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The current study uses a network analysis approach to explore the STEM pathways that
students take through their final year of high school in Aotearoa New Zealand. By
accessing individual-level microdata from New Zealand’s Integrated Data Infrastructure,
we are able to create a co-enrolment network comprised of all STEM assessment
standards taken by students in New Zealand between 2010 and 2016. We explore
the structure of this co-enrolment network though use of community detection and a novel
measure of entropy. We then investigate how network structure differs across sub-
populations based on students’ sex, ethnicity, and the socio-economic-status (SES) of
the high school they attended. Results show the structure of the STEM co-enrolment
network differs across these sub-populations, and also changes over time. We find that,
while female students were more likely to have been enrolled in life science standards, they
were less well represented in physics, calculus, and vocational (e.g., agriculture, practical
technology) standards. Our results also show that the enrollment patterns of Asian
students had lower entropy, an observation that may be explained by increased
enrolments in key science and mathematics standards. Through further investigation of
differences in entropy across ethnic group and high school SES, we find that ethnic group
differences in entropy are moderated by high school SES, such that sub-populations at
higher SES schools had lower entropy. We also discuss these findings in the context of
the New Zealand education system and policy changes that occurred between 2010
and 2016.
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1 INTRODUCTION

There is an increasing demand to understand the choices that students make when it comes to
selecting courses in secondary school and further education. Obtaining a clear picture of the skills
that students leave school with is an important goal for governments across the world, and this is
especially true regarding Science, Technology, Engineering and Mathematics (STEM). For example,
the New Zealand Qualifications Authority (NZQA) (New Zealand Qualifications Authority, 2016,
p. 8) specifically stated that:

To meet the demand for essential skills for the 21th century, New Zealand needs to grow the
number and diversity of skilled workers in Science, Technology, Engineering and Maths.
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Governments are pushing to not only increase the number of
students participating in STEM education, but also to increase
the representation of students who have been historically
underrepresented in STEM. While trends may differ across
countries, disparities in STEM participation tend to be found
at the intersection of gender, ethnicity and social class (Archer
et al., 2015; Comparative Education Research Unit, 2017).
Globally, women are typically underrepresented in subjects
such as physics and computer science, while there tends to be
gender parity in subjects such as biology andmedicine. In the case
of Aotearoa New Zealand, similar disparities in STEM
participation are found (New Zealand Qualifications
Authority, 2016; Education Counts, 2016a; Education Counts,
2016b). In addition, students from M�aori and Pacific Island
backgrounds have also been underrepresented in post-
compulsory STEM education (Ministry of Education, 2014;
New Zealand Qualifications Authority, 2016).

Student attrition from STEM education is often viewed in
terms of a leaky pipeline, with students from groups who are
under represented in STEM being more likely to drop out of
STEM education with each advance from one educational stage to
the next. However, participation in STEM education is complex.
Not only is it important to consider the socio-cultural context in
which students are placed when they make their subject choices, it
is also important to consider the structural context of the
education system. We are increasingly able to draw upon rich,
complex, education-related administrative data to achieve this,
but we must consider how we can analyze these data in a manner
that preserves complex structures and provides new and useful
insights. By meeting this goal, we can increase our understand of
what participation in STEM looks like.

As detailed by Hipkins and Bolstad (2005), there are many
ways in which STEM participation can be reported on. At a broad
level, we can summarize the number of students enrolled in each
subject (e.g., how many students of each demographic group
study biology?). We can also explore patterns at finer-grained
levels by summarizing participation per high school (e.g., which
high schools have higher proportions of students studying
science?), or by reporting participation at the level of
assessment (e.g., how many students took a specific biology
exam?). While it is relatively easy to summarize and interpret
participation at broad levels, untangling and understanding
patterns of subject participation at fine-grained levels can be a
difficult task. This task is especially difficult in the context of
Aotearoa New Zealand, which operates a particularly complex
high school assessment system.

The goal of the current study is to develop and employ a novel
method of reporting on student participation in STEM by looking
specifically at students’ co-enrolments at the level of assessment.
We begin by summarizing the insights that can be gained by
exploring STEM participation at a broad level. We then provide a
brief summary of the National Certificate of Educational
Achievement (NCEA), Aotearoa New Zealand’s internationally
unique high school qualification. We then move on to
demonstrate how the quantitative technique of network
analysis can be employed to reveal structures in NCEA
participation. Finally, we discuss the novel insights provided

by network analysis of STEM co-enrolments in NCEA
assessments spanning the previous decade.

1.1 Broad Understandings of Student
Participation in STEM
Student participation in STEM is often reported at a broad level,
with information detailing the counts of students who are
enrolled in each subject, and how this differs across
demographic groups. In Aotearoa New Zealand, data is readily
available by sex (male or female) and Socio-economic status (SES)
from 2004 to 2018 (Ministry of Education, 2018). Exploring these
data can provide a surface level description of what the field of
STEM education looks like in Aotearoa New Zealand.

As shown in Figure 1, in Year 13 (final year of high school),
female students in Aotearoa New Zealand are less likely to take
physics, with this under-representation being steady across years.
The same figure shows that female students are more likely to take
biology, and more recently chemistry, with this over-representation
becoming increasingly more pronounced over time.

Figure 2 shows that female students continue to be
underrepresented in mathematics subjects, such as accounting
and calculus. However, female students have higher levels of
representation in statistics than male students in recent years
(Ministry of Education, 2018). The same data shows that, in
technology subjects, the computer and engineering subjects have
continually been male-dominated, with this becoming more
pronounced over time (Ministry of Education, 2018). Food
technology and textiles are the only female dominated
technology domains.

Data from Ministry of Education (2018) also allows us to see
trends in STEM participation by school decile, a proxy measure of
SES. In Aotearoa New Zealand, school decile refers to the
affluence of the neighborhood in which a school is located.
High decile schools are located in more affluent areas, while
low decile schools are located in less affluent areas. As shown in
Figure 3, students who attended higher decile schools had greater
rates of participation in science subjects, and this pattern was also
evident for calculus and statistics. The relationship between
student enrollment in technology learning domains and decile
has no discernible pattern.

