
ORIGINAL RESEARCH
published: 24 May 2021

doi: 10.3389/fdata.2021.608286

Frontiers in Big Data | www.frontiersin.org 1 May 2021 | Volume 4 | Article 608286

Edited by:

Jingrui He,

University of Illinois at

Urbana-Champaign, United States

Reviewed by:

Yanjie Fu,

University of Central Florida,

United States

Hao Liu,

University of Arizona, United States

*Correspondence:

Zhiqian Chen

zchen@cse.msstate.edu

Specialty section:

This article was submitted to

Data Mining and Management,

a section of the journal

Frontiers in Big Data

Received: 19 September 2020

Accepted: 23 March 2021

Published: 24 May 2021

Citation:

Chen Z, Zhang L, Kolhe G,

Kamali HM, Rafatirad S, Pudukotai

Dinakarrao SM, Homayoun H, Lu C-T

and Zhao L (2021) Deep Graph

Learning for Circuit Deobfuscation.

Front. Big Data 4:608286.

doi: 10.3389/fdata.2021.608286

Deep Graph Learning for Circuit
Deobfuscation
Zhiqian Chen 1*, Lei Zhang 2, Gaurav Kolhe 3, Hadi Mardani Kamali 4, Setareh Rafatirad 5,

Sai Manoj Pudukotai Dinakarrao 4, Houman Homayoun 6, Chang-Tien Lu 2 and Liang Zhao 5

1Department of Computer Science and Engineering, Mississippi State University, Starkville, MS, United States, 2Department

of Computer Science, Virginia Tech, Falls Church, VA, United States, 3 Electrical and Computer Engineering Department,

University of California, Davis, Davis, CA, United States, 4Department of Electrical and Computer Engineering, George

Mason University, Fairfax, VA, United States, 5Computer Science, University of California, Davis, Davis, CA, United States,
6Department of Computer Science, Emory University, Atlanta, GA, United States

Circuit obfuscation is a recently proposed defense mechanism to protect the intellectual

property (IP) of digital integrated circuits (ICs) from reverse engineering. There have

been effective schemes, such as satisfiability (SAT)-checking based attacks that can

potentially decrypt obfuscated circuits, which is called deobfuscation. Deobfuscation

runtime could be days or years, depending on the layouts of the obfuscated ICs. Hence,

accurately pre-estimating the deobfuscation runtime within a reasonable amount of

time is crucial for IC designers to optimize their defense. However, it is challenging

due to (1) the complexity of graph-structured circuit; (2) the varying-size topology

of obfuscated circuits; (3) requirement on efficiency for deobfuscation method. This

study proposes a framework that predicts the deobfuscation runtime based on graph

deep learning techniques to address the challenges mentioned above. A conjunctive

normal form (CNF) bipartite graph is utilized to characterize the complexity of this SAT

problem by analyzing the SAT attack method. Multi-order information of the graph matrix

is designed to identify the essential features and reduce the computational cost. To

overcome the difficulty in capturing the dynamic size of the CNF graph, an energy-based

kernel is proposed to aggregate dynamic features into an identical vector space.

Then, we designed a framework, Deep Survival Analysis with Graph (DSAG), which

integrates energy-based layers and predicts runtime inspired by censored regression in

survival analysis. Integrating uncensored data with censored data, the proposed model

improves the standard regression significantly. DSAG is an end-to-end framework that

can automatically extract the determinant features for deobfuscation runtime. Extensive

experiments on benchmarks demonstrate its effectiveness and efficiency.

Keywords: graph mining, circuit deobfuscation, satisfiability checking, graph neural networks, deep learning

1. INTRODUCTION

The considerable high capital costs on semiconductor manufacturing motivate most hi-tech
companies to outsource their designed integrated circuits (ICs) for fabrication. Despite the reduced
cost and other benefits, this trend has led to ever-increasing security risks, such as concerns of
risks on IC counterfeiting, piracy, and unauthorized overproduction by the contract foundries
(Subramanyan et al., 2015). The overall financial risk caused by such counterfeit and unauthorized

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2021.608286
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2021.608286&domain=pdf&date_stamp=2021-05-24
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zchen@cse.msstate.edu
https://doi.org/10.3389/fdata.2021.608286
https://www.frontiersin.org/articles/10.3389/fdata.2021.608286/full

