maximal subtensor Bp satisfies that, for any

i ∈ [N] and for any attribute value a ∈ Bp
i , its attribute-value mass

MBp(a,i) is at least 1
Nρari(Bp,R). This is since the maximality of

ρari(Bp,R) implies ρari(Bp − Bp(a, i),R)≤ ρari(Bp,R), and

plugging in Definition 1 to ρari gives
MBp−MBp(a,i)

1
N((∑N

n�1|Bp
n|)−1) � ρari

(Bp − Bp(a, i),R)≤ ρari(Bp,R) � MBp
1
N∑N

n�1|Bp
n| , which reduces to

MBp(a,i) ≥
1
N
ρari(Bp,R). (3)

Consider the earliest iteration (lines 5–16) in Algorithm 2 where
an attribute value a of Bp is included in Di. Let B′ be B in the
beginning of the iteration. Our goal is to prove
ρari(B′,R)≥ 1

θNρari(Bp,R), which we will show as

ρari(~B,R)≥ ρari(B′,R)≥MB′(a,i)
θ ≥MBp(a,i)

θ ≥ 1
θNρari(Bp,R).

First, ρari(~B,R)≥ ρari(B′,R) is from the maximality of
ρari(~B,R) among the densities of the subtensors generated in
the iterations (lines 1:line:single:order1-1:line:single:order2 in
Algorithm 2). Second, applying

∣∣∣∣B′
i

∣∣∣∣≥ 1
N∑N

n�1
∣∣∣∣B′

n

∣∣∣∣ from the

maximum cardinality policy (Algorithm 3) to Definition 1 of

ρari gives ρari(B,R) � MB
1
N∑N

n�1
∣∣∣B′

n

∣∣∣ ≥MB′∣∣∣∣B′
i

∣∣∣∣. And a ∈ Di gives

θ
MB′|B′|≥MB′(a,i). So combining these gives ρari(B′,R)≥MB′(a,i)

θ .

TABLE 3 | Summary of real-world datasets.

Name Volume #Tuples

Rating data (user, item, timestamp, rating, #reviews)
SWM 967 K × 15.1 K × 1.38 K × 5 1.13 M
Yelp 552 K × 77.1 K × 3.80 K × 5 2.23 M
Android 1.32 M × 61.3 K × 1.28 K × 5 2.64 M
Netflix 480 K × 17.8 K × 2.18 K × 5 99.1 M
YahooM. 1.00 M × 625 K × 84.4 K × 101 253 M

Wiki revision histories (user, page, timestamp, #revisions)
KoWiki 470 K × 1.18 M × 101 K 11.0 M
EnWiki 44.1 M × 38.5 M × 129 K 483 M

Social networks (user, user, timestamp, #interactions)
Youtube 3.22 M × 3.22 M × 203 18.7 M
SMS 1.25 M × 7.00 M × 4.39 K 103 M

TCP dumps (src IP, dst IP, timestamp, #connections)
DARPA 9.48 K × 23.4 K × 46.6 K 522 K

TCP dumps (protocol, service, src bytes, . . ., #connections)
AirForce 3 × 70 × 11 × 7.20 K 648 K

× 21.5 K × 512 × 512

Frontiers in Big Data | www.frontiersin.org April 2021 | Volume 3 | Article 5943028

Shin et al. Detecting Group Anomalies in Tensors

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Third,
MB′(a,i)

θ ≥MBp(a,i)
θ is from B′IBp. Fourth,

MBp(a,i)
θ ≥ 1

θNρari(Bp,R) is from Eq. (3). Hence,

ρari(~B,R)≥ 1
θNρari(Bp,R) holds. ∎

3.2.3 Theoretical Comparison with M-ZOOM and M-BIZ

(Shin et al., 2018)
While D-CUBE requires only O(∑N

n�1|Rn|) memory space (see
Theorem 2), which does not depend on the number of tuples
(i.e., |R|), M-ZOOM and M-BIZ require additionalO(N|R|) space for
storing all tuples in main memory. The worst-case time
complexity of D-CUBE is O(kN2|R|min(logθL, L)) (see Theorem
1), and it is slightly higher than that of M-ZOOM, which is
O(kN|R|log L). Empirically, however, D-CUBE is up to 7× faster
than M-ZOOM, as we show in Section 4. The main reason is that
D-CUBE reads and writes tuples only sequentially, allowing efficient
caching based on spatial locality. On the other hand, M-ZOOM

requires tuples to be stored and accessed in hash tables, making
efficient caching difficult.1 The time complexity of M-BIZ depends
on the number of iterations until reaching a local optimum, and
there is no known upper bound on the number of iterations
tighter than O(2(∑N

n�1|Rn|)). If ρari is used, M-ZOOM and M-BIZ
2 give

an approximation ratio of N, which is the approximation ratio of
D-CUBE when θ is set to 1 (see Theorem 3).

3.3 MapReduce Implementation
We present our MAPREDUCE implementation of D-CUBE, assuming
that tuples in relations are stored in a distributed file system.
Specifically, we describe four MAPREDUCE algorithms that cover the
steps of D-CUBE accessing tuples.

