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In the past few years, the importance of electric mobility has increased in response to
growing concerns about climate change. However, limited cruising range and sparse
charging infrastructure could restrain a massive deployment of electric vehicles (EVs). To
mitigate the problem, the need for optimal route planning algorithms emerged. In this
paper, we propose a mathematical formulation of the EV-specific routing problem in a
graph-theoretical context, which incorporates the ability of EVs to recuperate energy.
Furthermore, we consider a possibility to recharge on the way using intermediary charging
stations. As a possible solution method, we present an off-policy model-free reinforcement
learning approach that aims to generate energy feasible paths for EV from source to target.
The algorithm was implemented and tested on a case study of a road network in
Switzerland. The training procedure requires low computing and memory demands
and is suitable for online applications. The results achieved demonstrate the
algorithm’s capability to take recharging decisions and produce desired energy
feasible paths.
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1 INTRODUCTION

The importance of electric vehicles (EVs) has increased steadily over the past few years with growing
concerns about climate change, volatile prices of fossil fuels and energy dependencies between
countries. The transportation sector accounts for 27% of global greenhouse gas emissions in the EU,
72% of which are contributed by road transport (European Environmental Agency, 2019). Therefore,
switching to electric mobility is seen as a primary mean of reaching emissions’ reduction targets.
Although the EV deployment grows fast around the world (+40% in 2019) with Europe accounting
for 24% of the global fleet, specific barriers for a massive uptake of EVs still exist (International
Energy Agency, 2020). Researchers in (Noel et al., 2020) identify technical, economic, social and
political barriers of EVs’ broad adoption with limited cruising range and sparse charging
infrastructure prevailing at present. These barriers are in the essence of the “range anxiety
problem” defined as a fear that an EV will not have sufficient charge to reach its destination.
However, optimal EV route planning together with higher-range EVs entering the market can
mitigate this problem.

Route planning strategies have been widely researched for conventional fossil-fuel vehicles.
However, to solve the same problem for EVs, one should consider specific characteristics of this
technology, such as limited battery capacity and ability to recuperate energy. Moreover, inadequate
charging infrastructure and long charging times call for selective choice of charging stations.
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Significant factors influencing this choice include the price of
electricity, expected charging power, distance from EV to
charging station, the current state of charge, expected waiting
and charging times, and incentives from electricity providers.
Another difficulty in route planning for EVs lies in the choice of
the optimization goal. Conventional routing algorithms, such as
Dijkstra (Dijkstra, 1959), yield either the least travelled time or
distance. However, none of these options guarantees the
generated route’s energy feasibility. Therefore, a need for EV-
specific routing algorithms that strive for energy efficiency
emerged.

The algorithms in the field vary significantly by the EV-specific
features considered, the complexity of the methodology and
application use cases. The first group of algorithms uses
detailed energy consumption models respecting the EV’s
ability to recuperate energy. Concurrently, these algorithms
neglect the possibility of battery recharges on the way.
Researchers in (Cauwer et al., 2019) used the shortest path
algorithm to find the optimal energy route on a weighted
graph with a data-driven prediction of energy consumption.
Authors in (Abousleiman and Rawashdeh, 2014) deployed the
ant colony and particle swarm optimization to generate the most
energy-efficient route. Despite being fast, the solution is tedious to
formulate and requires adaptation to different EV usage cases. An
interesting approach based on learning from historical driving
data is demonstrated in (Bozorgi et al., 2017). The proposed
solution aims at minimizing both energy consumption and travel
time while accommodating particular driving habits. The second
group of algorithms focuses on EV’s interaction with charging
stations while considering constant energy consumption without
energy recuperation. (Sweda and Klabjan, 2012) used
approximate dynamic programming to minimize traveling and
recharging costs. (Daanish and Naick, 2017) deployed a nearest
neighbour search-based algorithm to find the shortest energy-
efficient path. Researchers in (Schoenberg and Dressler, 2019)
and (Tang et al., 2019) proposed algorithms to reduce the total
travel time. The prior suggested a multi-criterion shortest path
search with an adaptive charging strategy. The latter solved a joint
routing and charging scheduling optimization problem that
additionally minimizes the monetary cost. The third group
demonstrates an improvement in EV routing by considering
both energy recuperation and battery recharging. A dynamic
programming approach was proposed in (Pourazarm et al., 2014)
to minimize total travel time in the road network defined as a
graph. Despite successful application for a case of one car, the
approach showed poor scalability in terms of convergence speed
when the number of vehicles increased. (Morlock et al., 2019)
suggested a trip planner that solves a mixed integer linear
program to reduce the overall trip time. The authors
introduced the driving speed as an additional degree of
freedom and forecasted energy consumption from historical
data. However, their approach works only along the desired
route without considering alternative trajectories.