Chen et al. Deep Graph Learning for Circuit

ICs was estimated to be over $169 billion per year (Informa.com,
2012). The major threats from attackers arise from reverse
engineering an IC by fully identifying its functionality layer-by-
layer and extracting the unveiling gate-level netlist. To prevent
such reverse engineering, IC obfuscation techniques have been
extensively researched in recent years (Yasin et al., 2017). The
general idea is to obfuscate some gates in an IC so that their
gate type cannot be determined by reverse engineering optically,
yet they preserve the same functionality as the original gates.
As shown in Figure 1A, obfuscation is a process that selects a
part of the circuit (in pink) and modifies the structure, whose
functionality can be retrieved only if correct keys are provided
at the additional input gates.

Such techniques were highly effective until recently, when
attacking techniques based on logical attackers were invented and
widely applied (El Massad et al., 2015). More recently, efficient
methods, such as satisfiability (SAT)-checking based attacks have
been proposed, which have attracted enormous attention (Liu
et al., 2016). The runtime of reverse engineering by SAT attack
on the IC mostly depends on the complexity of the obfuscated
IC, which can vary frommilliseconds to days or years. Therefore,
a successful obfuscation requires a prohibitive amount of time
(i.e., many years) for attackers to deobfuscate. However, gates
to obfuscate come at a high cost in finance, power, and space;
such trade-off forces us to search for an optimal layout instead
of purely increasing their quantity. Therefore, the best set of
gates for obfuscating maximizes the runtime for deobfuscating.
However, until present, selecting the best set of gates is still
generally based on human heuristics or experience, which is
seriously arbitrary and suboptimal (Khaleghi and Rao, 2018).
This is due to the inability to “try and error” all the different
ways of obfuscation, as there are millions of combinations to try,
and the runtime for each try (i.e., to run the attacker) can be
extremely time-consuming. This situation also causes the early
stop of numerous attack simulations since the unknown attack
times may be dramatically long, and the computational resource
is limited. Such incomplete simulations cannot be used by normal
regression models due to their inaccurate labels (i.e., early stop
time). These incomplete records are similar to censored data in
survival analysis (Wang et al., 2019), as shown in Figure 1B. The
actual event of censored data (i.e., the actual time of finishing
deobfuscation) is unknown; however, the censored time point
is recorded. For uncensored data, the recorded time is the exact
time taken for completing deobfuscation.

This research topic is vastly underexplored because of
its significant challenges: (1) Difficulty in characterizing the

hidden and sophisticated algorithmic mechanism of attackers.

Over the recent years, a large number of deobfuscation methods
have been proposed with various techniques (Khaleghi and
Rao, 2018). In order to practically beat the attackers, methods
with sophisticated theories, rules, and heuristics have been
proposed and adopted. The behavior of such highly non-linear
and strongly coupled systems is prohibitive for conventional
simplemodels [e.g., linear regression and support vectormachine
(Bishop and Mitchell, 2006)] to characterize. (2) Difficulty in

extracting determinant features from discrete and dynamic

graph-structured ICs. The inputs of the runtime estimation

problem are the ICs with selected obfuscated gates. Conventional
feature extraction methods are not intuitively applied to such
type of varying-structured data without significant information
loss. Hence, it is highly challenging to intactly formulate
and seamlessly integrate them as mathematical forms that
can be input to conventional machine learning models. (3)

Requirement on high efficiency for deobfuscation runtime

estimation. The key to the defense against deobfuscation is
speed. The faster the defender can estimate the deobfuscation
runtime for each candidate set of obfuscated gates, the
more candidate sets the defender can estimate, hence, the
better the obfuscation effect will be. Moreover, the estimation
speed of deobfuscation runtime must not be sensitive to
different obfuscation strategies in order to make the defender
strategy controllable.

