
Distance-Weighted Graph Neural
Networks on FPGAs for Real-Time
Particle Reconstruction in High
Energy Physics
Yutaro Iiyama1*, Gianluca Cerminara2, Abhijay Gupta2, Jan Kieseler2, Vladimir Loncar2,3,
Maurizio Pierini 2, Shah Rukh Qasim2,4, Marcel Rieger2, Sioni Summers2, Gerrit Van Onsem2,
Kinga Anna Wozniak2,5, Jennifer Ngadiuba6, Giuseppe Di Guglielmo7, Javier Duarte8,
Philip Harris9, Dylan Rankin9, Sergo Jindariani10, Mia Liu10, Kevin Pedro10, Nhan Tran10,11,
Edward Kreinar12 and Zhenbin Wu13

1International Center for Elementary Particle Physics, University of Tokyo, Tokyo, Japan, 2Experimental Physics Department,
European Organization for Nuclear Research (CERN), Geneva, Switzerland, 3Institute of Physics Belgrade, Belgrade, Serbia,
4Manchester Metropolitan University, Manchester, United Kingdom, 5University of Vienna, Vienna, Austria, 6Department of
Physics, Math and Astronomy, California Institute of Technology, Pasadena, CA, United States, 7Department of Computer
Science, Columbia University, New York, NY, United States, 8Department of Physics, University of California, San Diego,
San Diego, CA, United States, 9Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA,
United States, 10Department of Physics and Astronomy, Purdue university, West Lafayette, IL, United States, 11Department of
Electrical and Computer Engineering, Northwestern University, Evanston, IL, United States, 12HawkEye360, Herndon, VA,
United States, 13Department of Physics, University of Illinois at Chicago, Chicago, IL, United States

Graph neural networks have been shown to achieve excellent performance for several
crucial tasks in particle physics, such as charged particle tracking, jet tagging, and
clustering. An important domain for the application of these networks is the FGPA-
based first layer of real-time data filtering at the CERN Large Hadron Collider, which
has strict latency and resource constraints. We discuss how to design distance-weighted
graph networks that can be executed with a latency of less than one μs on an FPGA. To do
so, we consider a representative task associated to particle reconstruction and
identification in a next-generation calorimeter operating at a particle collider. We use a
graph network architecture developed for such purposes, and apply additional
simplifications to match the computing constraints of Level-1 trigger systems, including
weight quantization. Using the hls4ml library, we convert the compressed models into
firmware to be implemented on an FPGA. Performance of the synthesized models is
presented both in terms of inference accuracy and resource usage.

Keywords: deep learning, field-programmable gate arrays, fast inference, graph network, imaging calorimeter

1. INTRODUCTION

At the CERN Large Hadron Collider (LHC), high-energy physics (HEP) experiments collect signals
generated by the particles produced in high-energy proton collisions that occur every 25 ns, when
two proton beams cross. The readout from the detectors that capture the particles emerging from the
collision is filtered by a real-time processing system, known as the trigger, that discards uninteresting
collision events, based on a set of predefined algorithms. The trigger system is structured in two
stages: a Level-1 trigger (L1T), implemented with custom electronics on-detector and field-

Edited by:
Daniele D’Agostino,

National Research Council (CNR), Italy

Reviewed by:
Anushree Ghosh,

University of Padua, Italy
Alexander Radovic,
Borealis AI, Canada

*Correspondence:
Yutaro Iiyama

yutaro.iiyama@cern.ch

Specialty section:
This article was submitted to

Big Data and AI in High
Energy Physics,

a section of the journal
Frontiers in Big Data

Received: 25 August 2020
Accepted: 26 October 2020
Published: 12 January 2021

Citation:
Iiyama Y, Cerminara G, Gupta A,
Kieseler J, Loncar V, Pierini M,

Qasim SR, Rieger M, Summers S, Van
Onsem G, Wozniak KA, Ngadiuba J, Di

Guglielmo G, Duarte J, Harris P,
Rankin D, Jindariani S, Liu M, Pedro K,

Tran N, Kreinar E and Wu Z (2021)
Distance-Weighted Graph Neural

Networks on FPGAs for Real-Time
Particle Reconstruction in High

Energy Physics.
Front. Big Data 3:598927.

doi: 10.3389/fdata.2020.598927

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 5989271

ORIGINAL RESEARCH
published: 12 January 2021

doi: 10.3389/fdata.2020.598927

http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2020.598927&domain=pdf&date_stamp=2021-01-12
https://www.frontiersin.org/articles/10.3389/fdata.2020.598927/full
https://www.frontiersin.org/articles/10.3389/fdata.2020.598927/full
https://www.frontiersin.org/articles/10.3389/fdata.2020.598927/full
https://www.frontiersin.org/articles/10.3389/fdata.2020.598927/full
http://creativecommons.org/licenses/by/4.0/
mailto:yutaro.iiyama@cern.ch
https://doi.org/10.3389/fdata.2020.598927
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2020.598927

programmable gate arrays (FPGAs); and a high-level trigger
(HLT), consisting of a computer farm, possibly including co-
processor accelerators like graphics processing units (GPUs) and
FPGAs. Because of asynchronous event processing at the HLT,
the accept/reject decision has to be reached with a typical latency
of O(100)ms. However, at the L1T, a decision must be taken
within a fixed latency of O(1) μs. The main limitations are the
synchronous, “hard-deadline” nature of the processing system
and the limited size of the memory buffer for the data from each
beam crossing.

While HLT algorithms have a complexity comparable to
those used offline to produce the final physics results, a typical
L1T algorithm consists of simpler rules based on coarser
objects to satisfy the latency constraint. Consequently, the
resolution of quantities computed at the L1T is typically
poor compared to offline quantities. Recently, the successful
deployment of the first machine learning (ML) L1T algorithm,
based on a boosted decision tree (BDT), at the LHC (Acosta
et al., 2018) has changed this tendency, raising interest in using
ML inference as fast-to-execute approximations of complex
algorithms with good accuracy. This first example consisted of
a large, pre-computed table of input and output values
implementing a BDT, which raises the question of how to
deploy more complex architectures. This question motivated
the creation of hls4ml (Duarte et al., 2018; Loncar et al., 2020),
a library designed to facilitate the deployment of ML
algorithms on FPGAs.

A typical hls4ml workflow begins with a neural networkmodel
that is implemented and trained using KERAS (Keras, 2015), PYTORCH
(Paszke et al., 2019), or TENSORFLOW (Abadi et al., 2015). The trained
model is passed to hls4ml, directly or through the ONNX (Bai et al.,
2019) interface, and converted to C++ code that can be processed by a
high-level synthesis (HLS) compiler to produce an FPGA firmware.
By design, hls4ml targets low-latency applications. To this end, its
design prioritizes all-on-chip implementations of the most common
network components. Its functionality has been demonstrated with
dense neural networks (DNNs) (Duarte et al., 2018), extended to also
support BDTs (Summers et al., 2020). Extensions to convolutional
and recurrent neural networks are in development. The library comes
with handles to compress themodel by quantization, up to binary and
ternary precision (Di Guglielmo et al., 2020). Recently, support for
QKERAS (Qkeras, 2020) models has been added, in order to allow for
quantization-aware training ofmodels (Coelho et al., 2020).While the
hls4ml applications go beyond HEP, its development has been driven
by the LHC L1T use case.

Graph neural networks (GNNs) are among the complex
architectures whose L1T implementations are in high demand,
given the growing list of examples showing how well GNNs can
deal with tasks related to HEP (Henrion et al., 2017; Choma et al.,
2018; Abdughani et al., 2019; Arjona Martínez et al., 2019; Jin
et al., 2019; Ju et al., 2019; Qasim et al., 2019b; Bernreuther et al.,
2020; Moreno et al., 2020a; Moreno et al., 2020b; Qu and
Gouskos, 2020; Shlomi et al., 2020). In fact, while the irregular
geometry of a typical HEP detector complicates the use of
computing vision techniques such as convolutional neural
networks, GNNs can naturally deal with the sparse and
irregular nature of HEP data.