Broad level data, such as those discussed above, allow us to
interpret trends in subject enrolments over time. However, they
provide only a surface level understanding of STEM participation.
Beneath the aggregation of counts per subject label hides important
information that is useful for policy makers and researchers. Each
subject consists of many different assessments, each covering
unique content and following different assessment criteria. The
following section will provide a brief introduction to Aotearoa
New Zealand’s main high school assessment system, the National
Certificate of Educational Achievement (NCEA).

1.2 A Brief Introduction to the National
Certificate of Educational Achievement
The National Certificate of Educational Achievement (NCEA) is
the main form of secondary school assessment in Aotearoa
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New Zealand. First introduced to students in 2002, NCEA was
designed to replace norm-referenced assessment. In norm-
referenced assessments student achievement is judged against
the average achievement of the student population (Mahoney,
2005). Instead, achievement in NCEA is based on the
competencies of individual students (Hipkins et al., 2016),
meaning that achievement is an indicator of what a student
knows, and not just how they rank among their peers.
Therefore, it is possible for all students to pass if they all meet
the assessment criteria. Assessment operates at the level of
specific skills, or standards, that comprise a subject discipline.
For example, instead of just receiving an overall grade for biology,
students take several standards in the subject discipline of biology
that demonstrate their competence in particular areas (e.g.,
“Demonstrate understanding of biological ideas relating to
micro-organisms”). By successfully completing standards,
students accumulate credits, the value of which is linked to the
amount of work needed to fulfill a standard. The three levels of
the NCEA typically correspond to the final three years of high
school. NCEA Level 1 is typically taken in Year 11 (age ∼15),
NCEA Level 2 in Year 12, and NCEA Level 3 in Year 13.

What makes the NCEA a unique assessment system is its
flexibility. Compared to the systems it replaced (School
Certificate, Sixth Form Certificate, and Bursary), there is more
variety in the assessments/standards that students may be
enrolled in (Mahoney, 2005). In providing increased choice to
students and their educators, and more flexible pathways through
high school, it was hoped that the NCEA would benefit students
from a range of backgrounds. As stated in the New Zealand
curriculum (Ministry of Education, 2007, p. 41):

Schools recognize and provide for the diverse abilities and
aspirations of their senior students in ways that enable them to
appreciate and keep open a range of options for future study and
work. Students can specialize within learning areas or take
courses across or outside learning areas, depending on the
choices that their schools are able to offer.

The NCEA meets these goals by providing students with more
learning pathways through high school, which aims to serve both
students who wish to progress to tertiary study, and those who
want to enter into vocational careers. These two pathways are
reflected in the two main types of assessment offered: unit and
achievement standards.

FIGURE 1 | Science Participation Rates Across Years by Sex. These plots show the participation of male and female students in key science subjects in Year 13
from 2004 to 2018. Biology and Chemistry had a greater share of female students (nearly 70% of biology students in 2018 were female). Physics continues to be male-
dominated. “Science” represents core science assessments, which assess topics about more general aspects of science (including applications to everyday life and
societal issues). This core science domain had a relatively balanced representation of male and female students across years. Data retrieved from Ministry of
Education (2018).
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Unit and Achievement Standards
Unit standards tend to assess more vocational subjects (e.g.,
plumbing, hairdressing, agriculture). Unit standards have strict
criteria that need to be achieved in order to pass (Hipkins et al.,
2016), and are thus suited to assessing skills that follow a procedure.
If a student meets the criteria they pass; if they fail a step, they fail
the standard. All unit standards are assessed internally by the
institution where the student is placed, offering the opportunity
to teach and learn in a manner that caters more to students’
contexts. Internal assessments are moderated by the NZQA,
according to the New Zealand Qualification Framework (NZQA,
2016), to ensure the assessment is consistent and rigorous. That
being said, schools often provide the opportunity for students to
retake failed internal assessments at a later time.

Achievement standards assess more traditional subjects that
are tied to the New Zealand curriculum, such as science,
mathematics, and English. While many achievement standards
are assessed internally, a number of them are taken under
standardized conditions and assessed by an external body
(i.e., the NZQA). Unlike unit standards, where students can
only be judged to have passed or failed, achievement standards
often have assessment criteria that can be interpreted more
subjectively and require a different grading structure (Hipkins

et al., 2016). Instead of pass or fail, achievement standards have
four outcomes: not achieved, achieved, merit, and excellence. This
grading structure seeks to reward students who demonstrate
knowledge at a higher level than simply showing competence.
The introduction of different grading levels in achievement
standards provides increased opportunity to rank students by
performance Shulruf et al. (2010), a process that NCEA was not
initially designed to accommodate (Hipkins et al., 2016).

The relevance of achievement and unit standards can be tied
to students’ future aspirations in the context of STEM. Wong
(2016, p. 20) differentiates these aspirations as being tied to
either careers in science, or careers from science. Careers in
science may be defined as: “. . . occupations that are involved
with the research or discovery of science as their primary
purpose” (Wong, 2016, p. 20) Figure 9. Achievement
standards may be more closely linked to these types of
careers as they provide the means to assess theoretical work,
and provide the pathway to university. Careers from science
may be defined as “careers that are related to science” but
prioritize other aspects of STEM (Wong, 2016, p. 20). This
includes careers in technology, and also careers in horticulture
and farming that are even more applied. The vocational slant of
unit standards may prepare students better for these types of

FIGURE 2 |Mathematics Participation Rates Across Years by Sex. These plots show the participation of male and female students in key mathematics subjects in
Year 13 from 2004 to 2018. There have been relatively even levels of participation in mathematics subjects over time, except calculus where male students continue to be
enrolled in greater numbers. Data retrieved from Ministry of Education (2018).
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careers from science. With that being said, students can take a
combination of unit and achievement standards (which can be
assessed either internally or externally).