This study addresses all the above challenges and proposes
the first generic framework for deobfuscation runtime prediction,
based on conjunctive normal form (CNF) graph representation
for obfuscated circuits. The major contributions of this
paper are:

• Formulating a graph learning framework with survival

analysis for predicting deobfuscation runtime. In
the proposed method, a graph-based model is built by
transforming obfuscated ICs into a CNF graph. The model
then learns the relationship between the complexity of the
CNF graph and deobfuscation runtime. By introducing
survival analysis, the model can integrate complete
simulations with incomplete simulations, significantly
improving the prediction performance.
• Proposing a feature extraction method for deobfuscation

runtime estimation based on graph deep learning. To
model SAT-based deobfuscation, a multi-order CNF graph
is proposed to derive informative representations from
obfuscated ICs. Such an end-to-end deep graph regressor
can automatically extract the discriminative features that are
determinants to estimate the deobfuscation runtime to achieve
accurate runtime prediction.
• Designing an energy-based neural layer to process varying-

size of graph data. To unify the dynamic topology of the
CNF graph, this study innovatively leveraged the energy of
restricted Boltzmann machines to quantify the complexity of
CNF. The bipartivity of the CNF graph is highly utilized to
optimize the computational cost.
• Conducting comprehensive experimental evaluations and

analyses on multiple datasets. The proposed method is
compared with several state-of-the-art methods on three
benchmark datasets. The analyses of the performance and
effectiveness demonstrated the advantage of our method.

2. PROBLEM SETUP

Mathematically, solving the IC deobfuscation problem is often
considered equivalent to solving the Boolean SAT of a CNF
(Yasin et al., 2016a; Shamsi et al., 2017; Zhou et al., 2017;
Roshanisefat et al., 2018; Xie and Srivastava, 2018; Zamiri Azar
et al., 2018). Specifically, the obfuscated IC, where several gates

Frontiers in Big Data | www.frontiersin.org 2 May 2021 | Volume 4 | Article 608286

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Chen et al. Deep Graph Learning for Circuit

FIGURE 1 | (A) An illustration of obfuscation and deobfuscation. (B) An illustration demonstrating the survival analysis problem.

have been encrypted by replacing old gates with new gates and
adding key inputs, can be equivalent to the original IC only
when the key inputs are correctly inferred. Such a problem
is routinely formulated as a CNF expression, and solving this

problem is equivalent to solving a standard SAT problem, which

has been proved to be NP-complete (Cook, 1971; Karp, 1972).
This means that the solving runtime of obfuscated IC cannot be
tightly estimated theoretically, and hence, an accurate runtime
prediction method is imperative for obfuscation assessment.
Therefore, the runtime prediction is dependent on the CNF
expression because it stores all the necessary information for
runtime estimation, as mentioned above. As a standard formula
of a Boolean expression, CNF is a conjunction of one or
more clauses, where a clause is a disjunction of variables. In
other words, in CNF, different clauses are connected by “AND”

operators, while each clause consists of one or more variables
(or their negations) connected by “OR” operators. In practice,

the CNF formation of an obfuscated IC can be conventionally
generated through a set of handwritten rules (Subramanyan et al.,
2015).

The above is a new yet extremely challenging research problem
that involves three major technical challenges: (1) Difficulty

in representing CNF in an intact and structured way for

a machine learning model. CNF, though typically written as

a sequence, is mathematically not a sequence as the order
among different clauses is meaningless. Moreover, one variable

can appear in multiple clauses with or without their negation

forms, which further complicates its representation. However,
there is no such existing machine learning technique that is

designed for directly modeling varying-size CNF expression;
however, extracting handcrafted features from the technique
will surely cause loss of information and would be easily
biased. (2) Difficulty in learning the mapping from the

CNF to the runtime. Different from conventional inputs of
machine learning models, CNF inherently endorses logical
operators (typically discrete) instead of numerical operators.
Moreover, it is imperative, yet challenging, to automatically learn
the determinant features that decide how “time-consuming”
deobfuscating a CNF is.

Problem Formulation: Given the CNF (denoted as Ŵi) of
the ith SAT instance, the goal of this study is (1) Accuracy: to
predict the runtime by a prediction function, fpred :Ŵi → Ti ∈

R
+, where Ti is runtime of an SAT solver on the SAT instance

Ŵi; (2) Efficiency ti ≪ Ti, where ti is the time consumption of
fpred. This means that prediction should be much faster than the
real runtime. Otherwise, there is no superiority beyond directly
running an SAT solver.