(1) Filtering Tuples. In lines 7-8 Algorithm 1 and line 16 of
Algorithm 2, D-CUBE filters the tuples satisfying the given
conditions. These steps are done by the following map-only
algorithm, where we broadcast the data used in each condition
(e.g., {Bn}Nn�1 in line 7 of Algorithm 1) to mappers using the
distributed cache functionality.

Map-stage: Take a tuple t (i.e., 〈t[A1], . . . , t[AN], t[X]〉) and emit
t if t satisfies the given condition. Otherwise, the tuple is ignored.

(2) Computing Attribute-valueMasses. Line 6 of Algorithm 2 is
performed by the following algorithm, where we reduce the
amount of shuffled data by combining the intermediate results
within each mapper.

• Map-stage: Take a tuple t (i.e., 〈t[A1], . . . , t[AN], t[X]〉)
and emit N key/value pairs {〈(n, t[An]), t[X]〉}Nn�1.

• Combine-stage/Reduce-stage: Take 〈(n, a), values〉 and
emit 〈(n, a), sum(values)〉.

Each tuple 〈(n, a), value〉 of the final output indicates that
MB(a,n) � value.

(3) ComputingMass. Line 5 of Algorithm 1 can be performed by
the following algorithm, where we reduce the amount of shuffled
data by combining the intermediate results within each mapper.

• Map-stage: Take a tuple t (i.e., 〈t[A1], . . . , t[AN], t[X]〉)
and emit 〈0, t[X]〉.

• Combine-stage/Reduce-stage: Take 〈0, values〉 and emit
〈0, sum(values)〉.

The value of the final tuple corresponds to MR.
(4) Computing Attribute-value Sets. Line 2 of Algorithm 1 can be

performed by the following algorithm, where we reduce the amount of
shuffled data by combining the intermediate results within eachmapper.

• Map-stage: Take a tuple t (i.e., 〈t[A1], . . . , t[AN], t[X]〉)
and emit N key/value pairs {〈(n,T[An]), 0〉}Nn�1.

• Combine-stage/Reduce-stage: Take 〈(n, a), values〉 and
emit 〈(n, a), 0〉.

Each tuple 〈(n, a), 0〉 of the final output indicates that a is a
member of Rn.

4 RESULTS AND DISCUSSION

We designed and conducted experiments to answer the following
questions:

FIGURE 3 | D-CUBE is memory efficient. D-CUBE requires up to 1,561× less memory than the second most memory-efficient method.

1M-Zoom repeats retrieving all tuples with a given attribute value, and thus it
requires storing and accessing tuples in hash tables for quick retrievals.
2We assume that M-Biz uses the outputs of M-Zoom as its initial states, as
suggested in Shin et al. (2018).

Frontiers in Big Data | www.frontiersin.org April 2021 | Volume 3 | Article 5943029

Shin et al. Detecting Group Anomalies in Tensors

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Q1. Memory Efficiency: How much memory space does
D-CUBE require for analyzing real-world tensors? How large
tensors can D-CUBE handle?
Q2. Speed and Accuracy in Dense-subtensor Detection: How
rapidly and accurately does D-CUBE identify dense subtensors?
Does D-CUBE outperform its best competitors?
Q3. Scalability: Does D-CUBE scale linearly with all aspects of
data? Does D-CUBE scale out?
Q4. Effectiveness in Anomaly Detection: Which anomalies
does D-CUBE detect in real-world tensors?
Q5. Effect of θ: How does the mass-threshold parameter θ
affect the speed and accuracy of D-CUBE in dense-subtensor
detection?
Q6. Effect of α: How does the parameter α in density metric
ρes(α) affect subtensors that D-CUBE detects?

4.1 Experimental Settings
4.1.1 Machines
We ran all serial algorithms on a machine with 2.67GHz Intel
Xeon E7-8837 CPUs and 1TB memory. We ran MAPREDUCE

algorithms on a 40-node Hadoop cluster, where each node has
an Intel Xeon E3-1230 3.3GHz CPU and 32GB memory.

4.1.2 Datasets
We describe the real-world and synthetic tensors used in our
experiments. Real-world tensors are categorized into four groups:
(a) Rating data (SWM, Yelp, Android, Netflix, and YahooM.), (b)
Wikipedia revision histories (KoWiki and EnWiki), (c) Temporal
social networks (Youtube and SMS), and (d) TCP dumps
(DARPA and AirForce). Some statistics of these datasets are
summarized in Table 3.

Rating data. Rating data are relations with schema (user, item,
timestamp, score, #ratings). Each tuple (u,i,t,s,r) indicates that
user u gave item i score s, r times, at timestamp t. In the SWM
dataset (Akoglu et al., 2013), the timestamps are in dates, and the
items are entertaining software from a popular online software
marketplace. In the Yelp dataset, the timestamps are in dates, and
the items are businesses listed on Yelp, a review site. In the
Android dataset (McAuley et al., 2015), the timestamps are hours,
and the items are Android apps on Amazon, an online store. In

the Netflix dataset (Bennett and Lanning, 2007), the timestamps
are in dates, and the items are movies listed on Netflix, a movie
rental and streaming service. In the YahooM. dataset (Dror et al.,
2012), the timestamps are in hours, and the items aremusical items
listed on Yahoo! Music, a provider of various music services.