While there are many potential pathways through the NCEA,
the eventual goal for students is to accumulate enough credits to
achieve NCEA Level 3. Students who wish to attend university
must meet a separate goal over and above the requirements for
NCEA Level 3. To be eligible to enroll at a university, students
must attain University Entrance (UE), which is the equivalent of
achieving NCEA Level 3 with a specified number of credits
coming from three subjects on an approved subjects list (these
include subjects such as biology, physics, mathematics, and
English) with specific achievement standards (NZQA, 2020),
and a higher standard of literacy than regular NCEA Level 3
(Hipkins et al., 2016). Specific university programs may also have
their own requirements for enrollment. For example, to transition
from NCEA to engineering at the University of Auckland,
students must attain specific externally assessed achievement
standards in Level 3 calculus and physics (University of
Auckland, 2020). Alternate pathways to university STEM
study are possible, such as completion of university foundation

courses, but these take additional time. The decisions that
students make regarding the selection of STEM standards in
NCEA Level 3 can thus have long-lasting implications. It is
therefore especially important to understand how NCEA Level
3 is structured, and how this relates to student outcomes.

Given the complexity of the NCEA, exploring participation in
STEM at the level of individual assessments can provide
additional insights that complement our broad level
understandings of STEM participation discussed previously.
Doing so allows us to explore factors related to individual
standards (such as the type of standard assessment and
whether it was assessed internally or externally) as well as co-
enrolment patterns and pathways through assessments. To build
on the broad level understandings outlined above, we now adopt
the following research questions:

• Can we identify patterns in the NCEA Level 3 standards
taken by students in STEM?

• If so, how do the patterns of NCEA Level 3 standard
enrolments differ across demographic characteristics, SES,
and time?

FIGURE 3 | Science Participation Rates Across Years by School Decile. School deciles are grouped into quintiles (deciles one and two together, deciles 3 and 4,
and so on). These plots show the rate of participation for each decile group as a function of the total subject enrolments (across all learning domains) for that group. This
takes into account that higher decile groups contain a greater number of students than lower deciles. As can be seen in the above plots, students from higher decile
schools are more likely to take biology, chemistry, and physics. Low decile schools had a flatter participation rate in physics, but increasing participation over time in
biology and chemistry, such that the increase is similar to higher decile schools. The plot of the core “Science” subject appears less ordered andmore variable in terms of
decile ordering, but also has a lower rate of participation overall. Data retrieved from Ministry of Education (2018).
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Given that the NCEA can be considered “one of the most
complicated education system in the world” (Hipkins et al.,
2016), unpacking details at a more fine-grained level can be a
daunting task. To explore this complicated system and answer
our research questions, we employ quantitative techniques
based in the field of network analysis. We explain how
network analysis can be used as a tool to understand
patterns of assessment, especially in contexts where the
system is complex (as with the NCEA). The following
sections will discuss how network analysis can help us
explore what participation looks like for students
studying STEM.

2 A NETWORK METHODOLOGY

2.1 Data
We make use of Statistics NZ’s Integrated Data Infrastructure
(IDI) to access administrative data pertaining to students’ high
school and census information (Statistics New Zealand, 2018).
The IDI is a collection of government data sets, containing
micro-data on student enrollment and demographics, linked at
the level of individuals for the population of Aotearoa
New Zealand. We focus on students taking NCEA Level 3
from 2010 to 2016, as this is the most up to date data available
at the time of writing. We focus on NCEA Level 3 as this level is
the most highly specialized, and precedes entrance to
university and employment. Years prior to 2010 are
available, but were omitted due to processing constraints.
The years spanning 2010 to 2016 were also of specific
interest, due to education policy reforms introduced around
2012 and 2013 (Hipkins et al., 2016).

We apply several rules when selecting student cohorts to be
included, in order to minimize the risk of adding statistical noise
to our analysis. In order to focus our analysis on students who
have had the majority of their education in Aotearoa
New Zealand, we only select individuals who are identified as
having tax, birth or visa records present in the IDI. We also only
include students who had NCEA records when they were 15 or 16
and during NCEA Level 1. These filters help focus our sample on
the resident population of Aotearoa New Zealand, and minimize
the chances of including visitors or foreign exchange students.
We also limit our sample to students who attended state schools
in Aotearoa New Zealand. This is because private schools in
Aotearoa New Zealand are more likely to offer a combination of
the NCEA and other formal qualifications (such as Cambridge or
International Baccalaureate), introducing additional layers of
complexity. For the purposes of our analysis we also assign
each student a single cohort year based on the most frequent
year in which they took standards. This is because students are
able to take NCEA Level 3 standards over multiple years. For
example, if a student took two NCEA Level 3 standards during
2015, and ten NCEA Level 3 standards during 2016, we would
assign the student to the 2016 cohort. We choose not to exclude
Level 3 standards taken in a different year from the overall cohort
year, as these standards would still contribute to the student’s
qualification.

We include the following variables in our analysis:

• Students’ sex (male or female). Due to limitations in the
administrative data used, we are not able to include gender
(and non-binary classifications of gender) in our analysis.

• Students’ ethnicity. Each student is able to identify with
multiple ethnic groups, following the classification set out by
Stats NZ (Stats NZ, 2005). The main ethnic groups include
European; M�aori; Pacific Island; Asian; Middle Eastern,
Latin American, or African (MELAA); and Other. For
the purposes of this study, we do not report results for
MELAA and Other populations as they include a broad
cross section of individuals, but typically involve relatively
small numbers.

• High school decile. This is a rating out of 10 for the affluence
of the area where the school is located. For the purposes of
the following analysis, we categorize high school decile into
three groups. Deciles one to three are low decile, deciles four
to seven are medium decile, and deciles 8–10 are high decile.

• NCEA Level 3 standards taken. For each student, we have
records of all of the standards taken at NCEA Level 3. We
only include standards from the New Zealand curriculum
learning areas of Science, Technology and Mathematics
(Ministry of Education, 2007). For each standard, we
have information on its subject area (e.g., physics,
biology, mathematics etc.,) whether it was a unit or
achievement standard, and whether it was assessed
internally or externally.

2.2 Network Analysis
We employ network analysis to understand STEM enrollment at
NCEA Level 3 at a fine-grained level. At its fundamental level, a
network is a collection of nodes and edges. Nodes can represent
an agent (e.g., a student) or an object (e.g., a standard); edges link
two nodes together to indicate some form of relationship.
Networks can be used to represent anything from human
relationships and transport networks, to biological and
computer systems (Barabási, 2003). In education research,
network analysis has tended to focus on the relationships
shared between students in the classroom (Tranmer et al.,
2014), or communication between staff at educational
institutions (Daly, 2010). There are few examples of education
research that use network analysis to investigate non-social
relationships. We seek to expand this area of research by
applying network analysis to high school assessment
enrollment data. As we will outline in the following section,
network analysis can help us identify patterns in NCEA standard
co-enrolments.