3. DEEP SURVIVAL ANALYSIS FOR CNF
GRAPH

To address the above challenges, we first present a comprehensive
representation of the CNF graph representation and then
present an energy model for feature aggregation. Last,
we elaborate survival analysis with the proposed graph
representation learning.

As shown in the first component in Figure 2, a CNF-
SAT instance is represented in two graph formats, namely VG
(variable graph) and CVG (clause-variable graph), which will be
introduced in “CNF Graph Representation of IC” section. Then,
multi-order information is generalized from these graphs by
calculating the power series of its adjacency matrix. To minimize
the computational cost, we leverage the bipartivity property
among the graphs. After extracting a set of intermediate features
from graph representations, an energy-based kernel is proposed
to model the dynamic-size data. Finally, survival analysis is
leveraged to improve the runtime estimation of deobfuscation.

3.1. CNF Graph Representation of IC
It is clear that modern SAT solvers exploit the structure
of CNF (Ansótegui and Levy, 2011; Ansótegui et al., 2012;
Newsham et al., 2014; Giráldez-Cru and Levy, 2015; Mull et al.,
2016). Unlike the previous existing studies, this study explores
this hidden pattern by applying graph neural networks rather
than using handcrafted graph features based on the domain
knowledge. Given a CNF instance, we employ two graphs:

Definition 3.1. Clause-Variable Graph (CVG) Given a SAT
instance, Ŵ, over the set of variables, X, and clause, c, its clause-
variable graph is a undirected and signed graph G(V , E), where
V ∈ X ∪ c, and the value of E ij is defined as: (a) 1 (positively
connected), if Xi is in cj, and Xi is positive; (b) −1 (negatively
connected), if Xi is in cj, and Xi is negative; (c) 0 (disconnected),
if Xi is not in cj.

Frontiers in Big Data | www.frontiersin.org 3 May 2021 | Volume 4 | Article 608286

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Chen et al. Deep Graph Learning for Circuit

FIGURE 2 | Architecture of Deep Survival Analysis with Graph (DSAG): (1) extract Variable Graph/Clause-Variable Graph (VG/CVG) based on conjunctive normal form

(CNF) formula; (2) apply energy kernel to aggregate dynamic-size features; (3) employ survival analysis to exploit censored data with uncensored data.

Definition 3.2. Variable Graph (VG) Given a SAT instance, Ŵ,
over the set of variables, X, its variable graph is a graph G(V ′, E ′),
where V ′ ∈ X, and the value of E ′ij is defined as the count of clauses

in which both Xi and Xj exist.

Since there exist positive and negative entries in the connectivity
of CVG, our model distinguishes the two groups by
characterizing them separately. Specifically, CVG is divided
into two groups: CVG+ keeps all values that are 1, while CVG−

keeps all values that are −1, and then, −1 entry has been set to
1 for convenience. To make the notation succinct in the rest
of this study, CVG includes two matrices (CVG+, CVG−), and
A = ACVG. Typically, the CVG/VG for different instances
are different, leading to VGm 6=VGn, and CVGm 6= CVGn,
givenm 6= n.

Lemma 3.1. The adjacency matrix of VG, AVG, can be obtained
from raising the adjacency matrix of CVG to the second power.

Proof: A) is the normal adjacency matrix of CVG. We define a
matrix:A2 = |A | · |A |. Therefore, the entry at i-th row and j-th
column ofA2 is:

a
(2)
i,j =

N
∑

k=1

|a
(1)
i,k
| · |a

(1)
k,j
| =

{

1 if a
(2)
i,j > 0

0 if a
(2)
i,j = 0

(1)

where a(1) and a(2) denote the entry in A and A2, respectively,

[a
(n)
i,j = An(i, j)], and a(1) ∈ {0, 1}. Therefore, if there exist a

path from node i to k (i.e., a
(1)
i,k
= 1) and a path from k to j (i.e.,

a
(1)
k,j
= 1), then count one more value for a

(2)
i,j ← a

(2)
i,j + 1. Note

that a could indicate literal-literal, literal-clause, or clause-clause
relationship. Following definition 3.2, if literal i and j share |Ci,j|

clauses in CVG, count |Ci,j| for the entry AVG(i, j). Therefore,
AVG is included in A2 when a is literal-literal. Specifically, it can
be written as:

A
2 =

[

AVG 0
0 ACG

]

,

where ACG is clause-to-clause matrix which has a similar
definition as Equation (1).