Wikipedia revision history. Wikipedia revision histories are
relations with schema (user, page, timestamp, #revisions). Each
tuple (u,p,t,r) indicates that user u revised page p, r times, at
timestamp t (in hour) in Wikipedia, a crowd-sourcing online
encyclopedia. In the KoWiki dataset, the pages are from Korean
Wikipedia. In the EnWiki dataset, the pages are from English
Wikipedia.

Temporal social networks. Temporal social networks are
relations with schema (source, destination, timestamp,
#interactions). Each tuple (s,d,t,i) indicates that user s interacts
with user d, i times, at timestamp t. In the Youtube dataset
(Mislove et al., 2007), the timestamps are in hours, and the
interactions are becoming friends on Youtube, a video-sharing
website. In the SMS dataset, the timestamps are in hours, and the
interactions are sending text messages.

TCP Dumps. The DARPA dataset (Lippmann et al., 2000),
collected by the Cyber Systems and Technology Group in 1998, is
a relation with schema (source IP, destination IP, timestamp,
#connections). Each tuple (s,d,t,c) indicates that c connections
were made from IP s to IP d at timestamp t (in minutes). The
AirForce dataset, used for KDD Cup. 1999, is a relation with
schema (protocol, service, src bytes, dst bytes, flag, host count, srv
count, #connections). The description of each attribute is as
follows:

• protocol: type of protocol (tcp, udp, etc.).
• service: service on destination (http, telnet, etc.).
• src bytes: bytes sent from source to destination.
• dst bytes: bytes sent from destination to source.
• flag: normal or error status.
• host count: number of connections made to the same host in

the past two seconds.
• srv count: number of connections made to the same service

in the past two seconds.
• #connections: number of connections with the given

dimension attribute values.

FIGURE 4 | D-CUBE rapidly and accurately detects dense subtensors. In each plot, points indicate the the densities of subtensors detected by different methods and
their running times, averaged over all considered real-world tensors. Upper-left region indicates better performance. D-CUBE is about 3.6× faster than the second fastest
method M-ZOOM. Moreover, D-CUBE with the maximum density consistently finds dense subtensors regardless of target density measures.

Frontiers in Big Data | www.frontiersin.org April 2021 | Volume 3 | Article 59430210

Shin et al. Detecting Group Anomalies in Tensors

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Synthetic Tensors: We used synthetic tensors for scalability
tests. Each tensor was created by generating a random binary
tensor and injecting ten random dense subtensors, whose
volumes are 10N and densities (in terms of ρari) are between
10× and 100× of that of the entire tensor.

4.1.3 Implementations
We implemented the following dense-subtensor detection
methods for our experiments.

• D-CUBE (Proposed): We implemented D-CUBE in Java with
Hadoop 1.2.1. We set the mass-threshold parameter θ to 1
and used the maximum density policy for dimension
selection, unless otherwise stated.

• M-ZOOM and M-BIZ (Shin et al., 2018): We used the open-
source Java implementations of M-ZOOM and M-BIZ

3. As
suggested in Shin et al. (2018), we used the outputs of
M-ZOOM as the initial states in M-BIZ .

• CROSSSPOT (Jiang et al., 2015): We used a Java
implementation of the open-source implementation of
CROSSSPOT

4. Although CROSSSPOT was originally designed to
maximize ρsusp, we used its variants that directly maximize
the density metric compared in each experiment. We used
CPD as the seed selection method of CROSSSPOT as in Shin
et al. (2018).

• CPD (CP Decomposition): Let {A(n)}Nn�1 be the factor
matrices obtained by CP Decomposition (Kolda and
Bader (2009)). The ith dense subtensor is composed by
every attribute value an whose corresponding element in the
ith column of A(n) is greater than or equal to 1/

����|Rn|
√

. We
used the Tensor Toolbox5 for CP Decomposition.

• MAF (Maruhashi et al., 2011): We used the Tensor Toolbox
for CP Decomposition, which MAF is largely based on.

4.2 Q1. Memory Efficiency
We compare the amount of memory required by different
methods for handling the real-world datasets. As seen in
Figure 3, D-CUBE, which does not require tuples to be stored in
memory, needed up to 1,561× less memory than the second most
memory-efficient method, which stores tuples in memory.

TABLE 4 | D-CUBE spots network attacks and synchronized behavior fastest and most accurately from TCP dumps and rating datasets, respectively.

Datasets AirForce DARPA Android Yelp

Elapsed AUROC Elapsed AUROC Elapsed Recall @ Elapsed Recall @

Time (s) Time (s) Time (s) Top-10 Time (s) Top-10

CPD 413.2 0.854 105.0 0.926 59.9 0.54 47.5 0.52
MAF 486.6 0.912 102.4 0.514 95.0 0.54 49.4 0.52
CROSSSPOT 575.5 0.924 132.2 0.923 71.3 0.54 56.7 0.52
M-ZOOM 27.7 0.975 22.7 0.923 28.4 0.70 17.7 0.30
M-BIZ 29.8 0.977 22.7 0.923 30.6 0.70 19.5 0.30
D-CUBE 15.6 0.987 9.1 0.930 7.0 0.90 4.9 0.60

TABLE 6 | Summary of the dense subtensors that D-CUBE detects in the SWM,
KoWiki, and EnWiki datasets.