Although the majority of the proposed algorithms deal with
route planning for casual EV driving, the efforts are made to
adapt EVs for specific use cases of customer serving and delivery
operations. Researchers in (Schneider et al., 2014) deployed a

hybrid heuristic search algorithm to minimize the total time
consisting of travel time, recharging time and time spent at the
customer. Authors in (Mao et al., 2020) aimed for the same goal
with battery swapping and fast charging options using improved
ant colony optimization. (Felipe et al., 2014) used simulated
annealing to find a feasible route while determining the
amount of energy to be recharged at the charging station
along with the type of charging technology. Despite
considering the recharging possibilities on the way, these
works neglect the EV’s ability to recuperate energy by
assuming constant energy consumption proportional to the
travel distance.

This paper aims to address highlighted drawbacks in the EV-
specific route planning by proposing a novel problem
formulation suitable for solving by reinforcement learning
(RL) techniques. To the best of our knowledge, it is one of the
first applications of this area of machine learning to the field of
EV path planning. Previously, the success of using RL, namely the
policy gradient algorithm, was demonstrated in (Nazari et al.,
2018) to minimize the total route length of a conventional fossil-
fuel vehicle. Additionally, researchers in (Zhang Q. et al., 2020)
used actor-critic RL to minimize the route’s energy consumption
without recharging opportunities. In (Zhang C. et al., 2020), a
deep RL approach was proposed to reduce both travel time and
distance while different charging modes and occupation of
charging spots were considered. In this research, we formulate
the EV-specific routing problem in a graph-theoretical setting as a
Markov decision process (MDP) and suggest a possible model-
free RL algorithm to solve it by generating energy feasible paths
for EV from source to target. Specifically, we take into account
recharging possibilities on the way through intermediary
charging stations and the ability of EV to recuperate energy by
considering the elevation profile of the road network.

2 METHOD

Two main components are required to frame the problem of EV
routing with intermediary charging stations. First, the
environment where an EV operates, namely the road network,
has to be described mathematically. In this research, EV routing is
analyzed in a graph-theoretical context. Second, the problem has
to be formulated as an MDP to provide modelling capabilities of
the EV movement and its way of making decisions.

2.1 Environment
The road network can be modelled as a simple undirected
weighted graph G � (V , E) as follows:

• V � {1, . . . , n} is the set of n nodes representing the
points of interest on the map. The subset of these nodes
C � {1, . . . ,m} ⊂ V can provide recharging capabilities to
EVs. Each of the nodes vi ∈ V can serve both as a source v0
and as a target vf that are EV’s starting and destination
points respectively. To consider the EVs’ ability to
recuperate energy when moving downhill, we
characterize each node vi ∈ V by its elevation zi.
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• E ⊂ R is the set of weighted edges that connect the nodes on
the graph. Each edge can be defined as an unordered pair
{vi, vj}, where vi ≠ vj. There are no multiple edges that are
incident to the same two nodes. As the graph G is
undirected, the edges are equivalent to two-way roads in
the real world. The weights of the edges correspond to the
energy costs required to traverse the edge.