In our analysis, nodes take the form of students and standards.
Edges in our network represent any recorded instance where a
student was enrolled in a NCEA Level 3 STEM standard during
high school. This creates a bipartite network (also commonly
referred to as a two-mode network). A bipartite network is any
network where there are two types of node, and nodes can only
connect to a node of a different type. In our case, a standard
cannot be connected directly to another standard, and a student
cannot be connected to another student. For example, in
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Figure 4A, standards may be represented by nodes in set U, and
students may be represented by nodes in set V.

We create a network of students and the standards they were
enrolled in for the whole of our student population. We structure
this network so that it is multidimensional. Each student node
belongs to a specific year, region, and decile, while standards can
exist across multiple years, regions, and school deciles. In order to
analyze the properties of our network, we are required to ‘project’
onto one set of nodes. This means that we take the node set
belonging to a single node type, and generate edges between these
nodes when they are linked to a common node of the other node
set. For example, in Figures 4B and 4C shows the projection of
the network in Figure 4. In the projections, standards represented
in setU are now connected to one another (B), and students in set
V are also now connected (C).

As we are interested in the patterns of standards that students
took, we project onto the standard nodes (Figure 4B). This results
in a network of standards that are connected by edges indicating
that students took those two standards together within their
NCEA Level qualification. The edges of the projected standard
network can also take on a weighting that corresponds to the
frequency that two standards were taken together by students.

2.3 Normalization and Community
Detection
Our goal is to use the co-enrolment network to understand the
standards that tend to be taken together, and by which students.
To do this, we employ community detection. Community
detection is a process in which we identify sets of nodes that
are clustered together by the edges in the network. Previous
research by Ferral (2005) has employed similar clustering

techniques to investigate communities of subjects that tend to
be taken together in the NCEA, but this was limited by the
number of high schools sampled, the response rate of schools, and
the availability of demographic and standard information.
Usually, community detection methods identify communities
by maximizing the modularity score within communities.
Modularity refers to the tendency of nodes to connect to other
nodes within the same community relative to nodes that are
outside the community. While there are many different
community detection algorithms, the current study makes use
of the infomap algorithm (Rosvall et al., 2009).

In order for our communities to more truly represent the
standards that tend to be taken together, we need to normalize
our edges so that weights do not refer to the raw counts of
students’ co-enrolments. The raw weighting does not consider
the fact that standards have different populations of students.
As a result, community detection may group two standards
together simply because one standard has a large number of
students. To explain more clearly, we can use the hypothetical
case of English Standard A, Physics Standard A and Physics
Standard B. If English Standard A has a population of 1,000
students, and 10% of those students take Physics Standard B,
the raw weight is 100 students. If 100 students took Physics
Standard A, and 90% of those students took Physics Standard B,
the raw weight is 90 students. While we would expect the two
physics standards to be grouped together, using raw counts of
students as edge weights may not result in grouping that meet
these expectations. Instead, we make use of a normalization
technique called Revealed Comparative Preference (RCP) to
provide more consistent communities. RCP is a ratio of ratios
that measures the fraction of students from standard j who also
took a second standard i, relative to the overall fraction of

FIGURE 4 | An Example of a Bipartite Network and its Projections. In the case of the current study, white nodes (setU) represent standards, and black nodes (set V)
represent students. (A)Nodes of different sets are connected by an edge E (i.e., an edgewill exist if a student took a particular standard). (B) The projection of setU. In the
current study, we use this projection to represent a network of standards. Two standards will be connected by edge if a student enrolled in both standards. If two
standards are connected through multiple students, multiple edges are produced. In this simple example, two students enrolled in both standards e and d, while
other connected standards were only take conjointly by single students. (C) The projection of set V. In the current study, this refers to a network of students, with edges
indicating that students both took the same standards. To help preserve students’ confidentiality, we do not report on this projection.
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students taking standard i, across all other standards. More
specifically:

RCP(i, j) �
xij/∑

j
xij

∑
i
xij/∑

ij
xij

� xij/xi
xj/x � xij · x

xi · xj

where xi,j is the number of students taking both standard i and j, xj
(or xi) is the total number of students taking standard j
(respectively, standard i), and x is the total number of unique
students enrolled in any standard. This RCP metric is based on
the measure Revealed Comparative Advantage, used in
economics (Balassa, 1965), and was calculated using the
EconGeog package (Balland, 2017) in R (R Core Team, 2013).
The RCP calculation returns a value where anything greater than
one indicates a ‘preference’ for two standards being taken
together. Conversely, a value below one indicates that, given
the number of students in either standard, there was a
dispreference for the two standards being taken together.

We remove any edge in the network where the RCP value is
below 1, and subsequently any node that no longer has any edges
(isolated nodes with a degree of 0). This results in removal of
around 31% of edges. Following this pruning stage, the network
now consists of standards connected by edges with a weighting
relative to the preference for each standard being taken together
with its neighbors in NCEA Level 3. We then identify
communities of standards that are grouped together in our
network using the infomap community detection algorithm
(Rosvall et al., 2009). In simple terms, the infomap algorithm
partitions the network in a way that maximizes the number of
edges within a community, relative to the edges between
communities.

2.4 Exploring Participation
To compare student participation across the educational fields
detected, we can consider the relative proportion of students from
particular years, and across school deciles and social groups. One
of our goals is to establish an idea of how each network is
structured. Are the enrolments for a specified demographic
group spread more evenly across a network, or are they
focused in particular areas? To answer this question, we
employ the metric of entropy. Entropy is a concept originating
from the field of thermodynamics, and provides an indication of
how organized or disorganized a system is. In the case of the
current study, we use entropy to assess how participation is
spread across the network. Using the measures of entropy as
signals of disparities, we then explore the rates of participation
across communities and standards in finer detail. The following
section will outline our measure of entropy.