Dataset Order Volume Mass ρari Type

SWM 1 120 308 44.0 Spam reviews
2 612 435 31.6 Spam reviews
3 231,240 771 20.3 Spam reviews

KoWiki 1 8 546 273.0 Edit war
2 80 1,011 233.3 Edit war
3 270 1,126 168.9 Edit war

EnWiki 1 9.98 M 1.71 M 7,931 Bot activities
2 541 K 343 K 4,211 Bot activities
3 23.5 M 973 K 3,395 Bot activities

TABLE 5 | D-Cube successfully detects spam reviews in the SWM dataset.

Subtensor 1 (100% spam)

User Review Date

Ti* Type in *** and you will get . . . Mar-4
Fo* Type in for the bonus code: . . . Mar-4
dj* Typed in the code: *** . . . Mar-4
Di* Enter this code to start with . . . Mar-4
Fe* Enter code: *** to win even . . . Mar-4

Subtensor 2 (100% spam)
Sk* Invite code***, referral . . . Apr-18
fu* Use my code for bonus . . . Apr-18
Ta* Enter the code *** for . . . Apr-18
Ap* Bonus code *** for points . . . Apr-18
De* Bonus code: ***, be one . . . Apr-18

Subtensor 3 (at least 48% spam)
Mr* Entered this code and got . . . Nov-23
Max* Enter the bonus code: *** . . . Nov-23
Je* Enter *** when it asks. . . Nov-23
Man* Just enter *** for a boost . . . Nov-23
Ty* Enter *** ro receive a . . . Nov-23

TABLE 7 | D-Cube successfully spots bot activities in the EnWiki dataset.

Subtensor # Users in each
subtensor (100% bots)

1 WP 1.0 bot
2 AAlertBot
3 AlexNewArtBot, VeblenBot, InceptionBot
4 WP 1.0 bot
5 Cydebot, VeblenBot

3https://github.com/kijungs/mzoom
4https://github.com/mjiang89/CrossSpot
5https://www.sandia.gov/tgkolda/TensorToolbox/

Frontiers in Big Data | www.frontiersin.org April 2021 | Volume 3 | Article 59430211

Shin et al. Detecting Group Anomalies in Tensors

%20https://github.com/kijungs/mzoom
%20https://github.com/mjiang89/CrossSpot
https://www.sandia.gov/tgkolda/TensorToolbox/
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Due to its memory efficiency, D-CUBE successfully handled
1,000× larger data than its competitors within a memory budget.
We ran methods on 3-way synthetic tensors with different
numbers of tuples (i.e., |R|), with a memory budget of 16GB
per machine. In every tensor, the cardinality of each dimension
attribute was 1/1000 of the number of tuples,
i.e., |Rn| � |R|/1000, ∀n ∈ [N]. Figure 1A in Section 1 shows
the result. The HADOOP implementation of D-CUBE successfully
spotted dense subtensors in a tensor with 1011 tuples (2.6TB), and
the serial version of D-CUBE successfully spotted dense subtensors
in a tensor with 1010 tuples (240GB), which was the largest tensor
that can be stored on a disk. However, all other methods ran out
of memory even on a tensor with 109 tuples (21GB).

4.3 Q2. Speed and Accuracy in
Dense-Subtensor Detection
We compare how rapidly and accurately D-CUBE (the serial version)
and its competitors detect dense subtensors in the real-world
datasets. We measured the wall-clock time (average over three
runs) taken for detecting three subtensors by each method, and we
measured the maximum density of the three subtensors found by
each method using different density measures in Section 2.2. For
this experiment, we did not limit the memory budget so that every
method can handle every dataset. D-CUBE also utilized extramemory
space by caching tuples in memory, as explained in Section 3.1.4.

Figure 4 shows the results averaged over all considered
datasets.6 The results in each data set can be found in the
supplementary material. D-CUBE provided the best trade-off
between speed and accuracy. Specifically, D-CUBE was up to 7×
faster (on average 3.6× faster) than the second fastest method
M-ZOOM. Moreover, D-CUBE with the maximum density policy
spotted high-density subtensors consistently regardless of
target density measures. Specifically, on average, D-CUBE with

the maximum density policy was most accurate in dense-
subtensor detection when ρgeo and ρes(10) were used; and it was
second most accurate when ρsusp and ρes(1) were used. When ρari
was used, M-ZOOM, M-BIZ, and D-CUBE with the maximum
cardinality policy were on average more accurate than D-CUBE

with the maximum density policy. Although MAF does not
appear in Figure 4, it consistently provided sparser subtensors
than CPD with similar speed.

4.4 Q3. Scalability
We show that D-CUBE scales (sub-)linearly with every input factor,
i.e., the number of tuples, the number of dimension attributes,
and the cardinality of dimension attributes, and the number of
subtensors that we aim to find. To measure the scalability with
each factor, we started with finding a dense subtensor in a
synthetic tensor with 108 tuples and 3 dimension attributes
each of whose cardinality is 105. Then, we measured the
running time as we changed one factor at a time while fixing
the other factors. The threshold parameter θ was fixed to 1. As
seen in Figure 5, D-CUBE scaled linearly with every factor and sub-
linearly with the cardinality of attributes even when θ was set to
its minimum value 1. This supports our claim in Section 3.2.1
that the worst-case time complexity of D-CUBE (Theorem 1) is too
pessimistic. This linear scalability of D-CUBE held both with
enough memory budget (blue solid lines in Figure 5) to store
all tuples and with minimummemory budget (red dashed lines in

FIGURE 5 | D-CUBE scales (sub-)linearly with all input factors regardless of memory budgets.