In this work, we show how a graph model can be efficiently
deployed on FPGAs to perform inference within O(1) μs for
HEP-related problems. We consider the distance-weighted
architecture GARNET, introduced in Qasim et al., (2019b),
which is designed to keep resource consumption under control
by reducing as much as possible the number of operations. It has
been demonstrated to perform well for a HEP-related task,
namely particle reconstruction in a calorimeter. For these
reasons, it represents a good candidate for our purpose. The
firmware implementation of GARNET presented in this work has
been included in hls4ml, representing the first graph-based
algorithm available in the library.

We present a case study of a neural network algorithm based
on GARNET, applied to a task of identifying the nature of an
incoming particle and simultaneously estimating its energy from
the energy deposition patterns in a simulated imaging
calorimeter. The inference accuracy of the firmware
implementation of the algorithm is compared against its
offline counterpart running on processors (CPUs and GPUs).
Latency and resource utilization of the translated FPGA firmware
are reported, along with a discussion on their implications for
real-world usage of similar algorithms.

This paper is structured as follows. In Section 2, we briefly
recount related work. Section 3 defines the main problem by
outlining the challenges in designing a graph network compatible
with L1T latency and resource constraints. Section 4 describes how
GARNET addresses these challenges, and introduces a simplified form
of the algorithm with a better affinity to a firmware implementation.
The case study using a calorimeter simulation is presented in Section
5, with detailed descriptions of the task setup, model architecture,
training results, and the summary of FPGA firmware synthesis.
Finally, conclusions are given in Section 6.

2. RELATED WORK

Graph neural networks are gaining interest in HEP applications,
mainly due to their intrinsic advantage in dealing with sparse
input datasets, which are very common in HEP. A recent review
of applications of GNNs to HEP problems may be found in
Shlomi et al., (2020). In particular, dynamic GNNs (Qasim et al.,
2019b; Wang et al., 2019; Gray et al., 2020; Kieseler, 2020) are
relevant for particle reconstruction tasks, such as tracking (Ju
et al., 2019) and calorimetry (Qasim et al., 2019b).

Development of ML models deployable to FPGA-based L1T
systems is helped by tools for automatic network-to-circuit
conversion such as hls4ml. Using hls4ml, several solutions for
HEP-specific tasks (e.g., jet tagging) have been provided (Duarte
et al., 2018; Coelho et al., 2020; Di Guglielmo et al., 2020;
Summers et al., 2020), exploiting models with simpler
architectures than what is shown here. This tool has been
applied extensively for tasks in the HL-LHC upgrade of the
CMS L1T system, including an autoencoder for anomaly
detection, and DNNs for muon energy regression and
identification, tau lepton identification, and vector boson
fusion event classification (CMS Collaboration, 2020).
However, prior to this work, GNN models had not yet been

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 5989272

Iiyama et al. Graph Neural Networks on FPGAs

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

supported by hls4ml. To the best of our knowledge, the present
work is the first demonstration of GNN inference on FPGAs for a
HEP application.

Outside of HEP, hardware and firmware acceleration of GNN
inference, and graph processing in general, has been an active
area of study in recent years, motivated by the intrinsic
inefficiencies of CPUs and GPUs when dealing with graph
data (Besta et al., 2019; Gui et al., 2019). Nurvitadhi et al.,
2014; Ozdal et al., 2016; Auten et al., 2020; Geng et al., 2020;
Kiningham et al., 2020; Yan et al., 2020; Zeng and Prasanna, 2020
describe examples of GNN acceleration architectures. Auten
et al., 2020; Geng et al., 2020; Yan et al., 2020; Zeng and
Prasanna, 2020. are specific to the graph convolutional
network (GCN) (Kipf and Welling, 2017), while the graph
inference processor (GRIP) architecture in Kiningham et al.,
(2020) is efficient across a wide range of GNN models. All five
architectures are designed for processing graphs with millions of
vertices under a latency constraint (10–1,000 μs or more) that is
less stringent than in the HEP L1T environment (less than 1 μs),
and are thus not directly applicable to our use case. Nurvitadhi
et al., (2014) and Ozdal et al., (2016) present frameworks that
automatically generate register-transfer level (RTL)
implementations for graph computations according to user-
defined configurations. While these frameworks are applicable
to various graph processing tasks, they require the user to specify
the design in highly specific nonstandard format, rather than a
standard serialized ML model as in our implementation.

3. GENERAL REQUIREMENTS AND
CHALLENGES

In the framework of Battaglia et al., (2018), a graph is a triplet
(V, E,U), where V is a set of entities (vertices) each possessing
some attributes in a fixed format, E is a set of pairwise relations
(edges) between the elements in V, potentially possessing some
additional attributes, and U are global (graph-level) attributes.
While a GNN can be any neural network that acts on such graphs,
in this work we specifically consider graph networks (GN)
(Battaglia et al., 2018), i.e., architectures that consist of
repeatable graph-to-graph mapping blocks (GN blocks). Each
GN block performs some combination of operations such as edge
feature transformation, aggregation of neighbors’ features at each
vertex, vertex feature transformation, global aggregation of edge
and vertex features, and global feature transformation. A GN
takes a graph as an input sample, where the cardinality of V may
differ sample to sample, and infers its properties, which may be
anything from a global scalar, such as a classification label of the
sample, to new edge attributes.

To be usable as a part of an LHC L1T system, an algorithm
must execute within O(1) μs and have the throughput to accept all
inputs from each beam crossing every 25ns. Time-multiplexing,
whereby N copies of the algorithm accept inputs from N different
beam crossings, may be used to decrease the throughput
requirement by a factor of N. Additionally, there is a practical
constraint that the firmware implementation should fit in the FPGA
resources of the system, i.e., utilize the resources such as digital signal

processing units (DSPs), look-up tables (LUTs), flip-flips (FFs), and
block RAM (BRAM) within the limits of chips available on the
market. Satisfying these requirements with a GNN can be
challenging for multiple reasons listed below.

• Model depth: Within each GN block, vertices exchange
information with other directly connected vertices or
with global attributes. Therefore, to expand the receptive
field of each vertex beyond the nearest neighbors, multiple
GN blocks must be repeated in the network. Given that
various transformations within each GN block are often
themselves multilayer perceptrons (MLPs), GNN models
tend to be quite deep. Deep networks go against the latency
requirement, as each perceptron layer uses at least one clock
cycle on an FPGA under a straightforward implementation,
and also against the resource usage requirement, because
MLPs utilize multiplications heavily.

• Input size: Typically, for problems where the application of
GNNs is interesting, the cardinality of V is at least O(102).
Even with the high degree of parallelism of FPGAs, due to
finiteness of the compute resource, such large input will
have to be processed serially to a certain extent, increasing
the latency and the interval before a new input can be
accepted, known as the initiation interval (II). Longer IIs
lead to lower throughput values.

• Memory usage: Related to the problem of the input size, if
the algorithm requires temporary retention of features for
all vertices or edges, memory usage may be prohibitive for
an FPGA firmware implementation.

• Memory access pattern: Except for certain cases, algorithms
that have both V and E in the input usually require random
memory access, for example when reading or writing features
of vertices at the ends of the edges. This poses a challenge in
FPGA firmware design not only because it implies that there
needs to be a large enough memory bank to store all vertex
and/or edge data, but also because random memory access
itself is a costly operation (Besta et al., 2019). The exceptions
include when E is trivial (E � ∅ or when the graph is
complete) and when all samples have an identical graph
topology. In such cases, the memory access pattern of the
algorithm is known at compile time and therefore can be
statically scheduled in the FPGA firmware.

The case of E � ∅ is a rather extreme solution to the last
challenge, but it is also attractive in terms of memory usage. In
fact, even without explicit input edge features, a GNN can infer
regional and non-local properties of the graph by globally
gathering the vertex features and then scattering the gathered
information back to the vertices. This information flow can also
be mediated by a learnable attention mechanism (Veličković
et al., 2018). The attention mechanism suppresses information
from vertices that are considered unimportant, effectively
forming “soft” edges among the unsuppressed vertices.