The definition of edges’ weights was adapted from (Bozorgi
et al., 2017). Therefore, the energy cost between two nodes vi and
vj can be determined as follows:

Eij � Eflatij + Einclinedij + Eotherij (1)

where Eflatij and Einclinedij represent EV’s energy consumption
on flat and inclined surfaces respectively. The term Eotherij
signifies additional energy costs depending on road type,
urbanization, weather conditions and usage of auxiliary
components (Li et al., 2016). For the sake of simplicity,
Eotherij � 0. The basic energy consumption on the flat road
can be determined according to Equation 2, where h is the
EV’s specific energy consumption per 100 km and dij is the
distance between nodes. The value of h is determined
experimentally for different models of EVs according to
typical driving cycles such as WLTP (European Automobile
Manufacturers Association, 2017).

Eflatij � dijh (2)

The contribution of an inclined surface to EV’s energy
consumption is proportional to the potential energy and can
be calculated as follows:

Einclinedij � mgΔz/η (3)

where m is the combined mass of EV and its payload, g is the
acceleration of gravity, Δz � zj − zi is the elevation difference
between nodes, and η is the EV’s transmission efficiency. The
value of Einclinedij is responsible for EV’s energy recuperation

ability. In downhill, Δz < 0, therefore Einclinedij < 0 and EV can
recuperate energy if

∣∣∣∣∣Einclinedij∣∣∣∣∣ > Eflatij. In contrast, Δz > 0 when
EVmoves uphill, thus Einclinedij > 0 and additional energy has to be
spent. If two nodes have no edge connecting them, the weight
Eij � ∞ makes it impossible for EV to traverse the graph in this
direction.

2.2 Markov Decision Process
To formulate the EV-specific routing problem, we use an MDP
mathematical framework which provides the best way to
generalize optimal behaviour problems under uncertainty. An
MDP model (S,A, P,R, c) consists of the following elements: a
finite set of states S, where each of them obeys the Markovian
property, a finite set of actions A, state transition probability
matrix P, rewards function R, and discount factor c. The
definition of states and actions is related to the graph-
theoretical context of the problem and can be represented as a
matrix depicted in Figure 1.

State space S contains all possible states s that an agent can
have when interacting with a given environment. For the case of
EV routing, a state can be described as a vector s � (location,
charge), where location ∈ V and charge corresponds to the battery
energy level. The latter is constrained due to battery’s operational
limits such as batmin ≤ charge ≤ batmax. The upper bound batmax is
imposed by the battery capacity and the lower bound batmin is
determined by the advised discharging policy. As most
rechargeable batteries are not meant to be fully discharged, a
minimum allowed state of charge is set to avoid battery damage.
In this research we assume batmin � 20%batmax. Contrary to
location, charge is a continuous variable requiring discretization
that can be achieved through binning. The number of bins is
determined experimentally through uniform binning, where the
bin’s lower bound defines the new state, once the action is
executed. The discretization procedure is discussed further in
Section 4.1.

Action space A contains all possible actions that an agent can
perform in the environment. An action can be described as a
vector a � (next_location, decision), where next location ∈ V and
decision indicates the charging intention at this location. If
next location ∈ C, an agent can choose whether to charge
decision � 1 at this node or not decision � 0. If
next location ∉ C, the agent has no choice and decision � 0.
However, at any state s not all actions are available to the agent.
The action a is considered available at state s only if
charges − Esa ≥ batmin, where Esa is the energy cost to move
from location to next_location.

Rewards function R is a measure to encourage the particular
behaviour of an agent. While interacting with the environment,
the agent takes action from the current state, observes the new
state and receives a reward. By continually getting feedback from
the environment in the form of rewards, the agent learns the
desired behaviour through maximizing its discounted cumulative
reward. In the EV-specific routing problem, we mainly want to
incentivize only one type of behaviour by setting reward equal to
1: reaching the target vf from the source v0 with charge level
charge ≥ batmin. Rewarding the arrival to the final destination is
essential for the agent’s understanding that it has to explore the

FIGURE 1 | Matrix representation of a combined state-action space.
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graph in a specific direction and not just wander around the
environment. However, not all rewards have to be positive.
Sometimes, rewards are used to penalize particular behaviour.
In the current case of EV routing, an agent receives a negative
reward equal to −1 when there are no available actions at the
current state. In the real world, it means that EV has exhausted its
battery capacity and thus got stuck on its route before reaching
the destination.