FIGURE 6 | D-CUBE scales out. The MAPREDUCE implementation of D-CUBE
is speeded up 8× with 10 machines, and 20× with 40 machines.

6In each dataset, we measured the relative running time of each method (compared
to the running time of D-Cube with the maximum density policy) and the relative
density of detected dense subtensors (compared to the density of subtensors
detected by D-Cube with the maximum density policy). Then, we averaged
them over all considered datasets.

Frontiers in Big Data | www.frontiersin.org April 2021 | Volume 3 | Article 59430212

Shin et al. Detecting Group Anomalies in Tensors

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Figure 5) to barely meet the requirements although D-CUBE was
up to 3× faster in the former case.

We also evaluate the machine scalability of the MAPREDUCE

implementation of D-CUBE. We measured its running time taken
for finding a dense subtensor in a synthetic tensor with 1010 tuples
and 3 dimension attributes each of whose cardinality is 107, as we
increased the number of machines running in parallel from 1 to 40.
Figure 6 shows the changes in the running time and the speed-up,
which is defined as T1/TM where TM is the running time with M
machines. The speed-up increased near linearly when a small
number of machines were used, while it flattened as more
machines were added due to the overhead in the distributed system.

4.5 Q4. Effectiveness in Anomaly Detection
We demonstrate the effectiveness of D-CUBE in four applications
using real-world tensors.

4.5.1 Network Intrusion Detection from TCP Dumps
D-CUBE detected network attacks from TCP dumps accurately by
spotting corresponding dense subtensors. We consider two TCP
dumps that are modeled differently. The DARPA dataset is a 3-
way tensor where the dimension attributes are source IPs,
destination IPs, and timestamps in minutes; and the measure
attribute is the number of connections. The AirForce dataset,
which does not include IP information, is a 7-way tensor where
the measure attribute is the same but the dimension attributes are
the features of the connections, including protocols and services.
Both datasets include labels indicating whether each connection
is malicious or not.

Figure 1C in Section 1 lists the five densest subtensors (in
terms of ρgeo) found by D-CUBE in each dataset. Notice that the
dense subtensors are mostly composed of various types of
network attacks. Based on this observation, we classified each
connection as malicious or benign based on the density of the
densest subtensor including the connection (i.e., the denser the
subtensor including a connection is, the more suspicious the
connection is). This led to high area under the ROC curve
(AUROC) as seen in Table 4, where we report the AUROC
when each method was used with the density measure giving the
highest AUROC. In both datasets, using D-CUBE resulted in the
highest AUROC.

4.5.2 Synchronized Behavior Detection in Rating Data
D-CUBE spotted suspicious synchronized behavior accurately in rating
data. Specifically, we assume an attack scenario where fraudsters in a
review site, who aim to boost (or lower) the ratings of the set of items,
create multiple user accounts and give the same score to the items
within a short period of time. This lockstep behavior forms a dense
subtensor with volume (# fake accounts × # target items × 1 × 1) in
the rating dataset, whose dimension attributes are users, items,
timestamps, and rating scores.

We injected 10 such random dense subtensors whose volumes
varied from 15×15×1×1 to 60×60×1×1 in the Yelp and Android
datasets. We compared the ratio of the injected subtensors detected
by each dense-subtensor detection method. We considered each
injected subtensor as overlooked by a method if the subtensor did
not belong to any of the top-10 dense subtensors spotted by the
method or it was hidden in a natural dense subtensor at least
10 times larger than the injected subtensor. That is, we measured
the recall at top 10. We repeated this experiment 10 times, and the
averaged results are summarized in Table 4. For each method, we
report the results with the density measure giving the highest recall.
In both datasets, D-CUBE detected a largest number of the injected
subtensors. Especially, in the Android dataset, D-CUBE detected 9
out of the 10 injected subtensors, while the second best method
detected only 7 injected subtensors on average.

4.5.3 Spam-Review Detection in Rating Data
D-CUBE successfully spotted spam reviews in the SWM dataset,
which contains reviews from an online software marketplace. We
modeled the SWM dataset as a 4-way tensor whose dimension
attributes are users, software, ratings, and timestamps in dates, and
we applied D-CUBE (with ρ � ρari) to the dataset. Table 6 shows the
statistics of the top-3 dense subtensors. Although ground-truth
labels were not available, as the examples in Table 5 show, all the
reviews composing the first and second dense subtensors were
obvious spam reviews. In addition, at least 48% of the reviews
composing the third dense subtensor were obvious spam reviews.

4.5.4 Anomaly Detection in Wikipedia Revision
Histories
D-CUBE detected interesting anomalies in Wikipedia revision
histories, which we model as 3-way tensors whose dimension

FIGURE 7 | Themass-threshold parameter θ gives a trade-off between the speed and accuracy of D-CUBE in dense-subtensor detection. We report the running time
and the density of detected subtensors, averaged over all considered real-world datasets. As θ increases, D-CUBE tends to be faster, detecting sparser subtensors.