In the next section, we study a GNN architecture with these
exact properties, then discuss the modifications to the
architecture to make it suitable for an FPGA firmware
implementation.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 5989273

Iiyama et al. Graph Neural Networks on FPGAs

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

4. A SIMPLIFIED GARNET LAYER IN THE
HLS4ML FRAMEWORK

In this work, we consider GARNET (Qasim et al., 2019b) as a
specific example of GNN. A GARNET layer is a GN block that takes
as input a set of V vertices, each possessing Fin features, and
returns the same set of vertices with Fout features. In a GARNET

layer, Fin features of each vertex are encoded into an internal
representation and gathered at S aggregators. A distance
parameter between each of the aggregators and vertices is also
computed from the vertex attributes. Information gathered at the
aggregators are then sent back to individual vertices and decoded
into Fout features. Communications between the vertices and
aggregators are weighted by a decreasing function of the
distance parameter, implementing an attention mechanism
that allows the network to learn a dynamic, nontrivial graph
structure from the vertex input alone.

The original GARNET algorithm, while already using less
compute and memory resource than other similar GNN
architectures in Qasim et al., (2019b) and Wang et al., (2019),
is still challenging to implement as fast and high-throughput
FPGA firmware. The biggest problem arises from the use of the
input feature vector as a part of the input to the decoder, which
requires retention of the input data until the last steps of the
algorithm. An immediate consequence of this requirement is a
longer II, because processing of new samples cannot start while
the input data for the current sample is still in use. Furthermore,
the input feature vector is already used to compute the distance
parameter as well as the internal representation of each vertex,
and therefore a reuse of the input in the decoder creates a complex
data flow, restricting the options for pipelining the algorithm.

We therefore designed a modified GARNET algorithm with a
simplified processing flow:

• Input transformation (Figures 1A,B): An encoder network
converts the features gjv(j � 1, . . . , Fin) of the vth vertex
(v � 1, . . . ,V) into an internal learned representation
vector f iv(i � 1, . . . , FLR). In parallel, another network
(distance calculator) also acts on gjv and computes the
distance parameters dav(a � 1, . . . , S) between the vertices
and the S aggregators. Implicitly, this means that a complete
bipartite graph with VS edges is built from V and S, where S
is the set of aggregators (Figure 1B). The encoder and
distance calculator networks are both single-layer
perceptrons with linear activation functions, so one can
write them as linear transformations

f iv � ∑Fin
j�1

wi
j g

j
v + bi (1)

dav � ∑Fin
j�1

αaj g
j
v + βa , (2)

where (wi
j, b

i) and (αaj, βa) are the kernels and biases of the
encoder and distance calculator networks, respectively.

• Aggregation (Figure 1C): The learned representation
vectors f iv of the vertices are weighted by a potential
function Wav � exp(−d2av) and averaged across the
vertices. In other words, the ith averaged feature hia of
aggregator a is written as

hia �
1

Vmax
∑V
v�1

Wavf
i
v . (3)

The factor Vmax in the denominator is the maximum possible
value for the vertexmultiplicityV (asVmay have a different value
for each input sample). Through this normalization by a common
factor, the information about the size of the sample (cardinality of
V) is effectively encoded into hia.

• Output transformation (Figures 1D,E): The aggregated
features are sent back to the vertices using the same
weights as

~f
i

av � Wav h
i
a, (4)

and then transformed by a single-layer decoder network with
linear activation function into the final output representation
g ′kv (k � 1, . . . , Fout).With the kernelu and bias c of the decoder,
this is written as

g ′kv � ∑FLR
i�1

∑S
a�1

uk
ia
~f
i

av + ck. (5)

This simplified algorithm differs from the original design in the
following ways. First, only the mean over vertices is computed at
the aggregators, whereas the maximum is also used in the original
design. In other words, the aggregators in the original design have

h′
i
a � max

v
Wavf

i
v (6)

as an additional set of features. Secondly, as already noted, the
input feature vector is not used as a part of the input to the
decoder network. In the original GARNET design, the decoder is
expressed as

g ′kv � ∑FLR
i�1

∑S
a�1

Wav(uk
ia h

i
a + u′kai h

′i
a) +∑Fin

i�1
w′k

i g
i
v + ck, (7)

with additional sets of kernel weights u′ and w′. Finally, the
original design applies a nonlinear (tanh) activation function to
the decoder, while the simplified version uses a linear activation.
In the specific case considered in the next section, these
simplifications result in negligible degradation of the network
performance. In the remainder of this paper, this simplified
version of the algorithm is referred to as GARNET.

It is worth pointing out that while the GARNET layer uses only
linear activation functions for all of the internal neural
networks, it can still learn nonlinear functions through the
nonlinearity of the potential function Wav . On the other

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 5989274

Iiyama et al. Graph Neural Networks on FPGAs

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

hand, having no nonlinear activation functions allows a
compact FPGA firmware implementation of the layer,
consisting mostly of multiplications and additions. The only
substantial computation comes with the exponential function,
whose values can be pre-computed with sufficient granularity
and stored.

An FPGA firmware implementation of the GARNET layer using
Vivado (O’Loughlin et al., 2014) HLS is integrated into the hls4ml
library. The HLS source code is written in C++ and is provided as
a template, from which an HLS function for a GARNET layer can be
instantiated, specifying the configurable parameters such as S,
FLR, and Fout. In the following, we provide some noteworthy
details of the implementation.

In the HLS source code of GARNET, all quantities appearing in
the computation are expressed as either integers or fixed-point
numbers with fractional precision of at least eight bits. In
particular, the distance parameter dav is represented with three
integer bits, eight fractional bits, and one sign bit. During the layer

computation, dav is reinterpreted as a 12-bit unsigned integer,
which is used to retrieve the corresponding pre-computed value
of Wav from a table with 4,096 entries.

The processing flow in Eqs 1–5 is compactified in the hls4ml
implementation by exploiting the linearity of the encoder, average
aggregation, and the decoder. Equations 1, 3, and 5 can be
combined into

g ′
k
v � ∑S

a�1
Wav

⎛⎝∑Fin
j�1

~wk
jaG

j
a + ~b

k

aLa
⎞⎠ + ck, (8)

where

~wk
ja � ∑FLR

i�1
ukiaw

i
j,

~b
k

a � ∑FLR
i�1

uk
iab

i,

Gj
a �

1
Vmax

∑V
v�1

Wav g
j
v, and La �

1
Vmax

∑V
v�1

Wav.

(9)

FIGURE 1 | Processing flow of the modified GARNET algorithm: (A) The input features (gjv) of each vertex are processed by a linear network, that returns a new set of
features (f iv) and its distance from the S aggregators (dav). (B) A graph is built in the learned space, using the dav distances. (C) A message is gathered by each
aggregator, as a weighted sum across the vertices of f iv , withWav � exp(−d2

av) as weights. (D) Amessage from each aggregator (~f
i
av) is passed back to each vertex, with

the same Wav weight. (E) The aggregated outputs of each vertex are given as input to a neural network, which returns the learned representation.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 5989275

Iiyama et al. Graph Neural Networks on FPGAs

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

In particular, the kernel and bias tensors of the encoder and
decoder are contracted into ~w and ~b at logic synthesis time,
resulting in fewer steps to arrive at the output from the input.

With this simplification, the input data from each sample are
encoded into Wav, G

j
a, and La. Therefore, a new sample can be

processed as soon as the three quantities from the previous
sample are computed. In other words, the II of the overall
GARNET layer depends on the number of clock cycles needed to
compute the three quantities. Furthermore, Gj

a and La can be
derived trivially fromWav, making the latency of the computation
of the latter the critical determinant of the throughput of the
algorithm.

The computation of Wav is performed independently on each
vertex, and is therefore parallelizable across the vertices. In a fully
parallelized implementation, there would be Vmax logic units (one
unit per vertex) operated simultaneously. However, with V
typically as large as O(102) or greater, this configuration
would consume too much of the FPGA resources and would
not fit on a single chip. Therefore, the hls4ml implementation of
GARNET allows a partial parallelization of the algorithm controlled
by a parameter called the reuse factor (Rreuse). For Rreuse > 1, the
logic unit to compute Wav is cloned Vmax/Rreuse times, such that
each unit is reused serially up to Rreuse times. This serial reuse is
fully pipelined with the local II of one clock cycle. The latency TW

for computing Wav for all vertices is therefore given by

TW � T0
W + Rreuse, (10)

where T0
W ∼ 20 is the number of clock cycles needed to compute

Wav for one vertex. The value of T0
W depends on the numerical

precision of the fixed-point numbers in the computation.
Finally, the kernel and bias of the encoder and the kernel of the

decoder can be quantized, such that each element takes only
values −1, 0, or 1 (ternary quantization) (Zhu et al., 2017). In the
quantized version of the algorithm, contracted kernel and bias ~w
and ~b have elements that are O(1) integers. Multiplication of
small integers with fixed-point numbers can be performed in
FPGAs using LUTs rather than DSPs, which are usually the more
scarce resource. Multiplications with LUTs also proceed faster
than those with DSPs.