2.4.1 Entropy
Entropy provides an aggregated metric of how ordered a system
is. Systems that are highly ordered have a lower level of entropy,
while disordered systems have higher entropy. To use an analogy,
a crystalline solid with atoms focused together on a regular grid
has low entropy, while a gas with atoms randomly spread across a

grid has higher entropy. Following this analogy, we may explain
low entropy as an indication that a pattern of standard
enrolments is more focused or specialized in specific areas. In
contrast, high entropy in the network of standards indicates that a
pattern of enrollment is more diverse. By partitioning our
network into different social groups (e.g., across sex, ethnicity,
and school decile) we can explore similarities and differences in
network structures.

We calculate entropy in two steps. Firstly, we work out the
probability of a sub-population enrolling in a specific standard
given the total number of enrolments in the network for that sub-
population. This probability is given by:

pqi �
∑
j
xqij

∑
ij
xqij

where xqi is the number of students in a sub-population q enrolled
in standard i, and xq is the total number of enrolments for that
sub-population. Using this measure of probability, we calculate
entropy using the following formula (Shannon, 1948):

Sq � −∑
N

i

pqi logp
q
i

Where pqi is the probability of a student from sub-population q
enrolling in standard i. The resulting score Sq provides an single
positive value that indicates the entropy in the network, where a
lower value indicates lower entropy (i.e., ordered patterns of
enrolments), and a higher value indicates higher entropy
(i.e., more disordered enrolments).

We ascertain a level of confidence by using a bootstrapping
method, where we vary the count of students in each standard i by
a uniform random amount of up to ±20%, and recalculate
entropy. We repeat this process 1,000 times for each entropy
measure.

2.4.2 Trends
Following the entropy measure, we investigate how participation
differs across demographic groups per standard by comparing
raw counts, proportions, and probabilities. The communities
identified provide a good indication of the standards that tend
to be taken together, which allows us to explore rates of
participation across groups of standards as well as individual
standards. We are able to explore a range of attributes, such as
such as the probabilities of sub-populations enrolling in a
standard, with respect to sex, ethnicity, school decile, and type
of standard (achievement/unit standards, internally/eternally
assessed).

Following the identification of different communities of
standards, our goal is to explore the student enrollment
patterns in these communities. Based on trends outlined
previously by (Hipkins et al., 2016) and based on data from
Ministry of Education (2018), we make the following hypotheses:

• Female students will be more likely to have enrolled in
standards in communities related to biology.
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• Male students will be more likely to have enrolled in
standards in communities related to physics, calculus and
computer science.

• Students who attended high decile schools will be more
likely to have enrolled in externally assessed standards.

Less research has investigated the relationship between
assessment type (achievement or unit) and STEM enrollment,
but we may expect that students groups who historically succeed
in traditional forms of education (high SES, European and Asian
students) to be more likely to have enrolled in externally assessed
achievement standards. Student groups who have historically
been under-served by traditional assessment may be more
likely to have enrolled in unit standards.

3 RESULTS AND DISCUSSION

The complete co-enrolment network across all years, regions, and
deciles is shown in Figure 5). Across all years the infomap
algorithm identified 42 communities of Level 3 STEM
standards. As NCEA Level 3 is the most specialized stage of
high school education, we would expect our network to be
strongly partitioned into different community structures. This
is reflected in a high modularity score of 0.83. The modularity
score indicates that the nodes tend to share more edges with
nodes within the same community than with nodes in different
communities. The structure of the network changed over the
period of time considered in the analysis, with a significant

change taking place between 2012 and 2013. During this time,
a change in education policy resulted in a reform in assessment.
Science and mathematics linked unit standards were phased out,
and a new set of achievement standards were introduced. Post the
education reform in 2013, the overall number of standards
diminished, and the network is mainly dominated by one
community of mathematics and science standards (see
Figure 6). This policy change is also reflected in changing
levels of entropy in the network over time. As shown in
Figure 7, the overall entropy of the network of assessments
(taking all students into account) decreased over time. This
gives an indication that, following the reforms to standards in
2013, student enrolments were more standardized and focused,
and less flexible.

Through the use of network analysis we are able to delineate
the main fields of study that comprise NCEA Level 3 STEM. Our
method of using RCP and community detection separates out
standards according to their propensity for being taken together,
rather than simply classifying by subject label. The resulting
network is partitioned according to two main pathways,
communities of standards reflecting progression to university
study (i.e., mainly achievement standards), and communities of
standards orientated toward vocations (unit standards, and
internally assessed standards). The detected communities thus
provide a clearer picture of NCEA enrollment than broader
subject labels. To provide an example, the chemistry standard
“Evaluate the interaction of a chemical process with society and/or
the environment” may not assess the same content knowledge as
another chemistry standard “Demonstrate understanding of the

FIGURE 5 | Network of NCEA Level 3 Standards. The overall standard projection of the NCEA Level 3 standard co-enrolment network. The above network is a
composite of all standards offered between 2010 and 2016, and serves to provide an overall guide to the various subject disciplines represented by each community.
Nodes represent standards and edges represent a preference for two standards being enrolled in at the same time by students. Colors represent the communities of
standards that tend to be taken together. Squared nodes represent externally assessed standards, and circular nodes represent internally assessed standards.
Node size reflects the percentage of all students enrolled in a standard.
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properties of organic compounds”. Despite both standards
belonging to the chemistry domain, the community detection
algorithm assigned them to different communities in the

network. While standards assessing applications of science to
other vocations or to societal issues may help in the pathway to
careers from science, standards assessing scientific theory are
more representative of the pathway to university and careers in
science.

On the whole, the communities in the network tended to be
comprised of standards from the same domain of study. For
example, biology standards tend to be taken in conjunction
with other biology standards, physics with physics, and so on.
However, the community detection algorithm mainly grouped
science and mathematics subjects in the two large
communities. These two communities, which occurred at
different time periods (one before 2013, and one after) can
be viewed as the pathway to university study. They consist
mainly of achievement standards (many of them externally
assessed, especially after 2013), and include physics, biology,
chemistry, and calculus.