Frontiers in Big Data | www.frontiersin.org April 2021 | Volume 3 | Article 59430213

Shin et al. Detecting Group Anomalies in Tensors

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

attributes are users, pages, and timestamps in hours. Table 6 gives
the statistics of the top-3 dense subtensors detected by D-CUBE

(with ρ � ρari and the maximum cardinality policy) in the KoWiki
dataset and by D-CUBE (with ρ � ρgeo and the maximum density
policy) in the EnWiki dataset. All three subtensors detected in the
KoWiki dataset indicated edit wars. For example, the second
subtensor corresponded to an edit war where 4 users changed 4
pages, 1,011 times, within 5 h. On the other hand, all three
subtensors detected in the Enwiki dataset indicated bot
activities. For example, the third subtensor corresponded to 3
bots which edited 1,067 pages 973,747 times. The users
composing the top-5 dense subtensors in the EnWiki dataset
are listed in Table 7. Notice that all of them are bots.

4.6 Q5. Effects of Parameter θ on Speed and
Accuracy in Dense-Subtensor Detection
We investigate the effects of the mass-threshold parameter θ on the
speed and accuracy of D-CUBE in dense-subtensor detection. We used
the serial version of D-CUBE with a memory budget of 16GB, and we
measured the relative density of detected subtensors and its running
time, as in Section 4.3. Figure 7 shows the results averaged over all
considered datasets. Different θ values provided a trade-off between
speed and accuracy in dense-subtensor detection. Specifically,
increasing θ tended to make D-CUBE faster but also make it detect
sparser subtensors. This tendency is consistent with our theoretical
analyses (Theorems 1–3 in Section 3.2). The sensitivity of the dense-
subtensor detection accuracy to θ depended on the used density
measures. Specifically, the sensitivity was lower with ρes(α) than
with the other density measures.

4.7 Q6. Effects of Parameter α in ρes(α) on
Subtensors Detected by D-CUBE
We show that the dense subtensors detected by D-CUBE are
configurable by the parameter α in density measure ρes(α).
Figure 8 shows the volumes and masses of subtensors
detected in the Youtube and Yelp datasets by D-CUBE when
ρes(α) with different α values were used as the density metrics.

With large α values, D-CUBE tended to spot relatively small but
compact subtensors. With small α values, however, D-CUBE tended
to spot relatively sparse but large subtensors. Similar tendencies
were obtained with the other datasets.

5 CONCLUSION

In this work, we propose D-CUBE, a disk-based dense-subtensor
detection method, to deal with disk-resident tensors too large to fit
in main memory. D-CUBE is optimized to minimize disk I/Os while
providing a guarantee on the quality of the subtensors it finds.
Moreover, we propose a distributed version of D-CUBE running on
MAPREDUCE for terabyte-scale or larger data distributed across
multiple machines. In summary, D-CUBE achieves the following
advantages over its state-of-the-art competitors:

• Memory Efficient: D-CUBE handles 1,000× larger data (2.6TB)
by reducing memory usage up to 1,561× compared to in-
memory algorithms (Section 4.2).

• Fast: Even when data fit in memory, D-CUBE is up to 7× faster
than its competitors (Section 4.3) with near-linear
scalability (Section 4.4).

• Provably Accurate: D-CUBE is one of the methods
guaranteeing the best approximation ratio (Theorem 3)
in dense-subtensor detection and spotting the densest
subtensors in practice (Section 4.3).

• Effective: D-CUBE was most accurate in two applications:
detecting network attacks from TCP dumps and lockstep
behavior in rating data (Section 4.5).

Reproducibility: The code and data used in the paper are
available at http://dmlab.kaist.ac.kr/dcube

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: http://dmlab.kaist.ac.kr/dcube.

FIGURE 8 | Subtensors detected by D-CUBE are configurable by the parameter α in density metric ρes(α). As α increases, D-CUBE spots smaller but more compact
subtensors.

Frontiers in Big Data | www.frontiersin.org April 2021 | Volume 3 | Article 59430214

Shin et al. Detecting Group Anomalies in Tensors

http://dmlab.kaist.ac.kr/dcube
http://dmlab.kaist.ac.kr/dcube
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

AUTHOR CONTRIBUTIONS

KS, BH, and CF contributed to conception and design of the study.
KS performed the experiments. JK performed the mathematical
analysis. KS wrote the first draft of the manuscript. KS and BH
wrote sections of the manuscript. All authors contributed to
manuscript revision, read, and approved the submitted version.