5. CASE STUDY: PARTICLE
IDENTIFICATION AND ENERGY
REGRESSION IN AN IMAGING
CALORIMETER

As a case study, the hls4ml implementation of GARNET is applied
to a representative task for the LHC L1T, namely reconstructing
electrons and pions in a simulated 3D imaging calorimeter. In the
following, we first describe the dataset used for the study, then
define the task and the architectures of the ML models, and
present the inference performance of the models and the resource
usage of the synthesized firmware.

5.1. Dataset
The calorimeter is a multi-layered full-absorption detector with a
geometry similar to the one described in Qasim et al., (2019b).
The detector is made entirely of tungsten, which is considered as
both an absorber and a sensitive material, and no noise or
threshold effects in the readout electronics are simulated.
While this homogeneous calorimeter design is not a faithful
representation of a modern sampling calorimeter, this
simplification allows us to evaluate the performance of the ML
models decoupled from detector effects.

The calorimeter extends 36 cm in x and y and has a total depth
in z of 2 m, corresponding to approximately 20 nuclear
interaction lengths and 170 radiation lengths. The coordinate
origin is placed at the center of the front face of the calorimeter.
The calorimeter is segmented into 50 layers along z, with each
layer divided into small square cells in the x-y plane, forming a
three-dimensional imaging detector. Cells are oriented so their
sides are parallel to the x and y axes. Tiling of the cells in each
layer is uniform except for in one quadrant, where the cell sides
are half as long as those in the other area. The aim of the tiling is
to incorporate the irregularity of the geometry of a real-life
particle physics calorimeter. The quadrant with smaller cells
and the remainder of the layer are respectively called the high
granularity (HG) and low granularity (LG) regions. The first 25
layers in z correspond to the electromagnetic calorimeter, with a
layer thickness of 1 cm and cell dimensions of 2.25 cm × 2.25 cm
in the HG region (4.5 cm × 4.5 cm in LG). The remaining 25
layers correspond to the hadron calorimeter, with a layer
thickness of 7 cm and cell dimensions of 3 cm × 3 cm in the
HG region (6 cm × 6 cm in LG). Schematics of the cell tiling in the
electromagnetic and hadron parts are shown in Figure 2. The
geometry and the detector response to particles are simulated
using GEANT4 (Agostinelli et al., 2003).

Each event used in this study contains a high-energy primary
particle and low-energy pileup particles, which represent
backgrounds from simultaneous additional proton-proton
interactions. The primary particle is either an electron (e−) or
a charged pion (π ±), shot at the calorimeter with momentum
aligned along the z axis, i.e., perpendicular to the front face of the
calorimeter. The x and y coordinates of the particle’s origin are
randomly sampled according to a uniform distribution in a 10 cm
× 10 cm region centered at x � y � 0. Following this procedure,
we aim to mimic a realistic situation in which the actual

FIGURE 2 | Schematics of the high-granularity and low-granularity
regions of the (A) electromagnetic and (B) hadron layers.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 5989276

Iiyama et al. Graph Neural Networks on FPGAs

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

calorimeter extends to a much larger surface and the area covered
by the geometry used in this study represents a portion of it. The
value of the particle momentum is drawn randomly for each
event from a uniform distribution between 10 and 100 GeV. The
pileup particles consist of photons (c) and π ± . The number of
pileup particles is randomly sampled from a Poisson distribution
with a mean of 40, with the π ± multiplicity fixed to twice the c
multiplicity. This setup approximates the flux of pileup particles
expected at a pseudorapdity η � 2 in a Δη × Δϕ � 0.4 × 0.4 patch
of the forward region of an LHC detector during the High-
Luminosity LHC (HL-LHC) phase (Apollinari et al., 2017). The
momentum direction and the window of origin of the pileup
particles are the same as the primary particle. The momentum
value of the pileup particles is sampled from a Landau
distribution with μ � 0.6 GeV and c � 0.5 GeV, in a range of
0–20 GeV.

The output of the simulation for each event is the array of total
energy deposition values by the particles at individual detector
cells (hits). Energy depositions by the particles in the
homogeneous calorimeter are recorded exactly, i.e., the
detector output does not require calibration and is not affected
by stochastic noise.

In an L1T system, hits containing energy depositions from a
potentially interesting particle would be identified through a low-
latency clustering algorithm. The clustering algorithm used in
this study mimics the one planned for the L1T system of the
HGCAL detector in CMS (CMS Collaboration, 2017a). In this
approach, the hit with the largest energy deposition in the event is

elected to be the seed, and the cluster consists of all hits contained
in a cylinder whose axis passes through the center of the seed cell
and extends along the z direction. The radius of the cylinder is set
at 6.4 cm so that the resulting cluster contains 95% of the energy
of the primary particle for 50% of the pion events. Because
electromagnetic showers have a narrower energy spread than
hadronic showers in general, all of the electron events have at least
95% of the energy contained in the same cylinder. Typical events
with momenta of the primary particles around 50 GeV and the
total pileup energy close to the median of the distribution are
shown in Figures 3A and 3B. The hits in the figure are colored by
the fraction of the hit energy due to the primary particle (primary
fraction, fprim) to help the visualization.

The actual dataset used in this study thus contains one cluster
per sample, given as an array of hits in the cluster, and one integer
indicating the number of hits in the sample. Only the hits with
energy greater than 120 MeV are considered. Each cluster
contains at most 128 hits, sorted by hit energy in decreasing
order. Note that sorting of the hit has no effect on the neural
network, and is only relevant when truncating the list of hits to
consider smaller clusters, as explored later. In fact, 0.2% of the
events resulted in clusters with more than 128 hits, for which the
lowest energy hits were discarded from the dataset. Each hit is
represented by four numbers, corresponding to the hit
coordinates, given in x, y, and z, and energy. The x and y
coordinates are relative to the seed cell. The dataset consists of
500,000 samples, split evenly and randomly into e− and π ±

events, stored as NUMPY (van der Walt et al., 2011; Harris et al.,

FIGURE 3 | Examples of electron (A), (C) and pion (B), (D) events. Values in parentheses in the graph titles are the respective energy depositions contained in the
cluster around the seed hit. Points represent hits in the detector, with their coordinates at the center of the corresponding detector cells and the size of the markers
proportional to the square root of the hit energy. Opaque points are within the cluster, while the translucent ones are not. In (A) and (B), the point color scale from blue to
red corresponds to the primary fraction (see Section 5.1 for definition). In (C) and (D), the color scale from blue to green corresponds to ΔEpred/Δh, which is an
indication of the importance the neural network model places to individual hits for energy regression. See Section 5.3 for details.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 5989277

Iiyama et al. Graph Neural Networks on FPGAs

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

2020) arrays in HDF5 format (The HDF Group, 2020). The dataset
together with the ground truth information is available on the
Zenodo platform (Iiyama and Kieseler, 2020).

5.2. Task and Model Architecture
The task in this study is to identify the nature of the primary
particle and to simultaneously predict its energy, given the hits in
the cluster. The ability to reliably identify the particle type and
estimate its energy at the cluster level in a local calorimeter trigger
system greatly enhances the efficacy of high-level algorithms,
such as particle-flow reconstruction (ALEPH Collaboration,
1995; ATLAS Collaboration, 2017; CMS Collaboration, 2017b),
downstream in the L1T system. However, because of the
distortion of the energy deposition pattern in the cluster due
to pileup, particle identification based on collective properties of
the hits, such as the depth of the energy center of mass, can
achieve only modest accuracy. Furthermore, only half of the pion
events have 95% of the energy deposition from the pion contained
in the cluster, requiring substantial extrapolation in the energy
prediction. This task is thus both practically relevant and
sufficiently nontrivial as a test bench of a GARNET-based
ML model.