The following sections will outline some patterns that can be
observed from 2010 to 2016 by sex, ethnicity and school decile.
While there are a vast number of patterns to be explored and
discussed further, we focus our discussion on the main patterns.
We provide the reader with full access to an interactive web
application that can be used to explore the network in depth
(https://stur600.shinyapps.io/ExploreNCEA_L3_STEM/). This
application allows the user to filter the network by subject
disciplines, types of standard, as well as school decile and
demographic criteria. Through the patterns that we highlight,
we seek to demonstrate the additional insights that can be gained
through investigating the NCEA at a finer-grained level, and how
they can further inform our understanding of what STEM

FIGURE 6 | Network of NCEA Level 3 Standards Across Years. The standard projection of the NCEA Level 3 co-enrolment network across years. Node size
represents the number of students enrolled in each standard as a percentage of the total number of students in each cohort. As years progressed, the number of
standards was reduced. Around 2013, a new set of science and mathematics achievement standards were introduced. Post-2013, the network is comprised mainly of
one mathematics and science community, which indicates that assessment was more standardized than previous years.

FIGURE 7 | Entropy by Sex Across Years. Results show that entropy
was higher for the male sub-population (purple) than the female sub-
population (orange), while the baseline entropy of the population taken as a
whole (dotted black) falls in between. This indicates that enrolments for
female students were more ordered, and male enrolments were more varied.
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participation looks like in Aotearoa New Zealand. We begin our
discussion by focusing on the patterns that were seen based on
students’ sex, and then move on to discuss patterns by students’
ethnicity and school decile.

Patterns by Sex
Overall, there were small differences in the entropy in the
network by sex, with entropy being slightly higher for the
male sub-population (see Figure 7). This finding suggests that
the male sub-population of the network had more enrolments
spread across the network, while the female sub-population were
more focused in specific areas. Further investigation of
communities in the network showed clear examples of
disparities in subject enrolments by sex which may explain the
difference in entropy. Male students tended to dominate
communities defined by standards in the agriculture,
engineering, and practical technology (welding, furniture
making etc.) domains, while female students had greater rates
of enrolments in standards related to life sciences and textiles.

Corroborating the broad level trends outlined previously in
the current study, and the trends detailed across other
international contexts (Else-Quest et al., 2013; Institute of
Physics, 2013; Sheldrake et al., 2015; National Science
Foundation, 2017), female students were more likely to enroll
in biology standards, and less likely to enroll in physics and
calculus standards. The majority of biology standards had around
60–70% female students across years, while female students were
also more likely to have enrolled in standards in the Core Science
domain. This domain includes standards such as Research a
current scientific controversy (61.5% female) and Describe
genetic processes (67.3% female). Female students were less
likely to be represented in calculus and physics standards than
male students. Investigating these disparities at the standard-level
provides additional insights (see Table 1).

The rates of enrollment for female students in the physics
standards were low, with the proportion of female students in
externally assessed physics standards being around 35% overall.
The participation of female students in the standards related to
calculus were also low compared to male students, with the
proportion of female students being around 35–38% in the
main externally assessed standards. Interestingly, the internally
assessed unit standard equivalents of the calculus standards, which
were available to students prior to 2013, had an increased

proportion of female students (around 42–46%). Much research
has been dedicated to understanding why disparities persist in
physics and calculus by sex, with research often suggesting that
female students tend to be less confident in mathematics and
calculus compared to male students (Heilbronner, 2012; Simon
et al., 2015; Hofer and Stern, 2016). It may be that the calculus unit
standards, which are assessed internally, in a familiar spacewith the
opportunity to resit, offers a safer assessment environment where
female students aremore comfortable (see Cheryan et al. (2017) for
a comprehensive review of the issues impacting on gender
differences in STEM choice).

Patterns by Ethnicity and School Decile
We report the results for ethnicity and school decile together,
given that they are inextricably linked; M�aori and Pacific students
are over-represented in low decile schools. As can be seen in
Figure 8, entropy differed across groups, across deciles, and
changed significantly over time. With that being said, the
Asian sub-population tended to have lower entropy overall.
The M�aori and Pacific sub-populations had higher entropy
prior to 2013, but this pattern changed in later years with the
entropy of Pacific sub-population decreasing to the same
level as Asian. Overall, we observed how ethnic group
differences in entropy were greater prior to 2013, and
more similar in more recent years. The reduced difference
between the entropy of each ethnic group sub-population
can be explained in terms of the pivotal reform in the NCEA
that took place around 2013 (Hipkins et al., 2016). These
reforms saw curriculum-linked unit standards phased out of
operation, and the system was made to be more standardized
and less flexible. M�aori and Pacific Island students, who were
over-represented in these curriculum-linked unit standards,
saw the greatest drops in entropy following the removal of
these standards.

Looking across deciles, Figure 8 shows that the top decile
school sub-population tended to have lower entropy compared to
the other deciles across years. The observed drop in entropy
following the policy reform around 2013 is also much smaller
than (approximately half) the drop seen for middle and low decile
schools. In the years following 2013, the differences in entropy
between each ethnic group sub-population at the top decile schools
appears to be more compressed, with the entropy for M�aori,
Europeans and Pacific sub-populations more closely representing

TABLE 1 | Calculus and Physics Standard Enrolments by Sex.

Standard Assessment type Domain Female (%) N (total)

Differentiate functions and use derivatives to solve problems EX Calculus 38.2 22,236
Integrate functions and use integrals to solve problems EX Calculus 38.3 22,107
Differentiate functions and use differentiation to solve problems IN (Unit) Calculus 42.3 10,178
Integrate functions and use integration to solve problems IN (Unit) Calculus 46.3 8,352
Demonstrate understanding of wave systems EX Physics 35.2 48,432
Demonstrate understanding of electrical systems EX Physics 34.7 46,359
Demonstrate understanding of mechanical systems EX Physics 35.2 49,584

Female students were underrepresented in calculus and physics standards in general, but especially in the external achievement standards that were part of the pathway to university
science. The representation of female students in calculus unit standards, which were in operation at the same time as externally assessed standards, was closer to even. Exploratory chi-
square tests showed that the higher level of enrolments in the internally assessed calculus standards compared to the externally assessed calculus standards was significant (p < 0.001).
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the level of Asian. In contrast, lower decile schools had higher
entropy, and a greater drop following the policy reform.