Extend to higher power: Proof of Lemma 3.1 is provided
in the support material. This Lemma means that VG can be

mathematically obtained from raising the power of CVG to 2,
i.e., A2. Note that the adjacency of VG is not equal to A2, but
contained in A2. Therefore, the first (CVG) and second (VG)
power of A represent different physical meanings, and CVG
covers VG by raising its power. Similarly, higher powers of A
also derive determinant information. Suppose we have Ŵ =

(x1 ∨ x2) ∧ (¬x1 ∨ x3), and c1 = (x1 ∨ x2), c2 = (¬x1 ∨ x3).
Therefore, x2 and c2 are third order neighbors in CVG, and x2
and x3 are fourth order neighbors in CVG. To make this Ŵ true,
both x2 and x3 must be true. x1 is not useful and no matter takes
1 or 0. Therefore, the constraint from the third and fourth order
information also reveals critical inference for solving the SAT
problem. This inspires the utilization of multiple powers of A
as input.

3.2. Energy Model for CNF Graph
Unlike the conventional graphs, the correlation among the
neighboring nodes in the CNF graph does not indicate
“proximity” or “similarity,” but instead it indicates logical relation
with signed edges. Moreover, almost each CNF graph is with a
different node size. To address those issues, a novel graph encoder
layers have been proposed by leveraging and extending the energy
of restricted Boltzmann machines (RBMs) (Nair and Hinton,
2010). By innovatively treating variables and clauses as visible and
hidden units, CNF graphs can be modeled by RBMs.

Most existing graph deep learning operators focus on graphs
with fixed topology, while the size and topology of CNF graph
vary across different instances. To solve this problem, we
design a kernel for aggregating interaction information in one
graph. Specifically, a d-dimensional vector of pseudo-coordinates
is associated with [v, h], which denotes variable and clause,
respectively. We define a weighting kernel Z2(·, ·), so that, for
one CNF bipartite graph Gi, we have:

Einteraction =
∑

m

∑

n

Z2(E(vm, hn)) · E(vm, hn), (2)

where mapping function Z2(·) projects the edge of variable-
clause pair E(vm, hn) into a new value as the weight, i.e.,
Z2(E(vm, hn)). E is an energy function that the model will learn.
Note that Z2 function is implemented by neural networks and
controlled by fixed-size parameters 2. Similarly, we further
generalize Evariable, Eclause as Evariable =

∑

m Z2(vm) · vm, and

Frontiers in Big Data | www.frontiersin.org 4 May 2021 | Volume 4 | Article 608286

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Chen et al. Deep Graph Learning for Circuit

Eclause =
∑

n Z2(hn) · hn, where v and h indicate degree
distribution of variable and clause, respectively. Clause and
variable are also important, in that the ratio of clause over variable
w.r.t. degree sum exhibits significant phase transit phenomenon,
which is often widely recognized in CNF structure (Friedrich and
Rothenberger, 2018). Therefore, the deep energy model for CNF
graph (EnCNF) is:

E = f

(
variable

︷ ︸︸ ︷
∑

m

Z2(vm) · vm,

clause
︷ ︸︸ ︷
∑

n

Z2(hn) · hn,

interaction
︷ ︸︸ ︷
∑

m

∑

n

Z2(E(vm, hn)) · E(vm, hn)

)

,

(3)

Equation (3) above does not consider the sign of the edges
between variable and clauses. Hence, positive and negative entries
are encoded separated, i.e., E = {E+,E−}.

The following analysis provides the relationship analysis
between EnCNF and an existing GNN. As a state-of-art of graph
neural networks model, the superiority of DCNN (Atwood and
Towsley, 2016) beyond the other graph deep learning models
is the capacity in handling graphs with variable sizes and
considering multiple orders, which is also one advantage of our
model. The study demonstrates that DCNN is a special case of
our EnCNF:

Lemma 3.2. EnCNF is a generalization of DCNN, while DCNN
is a special case of EnCNF when setting the feature aggregation to
mean function.