The architecture of the model is as follows. First, the input data
represented by a two-dimensional array of Vmax × Fin numbers
per cluster are processed by a stack of three GARNET layers. The
parameters (S, FLR, Fout) for the first two layers are (4, 8, 8) and
for the last layer are (8, 16, 16). The output of the third GARNET

layer is averaged across the vertices for each of the 16 features.
The resulting array of 16 numbers is then passed through two
fully connected layers with 16 and 8 nodes and ReLU (Agarap,
2018) activation. Data flow is split into two branches in the final
step. The first branch consists of a fully connected layer with a
single node, whose output is activated by a sigmoid function and
is interpreted as the classification prediction, i.e., the predicted
probability that the primary particle is an electron. The other
branch also consists of a single-node fully connected layer, but
with a linear activation of the output, which is interpreted as the
predicted value of the energy of the particle.

This model is built in KERAS (Keras, 2015), using the
corresponding implementation of GARNET available in Qasim
et al., (2019a). In total, the model has 3,402 trainable
parameters (2,976 in the three GARNET layers), whose values
are optimized through a supervised training process using the
Adam optimizer (Kingma and Ba, 2014). Input is processed in
batches of 64 samples during training. The overall objective
function that is minimized in the training is a weighted sum
of objective functions for the classification and regression tasks:

L � βLclass + (1 − β)Lreg (11)

with β � 0.01. The objective function for classification Lclass is the
binary cross entropy in each batch between the truth labels
(electrons are represented by 1 and pions by 0) and the
classification output of the model. The objective function for
regression Lreg is the batch mean of the relative squared error

Lreg � [(Epred − Etrue)/Etrue]2, (12)

where Epred and Etrue are the predicted and true energies of the
primary particle, respectively. The training is performed on
400,000 training and 100,000 validation samples over a few
hundred epochs, with early stopping when the value of the
objective function does not improve for ten consecutive
epochs. Keeping the full training dataset on RAM and using
two NVIDIA GeForce RTX 2080 Ti GPUs in parallel, each epoch
takes roughly 30 s to process.

Additionally, we prepare a model in which the encoders and
decoders of the GARNET layers are quantized as ternary networks
using QKERAS (Coelho et al., 2020; Qkeras, 2020), which performs
quantization-aware training with the straight-through estimator
by quantizing the layers during a forward pass but not a backward
pass (Courbariaux et al., 2015; Zhou et al., 2016; Moons et al.,
2017; Coelho et al., 2020). In the following, this model is referred
to as the quantized model, and the original model as the
continuous model. The quantized model is trained with the
same objective function and training hyperparameters as the
continuous model.

To evaluate the inference performance of the trained models,
reference algorithms are defined separately for the classification
and regression subtasks. The reference algorithm for
classification (cut-based classification) computes the energy-
weighted mean z and standard deviation σz of the z
coordinates of the hits,

z � ∑ ​V
i�1zihi∑​V
i�1hi

and σz �
������������∑​V

i�1(zi − z)2hi∑​V
i�1hi

√
, (13)

where i is the index of hits in the cluster and zi and hi are the z
coordinate and energy of the ith hit. The cluster is labeled as an
electron if z < zcut and σz < σcutz , where zcut and σcutz are predefined
thresholds. Pions, and hadrons in general, tend to penetrate
deeper in an absorbing detector and create showers of
secondary particles with a larger transverse size than electrons
and photons. For regression, the reference algorithm (weight-
based regression) predicts the energy of the primary particle
through a formula

Eref
pred � ∑V

i�1
wl(i)(hi + bl(i)), (14)

where l(i) is the detector z layer of hit i. Parameters
{wl, bl}(l � 1, . . . , 50) are determined by minimizing Lreg over
the training dataset using Eref

pred as the predicted energy. Particle
identification based on the energy deposition profile of the cluster
and energy estimation based on weighted sum of hit energies are
both common strategies in the conventional, non-ML-based
event reconstruction approaches.

5.3. Training Result
Performance of the trained continuous and quantized models,
evaluated using the validation sample, are shown in Figure 4. For
each ML model, the inference results based on the original KERAS
model and the HLS model, converted using hls4ml, are shown.
The HLS model provides a realistic emulation of the synthesized
FPGA firmware.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 5989278

Iiyama et al. Graph Neural Networks on FPGAs

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

The classification performance is given in terms of receiver
operating characteristic (ROC) curves that trace the electron
identification efficiency (true positive fraction) and pion
rejection efficiency (true negative fraction) for different
thresholds of the classifiers. The two GARNET-based models
perform similarly and better than the cut-based reference in
terms of the electron identification efficiency for a given pion
rejection efficiency. A detailed comparison of the four sets of
results from the GARNET-based models in the inset reveals that the
continuous model performs slightly better than the quantized
model, and that the difference between the KERAS and HLS
implementations is smaller for the quantized model.

The regression performance is given in terms of the response
(Epred/Etrue). Distributions of the response are summarized in
10 GeV bins of Etrue, separately for the continuous model,
quantized model, and the weight-based reference. In each
summary, the horizontal line in the box corresponds to the
median of the distribution, the top and bottom of the box to
the upper and lower quartiles, and the upper and lower ends of
the whiskers to the 95th and 5th percentiles. The GARNET-based
models exhibit narrower spreads of the response distributions in
most of the bins, with the continuous model again performing
slightly better than the quantized model.

The differences between the KERAS and HLS implementations
are due to the numerical precision in the computation. While the
former represents all fractional numbers in 32-bit floating-point
numbers, the latter employs fixed-point numbers with bit widths
of at most 18. Consequently, for the quantized model, where the
encoder and decoder of the GARNET layers employ integer weights
for inference, the difference between the two implementations are
smaller.

For both subtasks, the GARNET-based models generally
outperform the reference algorithms. The reference algorithm
has narrower spread of the response in some energy bins for the
regression subtask. However, it is important to note that the
weights and biases appearing in Eq. 14 are optimized for a specific
pileup profile, while in a real particle collider environment, pileup
flux changes dynamically even on the timescale of a few hours. In
contrast, algorithms based on inference of properties of
individual hits, such as the GARNET-based models presented in
this study, are expected to be able to identify hits due to pileup
even under different pileup environments and thus to have a
stable inference performance with respect to change in pileup
flux. Since a detailed evaluation of application-specific
performance of GARNET is not within the scope of this work,
we leave this and other possible improvements to the model
architecture and training to future studies.

To verify that GARNET can infer relations between individual
vertices without edges E in the input, the following test is
performed. Using the two events shown in Figure 3, the
energy of each hit in the clusters is increased one at a time by
10%, and the inference with the continuous model is performed
for each perturbed event. If the model has learned to perfectly
distinguish the primary particle from pileup at the vertex level, a
small change in the energy of a hit from pileup should result in no
change in the predicted particle energy. In Figures 3C and 3D,
each hit in the cluster is colored by the ratio of the change of
predicted particle energy and the amount of perturbation
(ΔEpred/Δh). While some hits with fprim � 0 appear with
ΔEpred/Δh> 0, a general correspondence between fprim and
ΔEpred/Δh is observed. The occurrence of ΔEpred/Δh> 1 is
expected, given the extrapolation required to predict the full

FIGURE 4 | Classification (A) and regression (B) inference performance of the continuous and quantized GARNET-based models and the reference algorithms.
Results from the KERAS and HLS implementations are shown for the GARNET-based models. The classification performance is quantified with a ROC curve of electron
identification efficiency vs. pion rejection efficiency. The inset in (A) shows a close-up view of the efficiency range 0.90–0.96 for both axes. The regression performance is
quantified as the response (Epred/Etrue) in 10 GeV bins of Etrue. The horizontal line in the box corresponds to the median of the distribution, the top and bottom of the
box to the upper and lower quartiles, and the upper and lower ends of the whiskers to the 95th and 5th percentiles.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 5989279

Iiyama et al. Graph Neural Networks on FPGAs

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

particle energy from the energy of the hits included in the cluster.
With this test, we are able to probe how the GARNET-based model
is learning the structure of the graph.