Discount factor c is used to emphasize the importance of the
rewards achieved in the future. The agent selects actions to
maximize the cumulative discounted reward Gt at time point t
according to Equation 4, where Rt signifies the reward’s value at
time t and n defines the number of steps to complete the task. The
discount rate c obeys 0≤ c≤ 1, therefore one needs to find balance
between caring about immediate rewards only (c � 0) and caring
about distant future (c � 1).

Gt � Rt+1 + cRt+2 + c2Rt+3 + c3Rt+4 + . . . + cn−1Rt+n (4)

In this research, we do not calculate explicitly the state
transition probability matrix P due to the following
assumptions in formulating the EV-specific routing
problem. First, we do not consider specific traffic
conditions. It is common for drivers to plan their routes
according to traffic congestion and even change them while
driving. Therefore, the probability of choosing a particular
road would need to be adjusted dynamically. Second, as we
aim to solve the routing problem for energy feasibility, we do
not take into account the occupation of the charging stations
and the time required for charging. Third, we assume that
there are no partial recharges and that all EVs leave the
charging station with the full battery. Moreover, although
the behaviour of an EV driver is presumed to be rational, in
the real world, it is still stochastic. The drivers are free to
choose the next points on their path according to any
unforeseen events or their personal beliefs. Considering all
the points discussed above, calculating the state transition
probability matrix P that would accurately reflect real-world
environment dynamics does not seem possible. Therefore, a
model-free RL algorithm that operates regardless of any
representation of P should be selected to solve the
suggested MDP. To find the target policy that fully defines
the agent’s desired behavior, we deploy the off-policy learning
method that allows to do it independently from the followed
exploratory policy.

2.3 Algorithm
As one of the possible methods to solve the suggested MDP
formulation of the EV-specific routing problem, we choose the
Q-learning algorithm, which is a specific instance of temporal
difference learning that looks only one step ahead. Moreover, it is
suitable for discrete state and action spaces and is easily
interpretable. The idea of Q-learning is to allow improvements
for both target and exploratory policies. The target policy is a
greedy policy that obeys the following definition:

π(s′) � argmax
a′

Q(s′, a′) (5)

where π is the policy, Q is the action-value function, s′ is the next
state and a′ is some alternative action that maximizes the Q-value.
The real behavioural policy that the agent follows is an ϵ-greedy
policy which ensures continual exploration. The policy is defined
as follows:

π(a | s) � ⎧⎨⎩ ϵ/m + 1 − ε, if a* � argmax
a ∈ A

Q(s, a)
ϵ/m, otherwise

(6)

where s and a are the current state and action taken at this
state, ϵ is a parameter that governs the exploration-
exploitation trade-off, m is the number of actions available
at the current state, and a* is the best possible action. The
Q-value function is updated according to Bellman’s
optimality equation in the following way:

Q(s, a)←Q(s, a) + α[R(s, a) + cmax
a′

Q(s′, a′) − Q(s, a)] (7)

where Q(s, a) is the Q-value of the current state and action pair,
R(s, a) is the observed reward after the action a is taken and α is
the learning rate bounded by 0≤ α≤ 1. The latter determines to
what extent newly acquired information overrides old
information. The complete Q-learning algorithm is described
in Figure 2.

3 RESULTS

3.1 Case Study
To validate the proposed method for solving the EV-specific
routing problem, we created a case study within the framework of

FIGURE 2 | One-step ahead Q-learning algorithm.
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the Digitalization project (SCCER, 2020). The case study deals
with the section of the road network of the Val d’Hérens alpine
region in Switzerland. Figure 3 depicts the graph representation
of the road network. The environment encompasses 66 nodes and
223 edges, which represent the points of interest and the
connection roads, respectively. The thickness of the edges
varies depending on the relative remoteness of the nodes. Each
node is characterized by its geographical coordinates: latitude,
longitude, and elevation. The agent is an EV defined by its battery
capacity, energy consumption rate, and mass. In our case study,
we use Citroen C-Zero with 16 kWh battery and an average
12.6 kWh energy consumption per 100 km (Electric vehicle
database, 2020).