The higher entropy for lower decile schools may be a
consequence of increased enrolments in internally assessed
standards, and fewer enrolments in standardized, externally
assessed standards which have historically been a stronger
focus for top decile schools (Hipkins et al., 2016). Previous
research has commented on this pattern, with Wilson et al.
(2017) observing that lower decile schools were less likely to
have students enrolled in Subject Literacy Achievement
Standards, which are achievement standards that can be used
as indicators of subject-specific literacy. After exploring the rates
of enrollment, we also confirm that lower decile schools are less
likely to have students enrolled in key externally assessed science
and mathematics standards.

The lower entropy for top decile and Asian students is likely
related to a focused participation in science and mathematics
achievement standards required for university entrance. In
contrast, enrollment for M�aori and Pacific sub-populations
has been less focused in these standards and more balanced
across other domains (including communities of unit
standards; see Figure 9). We explore this further by
comparing the rates of participation in key externally
assessed science and calculus standards. Table 2 shows how
enrollment differed for each ethnic group sub-population,
split by school decile and comparing 2010 to 2016.

While Table 2 shows that Asian and European had higher
rates of participation in key externally assessed science and
calculus standards, the differences between low and high

school deciles appears to be considerable for the Asian sub-
population compared to other groups. For example, the
difference in participation for Asian students by decile
in the calculus standard on differentiation offered in 2016
is 22%, compared to 6.7% for European, 6.4% for M�aori,
and 4.7% for Pacific Islands. This may be a consequence
of the categorical grouping of “Asian”, which contains
an extremely diverse population of students. This
categorization ranges from Pakistan and Bangladesh to
China, and also some Pacific Island nations (e.g., Fijian
Indians). The diversity of the population, including the
cultures and social backgrounds, may have been reflected
in an increased diversity of enrolments. The different trends
we observe in these key standard enrolments may explain
why the Asian sub-population in low decile schools had the
higher entropy than other groups in 2015 and 2016 (see
Figure 8).

The fact that low decile andM�aori and Pacific sub-populations
had fewer enrolments in key science and mathematics standards
provides evidence that the pathway to university science is
dominated by higher decile schools, and especially Asian and
European students at these schools. In contrast, students from
lower decile schools, and also M�aori and Pacific students in
higher decile schools, had relatively more enrolments in a
larger and more disparate pool of internally assessed unit
standards. Unit standards provide a valuable type of
assessment that prepares students for vocational careers, and it
may be that a higher proportion of students from less affluent
areas seek vocational careers after high school. However, this does

FIGURE 8 | Entropy by School Decile Across Years. The entropy of each ethnic group sub-population, split by high school decile. The baseline entropy (black
dotted line) is lower for the top decile schools (deciles 7–10), and higher for the low decile schools (deciles 1 to 3). There are observable differences in entropy in each
decile. Prior to 2013, the overall entropy tended to be higher for M�aori and Pacific sub-populations, and lower for Asian and European. After the policy reform, this pattern
seemingly changed such that the Pacific sub-population had the lowest entropy.
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FIGURE 9 | Network of NCEA Level 3 Standards by Ethnicity. The standard projection of the NCEA Level 3 standard co-enrolment network by ethnicity across all
years. Node size represents the percentage of students within the sub-population who were enrolled in a standard, color represents community membership, squared
nodes represent externally assessed standards, and circular nodes represent internally assessed standards. For all ethnic group sub-populations, the main science and
mathematics communities (orange and blue nodes) tended to have higher probabilities of enrollment. The propensity for science and mathematics standard
enrollment was especially true for Asian students, and less true M�aori (C) and Pacific Island (D) groups.

TABLE 2 | Key Standard Enrolments by Ethnicity and Decile.

% Of Asian % Of Euro % Of M�aori % Of Pacific

Standard Domain Year Low High Low High Low High Low High

Differentiate functions and use derivatives to solve problems Calculus 2010 36.2 52.2 17.7 23.1 11.3 15.9 13.4 15.2
Apply differentiation methods in solving problems Calculus 2016 35.4 57.3 19.0 25.7 9.9 16.3 13.6 18.3
Describe processes and patterns of evolution Biology 2010 19.6 32.8 18.8 29.0 10.9 23.3 7.4 17.0
Demonstrate understanding of evolutionary processes leading to speciation Biology 2016 27.2 33.7 24.0 31.8 14.6 27.3 13.6 27.6
Describe aspects of organic chemistry Chemistry 2010 25.0 40.0 14.8 24.7 7.4 16.0 10.0 12.1
Demonstrate understanding of the properties of organic compounds Chemistry 2016 32.0 42.6 19.9 27.9 13.0 19.6 14.2 19.6
Demonstrate understanding of mechanical systems Physics 2010 25.4 38.0 14.7 23.9 7.0 16.7 8.4 11.0
Demonstrate understanding of mechanical systems Physics 2016 30.3 46.4 17.4 27.3 8.5 15.8 9.6 17.0

The percentages of students enrolled in key externally assessed achievement standards in STEM by ethnic group and school decile, focusing on a comparison between low (deciles 1–3)
and high (deciles 7–10) decile schools, and between 2010 and 2016. The percentage indicates the number of students from that ethnic group in a particular year who enrolled in the
standard, as a fraction of the total number of students from that ethnic group in a particular year who took a STEM standard. For example, of the Asian students attending a low decile
school in 2010 who took a STEM standard, 36.2% took the calculus standard Differentiate functions and use derivatives to solve problems. These percentages show that rates of
enrollment differed across ethnic groups, with varied differences within these groups by school decile, and also comparing standards offered in 2010 and 2016.
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not necessarily explain why M�aori and Pacific sub-populations
attending higher decile schools are less likely to participate in
science and mathematics standards.

The differing patterns of enrollment for M�aori and Pacific
Island sub-populations and Asian and Pak�eha is complex, but
may be explained in several ways. Firstly, higher decile schools
primarily serving M�aori and Pacific students may choose to offer
more internal assessments that provide increased opportunity to
assess in culturally appropriate way (e.g., less competition, more
formative feedback). Secondly, and less optimistically, it may be
that teachers hold lower expectations for M�aori and Pacific
students (Turner et al., 2015), and are less likely to place them
in the pathway toward university science. This idea was reflected
by a participant in a study by (Graham et al., 2010): The teachers
decide where the class is at in terms of choosing which standards
[Unit vs. Achievement]. It’s a disadvantage on you because it
depends on what the teacher thinks you can do and what the kids
in your class can do.