5.4. Model Synthesis and Performance
The latency, II, and resource usage of the FPGA firmware
synthesized from the HLS implementations are summarized in
Table 1. Vitis Core Development Kit 2019.2 (Kathail, 2020) is
used for synthesis, with a Xilinx Kintex UltraScale FPGA (part
number xcku115-flvb2104-2-i) as the target device and a clock
frequency of 200MHz. The reported resource usage numbers
reflect the synthesis estimates from Vivado HLS. The latency and
II reported here are the maximum values for samples with full Vmax

vertices; the actual HLS implementation allows early termination of
the serial reuse of the vertex-processing logic unit for samples with
fewer vertices. The area under the ROC curve (AUC) and overall
response root mean square (RMS) are used to summarize the
performance.

Comparing the continuous and quantized models with
Vmax � 128, the former has a longer latency and II and
consumes substantially more DSPs. On the other hand, the
quantized model uses more LUTs, mainly for the
multiplications in the GARNET encoders and decoders, as
discussed in Section 4. However, it is known that the expected
LUT usage tend to be overestimated in Vivado HLS, while the
expected DSP usage tends to be accurate (Duarte et al., 2018; Di
Guglielmo et al., 2020). The DSP usage of 3.1 × 103 for the
continuous model is well within the limit of the target device,
but is more than what is available on a single die slice (2.8 × 103)
(Xilinx, 2020). The quantized model fits in one slice in all metrics.
Given the small difference in the inference performance between
the two models, it is clear that the quantized model is
advantageous for this specific case study.

The latency of the synthesized quantized model at 148 clock
periods, corresponding to 740ns, satisfies the LHC L1T requirement
of O(1) μs execution. However, the II of 50 clock periods (250ns)
implies that the logic must be time-multiplexed tenfold to be able to
process a single cluster per LHC beam crossing period of 25ns.With
O(100) or more clusters expected per beam crossing in the collision
environment of HL-LHC, the throughput of the synthesized
firmware is therefore inadequate for a reasonably sized L1T
calorimeter system with O(100) FPGAs, and requires down-
scoping or implementation improvements.

The simplest down-scopingmeasure is to reduce the size of the
input. This is effective because the most prominent factor driving

both the latency and the II of the firmware is Rreuse (see Eq. 10),
which in turn is determined by Vmax to be able to fit the logic in a
single chip. To test how short the II can be made while retaining a
reasonable inference performance, additional models with
Vmax � 64, 32, and 16 are trained and synthesized into FPGA
firmware. Clusters with more hits than Vmax are truncated by
discarding the lowest energy hits. The fraction of truncated
clusters for the three Vmax values are 27%, 85%, and 99%,
respectively.

The results of synthesis of the additional models are given in
the last three rows of Table 1. The values of FPGA resource
usage metrics are similar in all quantized models because the
ratio Vmax/Rreuse is kept at 4. The area under the ROC curve
(AUC) and the root-mean-square (RMS) of the response are
considered as metrics for the inference performance. Only a
modest degradation of performance is observed by truncating
the clusters to Vmax � 64, while the II is reduced by 16 clocks as a
direct result of the reduction of Rreuse by the same amount. This
working point might thus represent a reasonable compromise
between the inference performance and throughput. Further
cluster truncation results in considerable loss of inference
accuracy. It is also clear that reduction of Rreuse has a
diminishing return in terms of shorter II, and improvements
to other parts of the algorithm are necessary to further reduce
the II.

6. CONCLUSION

In this paper, we presented an implementation of a graph neural
network algorithm as FPGA firmware with O(1) μs execution
time. General considerations and challenges in implementing
graph neural networks for real-time trigger systems at particle
collider experiments are outlined, along with how algorithms such
as GARNET address these issues. We then described the simplified
version of GARNET, which is now available as a general-purpose
graph network layer in the hls4ml library. An example use case of a
machine learning model based on the simplified version of GARNET,
applied to data from a simulation of a small imaging calorimeter, is
presented. The model is able to learn to predict the identity and the
energy of the particles detected at the calorimeter with high
accuracy, while its firmware implementation executes in 740 ns
and fits easily in a commercially available FPGA. Although the
throughput of the firmware is not sufficient to make the model
readily deployable in a submicrosecond, real-time collider trigger

TABLE 1 | Summary of the latency, II, FPGA resource usage metrics, and inference accuracy metrics of the synthesized firmware. The reported resource usage numbers
reflect the synthesis estimates from Vivado HLS. The target FPGA is a Xilinx Kintex UltraScale FPGA (part number xcku115-flvb2104-2-i), which has 5,520 DSPs,
663,360 LUTs, 1,326,720 FFs, and 77.8 Mb of BRAM (Xilinx, 2020). The utilized percentage of the targeted FPGA resources are denoted in the square brackets.

Model Vmax Rreuse Latency (Cycles) Interval (Cycles) DSP (103) LUT (103) FF (103) BRAM (Mb) ROC AUC Response RMS

Continuous 128 32 155 55 3.1 [56%] 57 [9%] 39 [2.9%] 1.8 [2.3%] 0.98 0.23
Quantized 128 32 148 50 1.6 [29%] 70 [11%] 41 [3.1%] 1.9 [2.4%] 0.98 0.24
Quantized 64 16 99 34 1.6 [29%] 63 [9%] 38 [2.9%] 1.8 [2.3%] 0.96 0.24
Quantized 32 8 75 26 1.4 [25%] 52 [8%] 33 [2.5%] 1.8 [2.3%] 0.86 0.37
Quantized 16 4 63 22 1.5 [27%] 57 [9%] 37 [2.8%] 1.8 [2.3%] 0.64 0.36

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 59892710

Iiyama et al. Graph Neural Networks on FPGAs

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

system, its variants with reduced input size are shown to have
higher throughput with reasonable inference performance. These
results demonstrate that fast inference of graph neural networks in
FPGAs is possible, and with hls4ml, various graph-based machine
learning architectures can be automatically translated into
firmware.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://doi.org/10.
5281/zenodo.3992780, doi:10.5281/zenodo.3992780. Simulation
data set and the KERAS source code used for the case study are
available on the Zenodo platform (Iiyama, 2020).

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

MP, AG, KW, SS, VL and JN are supported by the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program (Grant Agreement No.
772369). SJ, ML, KP, and NT are supported by Fermi Research
Alliance, LLC under Contract No. DE-AC02-07CH11359 with
the U.S. Department of Energy (DOE), Office of Science, Office of
High Energy Physics. PH is supported by a Massachusetts
Institute of Technology University grant. ZW is supported by
the National Science Foundation under Grants Nos. 1606321 and
115164. JD is supported by DOE Office of Science, Office of High
Energy Physics Early Career Research program under Award No.
DE-SC0021187. CERN has provided the open access publication
fee for this paper.

ACKNOWLEDGMENTS

We acknowledge the Fast Machine Learning collective as an open
community of multi-domain experts and collaborators. This
community was important for the development of this project.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015).
TensorFlow: large-scale machine learning on heterogeneous distributed
systems. Available at: http://download.tensorflow.org/paper/whitepaper2015.
pdf.

Abdughani, M., Ren, J., Wu, L., and Yang, J. M. (2019). Probing stop pair
production at the LHC with graph neural networks. J. High Energy Phys. 8,
55. doi:10.1007/JHEP08(2019)055

Acosta, D., Brinkerhoff, A., Busch, E., Carnes, A., Furic, I., Gleyzer, S., et al. (2018).
“Boosted decision trees in the Level-1 muon endcap trigger at CMS,” in
Proceedings, 18th international workshop on advanced computing and
analysis techniques in physics research (ACAT 2017), Seattle, WA, August
21–25, 2017 (Seattle, WA: ACAT), 042042. doi:10.1088/1742-6596/1085/4/
042042

Agarap, A. F. (2018). Deep learning using rectified linear units (ReLU). [Preprint].
Available at: https://arxiv.org/abs/1803.08375.

Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., et al.
(2003). Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. 506,
250. doi:10.1016/S0168-9002(03)01368-8

ALEPH Collaboration (1995). Performance of the ALEPH detector at LEP.
Nucl. Instrum. Methods Phys. Res. 360, 481. doi:10.1016/0168-9002(95)
00138-7

Apollinari, G., Béjar Alonso, I., Brüning, O., Fessia, P., Lamont, M., Rossi, L., et al.
(2017). High-luminosity large hadron collider (HL-LHC): technical design
report V. 0.1, CERN Yellow Reports: Monographs (Geneva, Switzerland:
CERN). doi:10.23731/CYRM-2017-004

Arjona Martínez, J., Cerri, O., Pierini, M., Spiropulu, M., and Vlimant, J. R. (2019).
Pileup mitigation at the Large Hadron Collider with graph neural networks.
Eur. Phys. J. Plus 134, 333. doi:10.1140/epjp/i2019-12710-3

ATLAS Collaboration (2017). Jet reconstruction and performance using particle
flow with the ATLAS detector. Eur. Phys. J. C 77, 466. doi:10.1140/epjc/s10052-
017-5031-2

Auten, A., Tomei, M., and Kumar, R. (2020). “Hardware acceleration of graph
neural networks,” in 57th ACM/IEEE Design Automation Conference (DAC),
San Francisco, CA, July 20–24, 2020 (San Francisco, CA: IEEE), 1–6. doi:10.
1109/DAC18072.2020.9218751

Bai, J., Lu, F., and Zhang, K. (2019). ONNX: open neural network exchange.
Available at: https://github.com/onnx/onnx (Accessed August 20, 2020).

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.,
Malinowski, M., et al. (2018). Relational inductive biases, deep learning, and
graph networks. [Preprint]. Available at: https://arxiv.org/abs/1806.01261.

Bernreuther, E., Finke, T., Kahlhoefer, F., Krämer, M., and Mück, A. (2020).
Casting a graph net to catch dark showers. [Preprint]. Available at: https://arxiv.
org/abs/2006.08639.

Besta, M., Stanojevic, D., De Fine Licht, J., Ben-Nun, T., and Hoefler, T. (2019).
Graph processing on FPGAs: taxonomy, survey, challenges. [Preprint].
Available at: https://arxiv.org/abs/1903.06697.

Choma, N., Monti, F., Gerhardt, L., Palczewski, T., Ronaghi, Z., Prabhat, et al.
(2018). Graph neural networks for IceCube signal classification. [Preprint].
Available at: https://arxiv.org/abs/2006.10159.

CMS Collaboration (2017a). The phase-2 upgrade of the CMS endcap calorimeter.
CMS Technical Design Report CERN-LHCC-2017-023. CMS-TDR-019
(Geneva, Switzerland: CERN).

CMS Collaboration (2017b). Particle-flow reconstruction and global event
description with the CMS detector. J. Instrum. 12, P10003. doi:10.1088/
1748-0221/12/10/P10003

CMS Collaboration (2020). The phase-2 upgrade of the CMS level-1 trigger. CMS
Technical Design Report CERN-LHCC-2020-004. CMS-TDR-021 (Geneva,
Switzerland: CERN).

Coelho, C. N., Kuusela, A., Zhuang, H., Aarrestad, T., Loncar, V., Ngadiuba, J., et al.
(2020). Automatic deep heterogeneous quantization of Deep Neural Networks
for ultra low-area, low-latency inference on the edge at particle colliders.
[Preprint]. Available at: https://arxiv.org/abs/2006.10159.

Courbariaux, M., Bengio, Y., and David, J. P. (2015). “BinaryConnect: training deep
neural networks with binary weights during propagations,” in Advances in
neural information processing systems 28. Editors C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett (Red Hook, NY: Curran Associates,
Inc.), 3123.

Di Guglielmo, G., Duarte, J., Harris, P., Hoang, D., Jindariani, S., Kreinar, E., et al.
(2020). Compressing deep neural networks on FPGAs to binary and ternary
precision with hls4ml. Mach. Learn. Sci. Technol. 2, 015001. doi:10.1088/2632-
2153/aba042

Duarte, J., Han, S., Harris, P., Jindariani, S., Kreinar, E., Kreis, B., et al. (2018). Fast
inference of deep neural networks in FPGAs for particle physics. J. Instrum. 13,
07027. doi:10.1088/1748-0221/13/07/P07027

Geng, T., Li, A., Shi, R., Wu, C., Wang, T., Li, Y., et al. (2020). AWB-GCN: a graph
convolutional network accelerator with runtime workload rebalancing.
[Preprint]. Available at: https://arxiv.org/abs/1908.10834.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 59892711

Iiyama et al. Graph Neural Networks on FPGAs

https://doi.org/10.5281/zenodo.3992780%20Zenodo
https://doi.org/10.5281/zenodo.3992780%20Zenodo
http://doi:10.5281/zenodo.3992780
http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf
https://doi.org/10.1007/JHEP08(2019)055
https://doi.org/10.1088/1742-6596/1085/4/042042
https://doi.org/10.1088/1742-6596/1085/4/042042
https://arxiv.org/abs/1803.08375
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/0168-9002(95)00138-7
https://doi.org/10.1016/0168-9002(95)00138-7
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.1140/epjp/i2019-12710-3
https://doi.org/10.1140/epjc/s10052-017-5031-2
https://doi.org/10.1140/epjc/s10052-017-5031-2
https://doi.org/10.1109/DAC18072.2020.9218751
https://doi.org/10.1109/DAC18072.2020.9218751
https://github.com/onnx/onnx
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/2006.08639
https://arxiv.org/abs/2006.08639
https://arxiv.org/abs/1903.06697
https://arxiv.org/abs/2006.10159
https://doi.org/10.1088/1748-0221/12/10/P10003
https://doi.org/10.1088/1748-0221/12/10/P10003
https://arxiv.org/abs/2006.10159
https://doi.org/10.1088/2632-2153/aba042
https://doi.org/10.1088/2632-2153/aba042
https://doi.org/10.1088/1748-0221/13/07/P07027
https://arxiv.org/abs/1908.10834
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Gray, L., Klijnsma, T., and Ghosh, S. (2020). A dynamic reduction network for
point clouds. [Preprint]. Available at: https://arxiv.org/abs/2003.08013.

Gui, C. Y., Zheng, L., He, B., Liu, C., Chen, X. Y., Liao, X. F., et al. (2019). A survey
on graph processing accelerators: challenges and opportunities. J. Comput. Sci.
Technol. 34, 339. doi:10.1007/s11390-019-1914-z

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., et al. (2020). Array programming with NumPy. Nature 585,
357. doi:10.1038/s41586-020-2649-2

Henrion, I., Cranmer, K., Bruna, J., Cho, K., Brehmer, J., Louppe, G., et al. (2017).
“Neural message passing for jet physics,” in Deep learning for physical sciences
workshop at the 31st conference on neural information processing systems,
Long Beach, CA, April 2017 (Long Beach, CA: NIPS), 1–6.

Iiyama, Y. (2020). Keras model and weights for GARNET-on-FPGA. Available at:
https://zenodo.org/record/3992780.

Iiyama, Y., and Kieseler, J. (2020). Simulation of an imaging calorimeter to
demonstrate GARNET on FPGA. Available at: https://zenodo.org/record/
3888910.

Jin, C., Chen, Sz., and He, H. H. (2019). Classifying the cosmic-ray proton and light
groups on the LHAASO-KM2A experiment with the graph neural network.
[Preprint]. Available at: https://arxiv.org/abs/1910.07160.

Ju, X., Farrell, S., Calafiura, P., Murnane, D., PrabhatGray, L., et al. (2019). Graph neural
networks for particle reconstruction in high energy physics detectors. Available at:
https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_83.pdf.

Kathail, V. (2020). “Xilinx vitis unified software platform,” in 2020 ACM/SIGDA
international symposium on field-programmable gate arrays, New York, NY,
March 2020 (New York, NY: Association for Computing Machinery), 173.
doi:10.1145/3373087.3375887

Keras Special Interest Group (2015). Keras. Available at: https://keras.io (Accessed
August 20, 2020).

Kieseler, J. (2020). Object condensation: one-stage grid-free multi-object
reconstruction in physics detectors, graph and image data. [Preprint].
Available at: https://arxiv.org/abs/2002.03605.

Kingma, D. P., and Ba, J. (2014). Adam: a method for stochastic optimization. 3rd
international conference for learning representations. [Preprint]. Available at:
https://arxiv.org/abs/1412.6980.

Kiningham, K., Re, C., and Levis, P. (2020). GRIP: a graph neural network
accelerator architecture. [Preprint]. Available at: https://arxiv.org/abs/2007.
13828.