3.2 Training
The training procedure in RL is defined as a sequence of episodes.
One episode represents the movement of an agent along the path
from source to target. The episode is considered complete when
the target is reached. The number of episodes should be sufficient
to achieve a stable matrix of Q-values which is initialized to zeros
at the beginning of the training procedure. Such Q-matrix
represents the maximum expected future rewards for each
action at each state. The training convergence is achieved
when the updates of the old Q-values become insignificant.
Therefore, an agent learns the optimal policy once the
algorithm converges. The parameters that govern the training
process are set to the following values: discount factor c � 0.9,

FIGURE 3 | Graph representation of the road network of the Val d’Hérens alpine region in Switzerland.

FIGURE 4 | An example of a learning curve of the training process. The bold line and the shaded region show the mean and the standard deviation of five runs.
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learning rate α � 0.8, and ϵ � 0.1. The values are tuned
experimentally to ensure convergence and satisfactory
execution speed.

Figure 4 depicts an example of a learning curve of the
algorithm’s training process, where the x-axis denotes the
number of episodes, while the y-axis represents the training
score. The episode’s training score is determined by the mean
of the scores obtained at each step of the episode. The step’s score
is calculated as a sum of the Q-values in the Q-matrix. Therefore,
the learning curve arrives at a plateau when the Q-matrix
stabilizes.

In the demonstrated example, the algorithm converges after
250,000 episodes, which takes approximately 6.2 min. The
Q-learning was programmed in Python, and the training
procedure was executed on a personal laptop (Intel i7- 7600,
16 GB RAM). One has to note that training uses a fixed target
while the source is chosen arbitrarily. Therefore, the algorithm
requires retraining when the destination is changed. Notably, any
topological modifications of the road network, such as
introducing additional nodes or removing existing ones, would
equally require retraining of the algorithm.

3.3 Validation
A series of experiments, where each node sequentially serves as a
target, is carried out iteratively to test the consistency of the policy
learned by the agent with the energy feasibility goal. Each
experiment simulates an EV trip starting at a random node on
the graph with the fully charged battery and finishing when the
final destination is reached. For each target, the amount
of experiments equals N−1, where N � 66 is the number of
nodes in the selected road network. Thus, the total number of
experiments is 4,290. Besides verifying the EV’s capability
of arriving at the target without violating the batmin constraint,
we aim to observe whether the EV stops to recharge only when it
is strictly necessary. Although not accounted for in the reward
function’s design, excessive charging behavior is not preferable.
Thus, observing the frequency of unnecessary charging stops
contributes to further improving the solution.

The results demonstrate that 100% of generated routes are
energy feasible, while 92% of them represent near-optimal
charging decisions. The latter means that recharging schemes
suggested by the algorithm give the agent a possibility to arrive
at the destination, otherwise unreachable without charging,
and neglect to charge when it is attainable to arrive at the
destination without violating battery constraints. Moreover,
the results show that in 80% of cases, the optimal number of
charging stops was selected, thus avoiding excessive charging.
Such a number is calculated using a verification procedure that
analyzes the route with all possible combinations of the
charging stations proposed by the algorithm. Although we
did not aim to optimize for the route length, an interesting
observation occurred. In 83% of cases, the algorithm generated
the shortest possible path when recharging is not required,
which was confirmed by the Dijkstra algorithm. To
summarize, we validated the possible use of a Q-learning
algorithm to solve the proposed formulation of the EV-
specific routing problem. The following section discusses

the advantages and limitations of the suggested approach
and defines the directions for future research.

4 DISCUSSION

The MDP formulation of the EV-specific routing problem and
the proposed model-free RL approach have certain advantages in
comparison to previous works in the literature. First, our method
considers both main properties of EVs: a possibility to recharge
on the way and an energy recuperation ability. Although these
features are crucial to model the agent’s behaviour that will be
close to real-world driving habits, taking into account both of
them is uncommon, as shown in Section 1. Moreover, compared
to previous RL works, the prior was neglected in (Zhang Q. et al.,
2020). The latter was considered in (Zhang C. et al., 2020)
through estimating energy consumption from rarely available
historical data. Second, a trained RL agent requires less
computing effort and less memory space than model-based
techniques and mixed integer non-linear programming
formulations (Mocanu et al., 2018) of the EV routing problem
such as (Pourazarm et al., 2014). Thus, it can be deployed for
online applications if successfully transferred to the real world.
Third, problem formulation in a graph setting and usage of the
Q-learning algorithm that employs Q-matrix make results’
interpretation more intuitive. Last but not least, the off-policy
temporal difference continuously evaluates the returns from the
environment and makes incremental updates using
bootstrapping. Therefore, unlike the Monte-Carlo approach, it
is not necessary to wait until the episode terminates to judge the
agent’s behaviour.