Our results suggest that policy reforms introduced around
2013 did not result in a decrease in participation in science and
mathematics for M�aori and Pacific Island sub-populations, who
were originally over-represented in the curriculum-linked unit
standard in earlier years. Instead, as can be seen in Table 2
enrollment often increased at a greater rate than other ethnic
groups, especially in higher decile schools. For example, in high
decile schools the Pacific Island sub-population saw an larger
increase of around 10.6% in external biology standards relating
to evolution, compared to 0.9% for Asian, 2.8% for European,
and 4% for M�aori. Although we cannot comment on how this
educational reform impacted on students’ outcomes in science
and mathematics, the reduced flexibility may actually help
students by making NCEA less complex. Previous research has
found that the complexity of NCEA can be confusing for
students and parents to navigate (Graham et al., 2010;
Jensen et al., 2010).

3.1 Implications and Future Directions
The current study fills a gap in the previous literature by
investigating patterns of co-enrolments in NCEA Level 3 STEM
standards by students’ sex, ethnicity, and a proxy measure of SES.
We believe that this study is the first of its kind to use bipartite
networks to represent high school assessment data. Through our
methodological approach, we are able to take into account a wealth
of information related to students and the standards that they
enrolled in. This includes demographic information (such as sex
and ethnicity) and specific NCEA Level 3 standard information,
such as the manner in which standards were assessed (externally or
internally), and whether the standard was an achievement standard
(traditional curriculum based subjects, such as English or science)
or a unit standard (more vocational subjects, such as farming or
practical technology).

The NCEA is very complex, but our method of analysis allows
us to consider the different pathways that students follow based
on the assessments they enrolled in. The communities of
standards highlighted through our analysis reflect two main
pathways, either toward vocations and careers from science, or
the pathway toward university and careers in science. Despite

growing discussion regarding the outcomes of different types of
standards in the Aotearoa New Zealand context (Hipkins et al.,
2016; Lipson, 2017), there has been a lack of research into how
this information relates to student background. The
methodology and results outlined in the current study
enables us to represent the NCEA as a complex education
system, and this can provide detailed insights into what
science participation looks like.

A limitation of our analysis is the fact that we do not have
access to students’ level of achievement in the standards they
enrolled in Level 3, or in previous years. As detailed by Jensen
et al. (2010), achievement outcomes in standards would be highly
influential in shaping the pathways that open up or close off for
students as they go through NCEA. Furthermore, the disparities
seen in participation in key science standards may be tied to the
development of academic identity (Bolstad and Hipkins, 2008)
which we are also unable to quantify. (Archer et al., 2014, p. 216)
argue that ‘cleverness’ [can be viewed] as a racialized, gendered,
and classed discourse, such that the identity of the ‘ideal’ or
‘clever’ student is not equally open to all students as a viable and
authentic identity. This notion of ‘cleverness’ may explain the
disparities found in the current study. More specifically, it may be
that the ‘clever’ pathway through NCEA is not open to all
students. As described by Hipkins et al. (2016), NCEA
informally developed into a two-tiered system, with
curriculum-linked unit standards commonly being viewed an
easy pathway, and achievement standards, and especially
externally assessed achievement standards, being viewed as a
tougher pathway. Students who identify as less academic may
purposefully seek easy pathways through NCEA, without fully
understanding that doing so can reduce educational
opportunities later on (Jensen et al., 2010).

Students with a family background of success in education
may be more likely to view the academic pathway as normal or
even expected. This idea is described in a related study of high
school science pathways in the United Kingdom, where Archer
et al. (2017) found that students from more affluent backgrounds
were more likely to see the science-orientated pathway as an
‘obvious’ choice. Students from less affluent backgrounds may
also be more motivated to seek full time employment, rather than
pursue a pathway toward university study and the debt it may
entail. However, the question remains as to the extent to which
student from less affluent backgrounds knowingly choose
vocational pathways and are not channeled down this pathway
by simply attended a school in a low SES area.

4 CONCLUSION

The current study uses network science methods to explore
disparities in science participation in Aotearoa New Zealand. It
summarizes the broad rates of participation by sex, ethnicity, and
school decile, and also explores participation at a finer-grained level
through a network analysis of STEM standard co-enrolments for the
final year of high school. The initial summary of science participation
showed that male students have been more likely to take ‘physical’
subjects (e.g., physics, calculus, practical technology), while female
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students have been more likely to take life science subjects (e.g.,
biology, health). A network analysis of NCEA enrollment data
corroborated these findings, and added additional insights that
showed that participation by sex were more equal in calculus unit
standards. Our use of network analysis also allowed us to characterize
the structure of co-enrolments for different sub-populations.
Through the combination of Revealed Comparative Preference
(RCP) and community detection, we were to explore the specific
pathways that students participate in during high school STEM
education, while a metric of entropy provided a description of
how ordered or disordered co-enrolments were. This use of
entropy to characterize co-enrolment provides a novel approach
to understanding student pathways through education, and revealed
valuable insights. We found that the Asian sub-population in
particular had the most standardized pattern of enrollment, and
this was corroborated by a closer exploration which shows that these
students tended to have enrolments focused in science and
mathematics standards reflecting the pathway to university study.
In contrast, the M�aori and Pacific Island sub-populations, and lower
decile school sub-population in general, had enrollment patterns of
wider spread, with fewer enrolments focuses in externally assessed
science and mathematics standards. This appeared to be a
consequence of increased enrolments in a proliferation of
curriculum-linked unit standards, and after these standards were
removed fromoperation around 2013, differences in entropy between
groups decreased. Our findings suggest that while policy changes
have impacted on the structure of NCEA enrolments over time,
disparities by sex, ethnicity, and school decile continued to be evident.
While it is difficult to explain how much of standard enrollment is
due to student choice, and how much of it is due to structural
inequities present in the school system, our findings reveal disparities
in STEM at a fine-grained level. Our findings suggest that the
pathway to university science has been dominated by higher

decile schools, and especially Asian and European students at
these schools. These results provide a detailed picture of what
STEM participation looks like in Aotearoa New Zealand.
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