FUNDING

This research was supported by National Research Foundation of
Korea (NRF) Grant funded by the Korea government (MSIT) (No.
NRF-2020R1C1C1008296) and Institute of Information and
Communications Technology Planning and Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2019-0-
00075, Artificial Intelligence Graduate School Program (KAIST)).
This research was also supported by the National Science
Foundation under Grant Nos. CNS-1314632 and IIS-1408924.
This research was sponsored by the Army Research Laboratory
and was accomplished under Cooperative Agreement Number
W911NF-09-2-0053. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National
Science Foundation, or other funding parties. The U.S. Government
is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

ACKNOWLEDGMENTS

The content of the manuscript has been presented in part at
the 10th ACM International Conference on Web Search and
Data Mining (Shin et al., 2017b). In this extended version,
we refined D-CUBE with a new parameter θ, and we proved
that the time complexity of D-CUBE is significantly improved
with the refinement (Lemma 1 and Theorem 1). We also
proved that, for N-way tensors, D-CUBE gives an
θN-approximation guarantee for Problem 1 (Theorem 3).
Additionally, we considered an extra density measure
(Definition 3) and an extra competitor (i.e., M-BIZ); and
we applied D-CUBE to three more real-world datasets
(i.e., KoWiki, EnWiki, and SWM) and successfully
detected edit wars, bot activities, and spam reviews
(Tables 5–7). Lastly, we conducted experiments showing
the effects of parameters θ and α on the speed and accuracy
of D-CUBE in dense-subtensor detection (Figures 7 and 8).
Most of this work was also included in the PhD thesis of the
first author (KS).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fdata.2020.594302/
full#supplementary-material

REFERENCES

Akoglu, L., Chandy, R., and Faloutsos, C. (2013). Opinion fraud detection in online
reviews by network effects. ICWSM.

Akoglu, L., McGlohon, M., and Faloutsos, C. (2010). Oddball: spotting anomalies
in weighted graphs. PAKDD.

Akoglu, L., Tong, H., and Koutra, D. (2015). Graph based anomaly detection and
description: a survey. Data Mining Knowl. Discov. 29, 626–688. doi:10.1201/
b15352-15

Andersen, R., and Chellapilla, K. (2009). Finding dense subgraphs with size
bounds. WAW.

Bahmani, B., Goel, A., and Munagala, K. (2014). Efficient primal-dual graph
algorithms for mapreduce. WAW.

Bahmani, B., Kumar, R., and Vassilvitskii, S. (2012). Densest subgraph in streaming
and mapreduce. PVLDB 5, 454–465. doi:10.14778/2140436.2140442

Balalau, O. D., Bonchi, F., Chan, T., Gullo, F., and Sozio, M. (2015). Finding
subgraphs with maximum total density and limited overlap. WSDM.

Bennett, J., and Lanning, S. (2007). The netflix prize. KDD Cup.
Beutel, A., Xu, W., Guruswami, V., Palow, C., and Faloutsos, C. (2013). Copycatch:

stopping group attacks by spotting lockstep behavior in social
networks. WWW.

Charikar, M. (2000). Greedy approximation algorithms for finding dense
components in a graph. APPROX.

Dean, J., and Ghemawat, S. (2008). Mapreduce: simplified data processing on large
clusters. Commun. ACM 51, 107–113. doi:10.21276/ijre.2018.5.5.4

Dror, G., Koenigstein, N., Koren, Y., and Weimer, M. (2012). The yahoo! music
dataset and kdd-cup’11. KDD Cup.

Epasto, A., Lattanzi, S., and Sozio, M. (2015). Efficient densest subgraph
computation in evolving graphs. WWW.

Galbrun, E., Gionis, A., and Tatti, N. (2016). Top-k overlapping densest subgraphs.
Data Mining Knowl. Discov. 30, 1134–1165. doi:10.1007/s10618-016-0464-z

Goldberg, A. V. (1984). Finding a maximum density subgraph. Technical Report.

Hooi, B., Shin, K., Song, H. A., Beutel, A., Shah, N., and Faloutsos, C. (2017).
Graph-based fraud detection in the face of camouflage. ACM Trans. Knowl.
Discov. Data 11, 44. doi:10.1145/3056563

Jeon, I., Papalexakis, E. E., Kang, U., and Faloutsos, C. (2015). Haten2: billion-scale
tensor decompositions. ICDE, 1047–1058.

Jiang, M., Beutel, A., Cui, P., Hooi, B., Yang, S., and Faloutsos, C. (2015). A general
suspiciousness metric for dense blocks in multimodal data. ICDM.

Jiang, M., Cui, P., Beutel, A., Faloutsos, C., and Yang, S. (2014). Catchsync: catching
synchronized behavior in large directed graphs. KDD.

Kang, U., Papalexakis, E., Harpale, A., and Faloutsos, C. (2012). Gigatensor: scaling
tensor analysis up by 100 times-algorithms and discoveries. KDD.

Kannan, R., and Vinay, V. (1999). Analyzing the structure of large graphs.
Technical Report.

Khuller, S., and Saha, B. (2009). On finding dense subgraphs. ICALP, 597–608.
Kolda, T. G., and Bader, B. W. (2009). Tensor decompositions and applications.

SIAM Rev. 51, 455–500. doi:10.2172/755101
Lee, V. E., Ruan, N., Jin, R., and Aggarwal, C. (2010). A survey of algorithms for

dense subgraph discovery. Managing and Mining Graph Data, 303–336.
Lippmann, R. P., Fried, D. J., Graf, I., Haines, J. W., Kendall, K. R., McClung, D.,

et al. (2000). Evaluating intrusion detection systems: the 1998 darpa off-line
intrusion detection evaluation. DISCEX.