4.1 Limitations
Although the suggested approach has some inherent
advantages, it also has certain limitations influencing
performance. The first limitation comes from the choice of
the algorithm. The Q-learning is suitable for problems with
small to medium size of a state-action space as it stores
information in the form of Q-tables. Once the dimensions of
the problem increase, the algorithm scales poorly. In the
proposed framework, the growth of a state-action space can
come from the expansion of the road network and the state
discretization procedure. The selected binning method
represents a simple way to discretize a continuous battery
variable, where the number of bins is chosen as a trade-off
between the level of detail at which we model the problem and
the size of the state space. With a large number of states and
actions, the probability of visiting a particular state and
performing specific action decreases dramatically, thus
deteriorating the performance, slowing down the training
process, and exhibiting higher memory demands. To solve
the scaling issue, one can use function approximators, such
as neural networks or tile coding, or switch to policy-based RL.
The second limitation comes from fixing the minimum required
battery charge at the target vf to batmin. As some destinations
might not have charging stations, the EVs can get stuck without
sufficient battery charge to start a new trip. Therefore, one has to
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introduce an additional parameter batf that depends on vf and
ensures that the battery charge at the destination is sufficient to
arrive at the closest charging station. The third limitation of the
method’s applicability is the need to retrain the algorithm when
the destination is changed or any topological modifications
occur to the road network. Thus, it should be clearly
addressed to improve the method’s convenience for end-
users. Finally, the agent’s evaluation on the same
environment model used for training questions its real-world
performance and the ability to handle stochastic perturbations.

4.2 Future Work
The assumptions made in formulating the EV-specific routing
problem define the directions for future improvements. First,
the goal of the learning process can be tailored according to
the desired application by altering the rewards scheme. One
can diversify the routing problem towards minimizing travel
time, travel distance, total energy consumption, and the
number of recharging stops. Second, specific characteristics
of the charging process, such as charging time and charging
intensity, can be considered. Moreover, one can differentiate
charging stations by their slot availability and suggested price
of electricity, thus introducing additional decision variables.
Another improvement can be realized by including partial
recharges. Therefore, the agent will have to choose not only
the charging station but the amount of recharge too. Third,
one can consider dynamic traffic conditions to build an
environment that resembles the real world. Inclusion of
traffic will affect the actions’ availability and the agent’s
energy consumption model. The latter can be improved by
accounting for the type of terrain, use of auxiliary loads, and
weather conditions. Fourth, the suggested approach to EV-
specific routing can be extended towards the multi-agent RL
problem. Although this area of artificial intelligence is still in
its infancy, the attempts to modelling road networks with
multiple agents can foster developments in the field and can
help to build improved foundations for autonomous green
mobility. Finally, one should devote the efforts to benchmark
the suggested methodology against other popular approaches
for solving the routing problem. Moreover, further
investigation of the agent’s validity in the real world,

beyond simulations, is required, preferably supported by
experimental results in practice.

5 CONCLUSION

In this work, we proposed a mathematical formulation of the EV-
specific routing problem, and we demonstrated a possible
solution using a model-free RL approach. We defined the
problem as an incomplete MDP in a graph-theoretical context.
To generate energy feasible paths, we implemented an off-policy
temporal difference algorithm with one step ahead. Notably, our
framework considers recharging possibilities at intermediary
charging stations and the ability of EVs to recuperate energy.
We demonstrated in a case study that the algorithm always
produces energy feasible paths. The training procedure of the
algorithm requires low computational and memory demands and
is suitable for online applications.
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