Kipf, T. N., and Welling, M. (2017). Semi-supervised classification with graph
convolutional networks. Available at: https://openreview.net/forum?
id�SJU4ayYgl.

Loncar, V., Tran, N., Kreis, B., Ngadiuba, J., Duarte, J., Summers, S., et al. (2020).
hls-fpga-machine-learning/hls4ml: v0.3.0. Available at: https://github.com/hls-
fpga-machine-learning/hls4ml.

Moons, B., Goetschalckx, K., Van Berckelaer, N., and Verhelst, M. (2017).
“Minimum energy quantized neural networks,” in 51st Asilomar conference
on signals, systems, and computers, Pacific Grove, CA, October 29–November
1, 2008 (Pacific Grove, CA: IEEE), 1921.

Moreno, E. A., Cerri, O., Duarte, J. M., Newman, H. B., Nguyen, T. Q., Periwal, A.,
et al. (2020a). JEDI-net: a jet identification algorithm based on interaction
networks. Eur. Phys. J. C 80, 58. doi:10.1140/epjc/s10052-020-7608-4

Moreno, E. A., Nguyen, T. Q., Vlimant, J. R., Cerri, O., Newman, H. B., Periwal, A.,
et al. (2020b). Interaction networks for the identification of boosted decays.
Phys. Rev. D 102, 012010. doi:10.1103/PhysRevD.102.012010

Nurvitadhi, E., Weisz, G., Wang, Y., Hurkat, S., Nguyen, M., Hoe, J. C., et al. (2014).
“GraphGen: an FPGA framework for vertex-centric graph computation,” in
2014 IEEE 22nd annual international symposium on field-programmable
custom computing machines, Boston, MA, May 11–13, 2014 (Boston, MA:
IEEE), 25–28. doi:10.1109/FCCM.2014.15

Ozdal, M. M., Yesil, S., Kim, T., Ayupov, A., Greth, J., Burns, S., et al. (2016). Energy
efficient architecture for graph analytics accelerators. Comput. Archit. News 44,
166. doi:10.1145/3007787.3001155

O’Loughlin, D., Coffey, A., Callaly, F., Lyons, D., and Morgan, F. (2014). “Xilinx
Vivado high level synthesis: case studies,” in 25th IET Irish signals and systems
conference 2014 and 2014 China-Ireland international conference on
information and communications technologies (ISSC 2014/CIICT 2014),

Limerick, Ireland, June 26–27, 2014 (Limerick, Ireland: IET), 352–356.
doi:10.1049/cp.2014.0713

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
“PyTorch: an imperative style, high-performance deep learning library,” in
Advances in neural information processing systems. Editors H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett (Red
Hook, NY: Curran Associates, Inc.), 8026.

Qasim, S. R., Kieseler, J., Iiyama, Y., and Pierini, M. (2019a). caloGraphNN.
Available at: https://github.com/jkiesele/caloGraphNN (Accessed August 20,
2020).

Qasim, S. R., Kieseler, J., Iiyama, Y., and Pierini, M. (2019b). Learning
representations of irregular particle-detector geometry with distance-
weighted graph networks. Eur. Phys. J. C 79, 608. doi:10.1140/epjc/s10052-
019-7113-9

Qkeras (2020). Google. Available at: https://github.com/google/qkeras (Accessed
August 20, 2020).

Qu, H., and Gouskos, L. (2020). ParticleNet: jet tagging via particle clouds. Phys.
Rev. D 101, 056019. doi:10.1103/PhysRevD.101.056019

Shlomi, J., Battaglia, P., and Vlimant, J. R. (2020). Graph neural networks in
particle physics. Machine Learn. Sci. Tech. doi:10.1088/2632-2153/abbf9a

Summers, S., Di Guglielmo, G., Duarte, J., Harris, P., Hoang, D., Jindariani, S., et al.
(2020). Fast inference of boosted decision trees in FPGAs for particle physics.
J. Instrum. 15, 05026. doi:10.1088/1748-0221/15/05/P05026

The HDF Group (2020). Hierarchical data format, version 5 (1997–2020).
Available at: https://www.hdfgroup.org/HDF5/ (Accessed August 20, 2020).

van der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The NumPy array: a
structure for efficient numerical computation. Comput. Sci. Eng. 13, 22. doi:10.
1109/MCSE.2011.37

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y.
(2018). Graph attention networks. Available at: https://openreview.net/forum?
id�rJXMpikCZ.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., and Solomon, J. M.
(2019). Dynamic graph CNN for learning on point clouds. ACM Trans. Graph.
38. doi:10.1145/3326362

Xilinx, Inc. (2020). UltraScale FPGA product tables and product selection guide.
Available at: https://www.xilinx.com/support/documentation/selection-guides/
ultrascale-fpga-product-selection-guide.pdf (Accessed August 20, 2020).

Yan, M., Deng, L., Hu, X., Liang, L., Feng, Y., Ye, X., et al. (2020). “HyGCN: a GCN
accelerator with hybrid architecture,” in 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA), San Diego, CA,
February 2020 (New York, NY: IEEE), 15–29. doi:10.1109/HPCA47549.
2020.00012

Zeng, H., and Prasanna, V. (2020). “GraphACT: accelerating GCN training on
CPU-FPGA heterogeneous platforms,” in 2020 ACM/SIGDA international
symposium on field-programmable gate arrays, New York, NY, April 2020
(New York, NY: Association for Computing Machinery), 255. doi:10.1145/
3373087.3375312

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., and Zou, Y. (2016). DoReFa-Net:
training low bitwidth convolutional neural networks with low bitwidth
gradients. [Preprint]. Available at: https://arxiv.org/abs/1606.06160.

Zhu, C., Han, S., Mao, H., and Dally, W. J. (2017). Trained ternary quantization.
Available at: https://openreview.net/pdf?id�S1_pAu9xl.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Iiyama, Cerminara, Gupta, Kieseler, Loncar, Pierini, Qasim,
Rieger, Summers, Van Onsem, Wozniak, Ngadiuba, Di Guglielmo, Duarte, Harris,
Rankin, Jindariani, Liu, Pedro, Tran, Kreinar andWu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 59892712

Iiyama et al. Graph Neural Networks on FPGAs

https://arxiv.org/abs/2003.08013
https://doi.org/10.1007/s11390-019-1914-z
https://doi.org/10.1038/s41586-020-2649-2
https://zenodo.org/record/3992780
https://zenodo.org/record/3888910
https://zenodo.org/record/3888910
https://arxiv.org/abs/1910.07160
https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_83.pdf
https://doi.org/10.1145/3373087.3375887
https://keras.io
https://arxiv.org/abs/2002.03605
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2007.13828
https://arxiv.org/abs/2007.13828
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://github.com/hls-fpga-machine-learning/hls4ml
https://github.com/hls-fpga-machine-learning/hls4ml
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1103/PhysRevD.102.012010
https://doi.org/10.1109/FCCM.2014.15
https://doi.org/10.1145/3007787.3001155
https://doi.org/10.1049/cp.2014.0713
https://github.com/jkiesele/caloGraphNN
https://doi.org/10.1140/epjc/s10052-019-7113-9
https://doi.org/10.1140/epjc/s10052-019-7113-9
https://github.com/google/qkeras
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1088/2632-2153/abbf9a
https://doi.org/10.1088/1748-0221/15/05/P05026
https://www.hdfgroup.org/HDF5/
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1145/3326362
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
https://doi.org/10.1109/HPCA47549.2020.00012
https://doi.org/10.1109/HPCA47549.2020.00012
https://doi.org/10.1145/3373087.3375312
https://doi.org/10.1145/3373087.3375312
https://arxiv.org/abs/1606.06160
https://openreview.net/pdf?id=S1_pAu9xl
https://openreview.net/pdf?id=S1_pAu9xl
https://Creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle Reconstruction in High Energy Physics
	1. Introduction
	2. Related Work
	3. General Requirements and Challenges
	4. A Simplified GARNET Layer in the HLS4ML Framework
	5. Case Study: Particle Identification and Energy Regression in an Imaging Calorimeter
	5.1. Dataset
	5.2. Task and Model Architecture
	5.3. Training Result
	5.4. Model Synthesis and Performance

	6. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