Maruhashi, K., Guo, F., and Faloutsos, C. (2011). Multiaspectforensics: pattern
mining on large-scale heterogeneous networks with tensor analysis. ASONAM.

McAuley, J., Pandey, R., and Leskovec, J. (2015). Inferring networks of substitutable
and complementary products. KDD.

Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., and Bhattacharjee, B.
(2007). Measurement and analysis of online social networks. IMC.

Oh, J., Shin, K., Papalexakis, E. E., Faloutsos, C., Yu, H., and S-hot (2017). Scalable
high-order tucker decomposition. WSDM.

Papalexakis, E. E., Faloutsos, C., and Sidiropoulos, N. D. (2012). Parcube: sparse
parallelizable tensor decompositions. PKDD.

Rossi, R. A., Gallagher, B., Neville, J., and Henderson, K. (2013). Modeling dynamic
behavior in large evolving graphs. WSDM.

Frontiers in Big Data | www.frontiersin.org April 2021 | Volume 3 | Article 59430215

Shin et al. Detecting Group Anomalies in Tensors

https://www.frontiersin.org/articles/10.3389/fdata.2020.594302/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fdata.2020.594302/full#supplementary-material
https://doi.org/10.1201/b15352-15
https://doi.org/10.1201/b15352-15
https://doi.org/10.14778/2140436.2140442
https://doi.org/10.21276/ijre.2018.5.5.4
https://doi.org/10.1007/s10618-016-0464-z
https://doi.org/10.1145/3056563
https://doi.org/10.2172/755101
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Ruhl, J. M. (2003). Efficient algorithms for new computational models. Ph.D.
thesis, Massachusetts Institute of Technology.

Saha, B., Hoch, A., Khuller, S., Raschid, L., and Zhang, X. N. (2010). Dense
subgraphs with restrictions and applications to gene annotation graphs.
RECOMB.

Shah, N., Beutel, A., Gallagher, B., and Faloutsos, C. (2014). Spotting suspicious
link behavior with fbox: an adversarial perspective. ICDM.

Shin, K., Eliassi-Rad, T., and Faloutsos, C. (2016). Corescope:
graph mining using k-core analysis—patterns, anomalies and
algorithms. ICDM.

Shin, K., Hooi, B., and Faloutsos, C. (2018). Fast, accurate, and flexible algorithms
for dense subtensor mining.ACMTrans. Knowledge Discov. Data 12, 28. doi:10.
1145/3154414.1-2830

Shin, K., Hooi, B., Kim, J., and Faloutsos, C. (2017b). D-cube: dense-block detection
in terabyte-scale tensors. WSDM.

Shin, K., Hooi, B., Kim, J., and Faloutsos, C. (2017a). Densealert: incremental
dense-subtensor detection in tensor streams. KDD.

Shin, K., and Kang, U. (2014). Distributed methods for high-dimensional and
large-scale tensor factorization. ICDM.

Tsourakakis, C., Bonchi, F., Gionis, A., Gullo, F., and Tsiarli, M. (2013). Denser than the
densest subgraph: extracting optimal quasi-cliques with quality guarantees. KDD.

Wang, Y., Tung, H. Y., Smola, A. J., and Anandkumar, A. (2015). Fast and
guaranteed tensor decomposition via sketching. NIPS.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Shin, Hooi, Kim and Faloutsos. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication in
this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Big Data | www.frontiersin.org April 2021 | Volume 3 | Article 59430216

Shin et al. Detecting Group Anomalies in Tensors

https://doi.org/10.1145/3154414.1-2830
https://doi.org/10.1145/3154414.1-2830
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Detecting Group Anomalies in Tera-Scale Multi-Aspect Data via Dense-Subtensor Mining
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Organization of the Paper

	2 Preliminaries and Problem Definition
	2.1 Notations and Concepts
	2.2 Density Measures
	2.3 Problem Definition

	3 Proposed Method
	3.1 Algorithm
	3.1.1 Overall Structure of D-Cube (Algorithm 1)
	3.1.2 Single Subtensor Detection (Algorithm 2)
	3.1.3 Dimension Selection (Algorithms 3 and 4)
	3.1.4 Efficient Implementation

	3.2 Analyses
	3.2.1 Complexity Analyses
	3.2.2 Accuracy in Dense-Subtensor Detection
	3.2.3 Theoretical Comparison with M-Zoom and M-Biz (Shin et al., 2018)

	3.3 MapReduce Implementation

	4 Results and Discussion
	4.1 Experimental Settings
	4.1.1 Machines
	4.1.2 Datasets
	4.1.3 Implementations

	4.2 Q1. Memory Efficiency
	4.3 Q2. Speed and Accuracy in Dense-Subtensor Detection
	4.4 Q3. Scalability
	4.5 Q4. Effectiveness in Anomaly Detection
	4.5.1 Network Intrusion Detection from TCP Dumps
	4.5.2 Synchronized Behavior Detection in Rating Data
	4.5.3 Spam-Review Detection in Rating Data
	4.5.4 Anomaly Detection in Wikipedia Revision Histories

	4.6 Q5. Effects of Parameter θ on Speed and Accuracy in Dense-Subtensor Detection
	4.7 Q6. Effects of Parameter α in ρes(α) on Subtensors Detected by D-Cube

	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