Proof: DCNN can be extended to whole graph modeling by
taking the mean activation over the features on diffusion P∗t Xt :

Z = f (Wc ⊙ 1⊤Nt
P∗t Xt/Nt) = f (Wc ⊙ (

1

Nt
)⊤Nt

︸ ︷︷ ︸

aggregation

P∗t Xt), (4)

where (1
Nt
)Nt is a Nt × 1 vector of value (1

Nt
), t indicates the

index of graph instance, Wc is a real-valued weight tensor, and
P∗ is power series of adjacency matrix.⊙ and⊤ are element-wise
multiplication and matrix transpose, respectively. Following the
same representation, we can rewrite DSAG as:

Z = f (Wc ⊙ fE(·)
︸︷︷︸

aggregation

P∗t Xt), (5)

where fE(·) represents a vector of
[

Z2(φ(i))
]dfeat−1

i=0 , and dfeat
indicate dimension of a feature and φ(i) is the i-th value along
a feature. Therefore, fE(·) is a vector of dynamic size.

As shown in Figure 3, fE(·) calculate a weight vector for
each number of feature maps by repeatedly applying the
one-dimensional function Z2·. This difference brings two
advantages: (1) The feature aggregation is learned from the
data rather than average, which is extremely important for
the high non-linearity in graph topology; (2) DSAG can work
for the case where the dimension of feature changes across
different instances, while DCNN still requires the dimension to
be fixed.

3.3. RBM Model for Extracting Signed
Information
3.3.1. Energy Model for 1st-Order Graph Operators
To capture the sign information, the corresponding incidence

matrixM ∈ R
|Vvariable|×|Vclause| is utilized:

(1) Normalized positive and negative edge distribution in
clause scope (NPNC): we count positive and negative edges for
each clause and take normalization of both positive and negative
counts, so there are two values for each clause, i.e., cpos and cneg .
If there exist |Vclause| clauses, there will be two |Vclause| features:

〈

c+
clause

(0), c−
clause

(0)
〉

,
〈

c+
clause

(1), c−
clause

(1)
〉

, ...,
〈

c+
clause

(|Vclause| − 1), c−
clause

(|Vclause| − 1)
〉

,

(6)

(2) Normalized positive and negative edge distribution in variable
scope (NPNL): Similarly, positive and negative degrees are
counted for each variable, and normalization per variable is
taken. There will be two |Vvariable| features:

〈

c+
variable

(0), c−
variable

(0)
〉

,
〈

c+
variable

(1), c−
variable

(1)
〉

, ...,
〈

c+
variable

(|Vvariable | − 1),

c−
variable

(|Vvariable | − 1)
〉

.

(7)

Equations (6) and (7) then are fed as features into Equation (2).

3.3.2. Energy Model for the 2nd-Order Graph

Operators
The 2nd power of A with adjacency matrix A2 denotes
the variable-wise and clause-wise mutual information, which
corresponds to non-zero blocks as shown in the upper matrix
of the 2nd step in Figure 2. Their physical meaning includes
(1) variable-wise frequency of two variables appearing in the
same clause and (2) clause-wise frequency of two clauses sharing
the same variable. Intuitively, whether two variables share the
same clause or not is more important than how many times they
share. To further emphasize this important trait and reduce the
computational complexity, our model only distinguish zero with
non-zero entries in 2nd power of A, which means that we only
consider if two variables co-appear in the same clause or two
clauses share the same variable at least one time. This can be
obtained by setting all non-zero value of A2 to 1. Therefore, in
VG graph (first component of Figure 2), there exists a positive
link (in blue) only, but the original adjacency of A2 (the second
component of Figure 2) may have both positive and negative
entries. Finally, Equation (3) is applied to calculate the energy of
this graph, with first and second order of graph information.

3.4. Deep Survival Analysis
Due to the difficulty of obtaining labeled instance with large
runtime (i.e., hard instance), it may takemonths. Therefore, there
exist numerous records that stop early, and their exact runtime
is unknown, which will be referred to as “censored” data in
this context. Censored data cannot be provided as labels for the
regression model, but they still offer information about runtime.
For example, if a simulation stops within 1 h, the real runtime is
probably larger than 1 h.

Survival analysis was introduced to integrate uncensored data
with censored data, improving the performance of regression

Frontiers in Big Data | www.frontiersin.org 5 May 2021 | Volume 4 | Article 608286

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Chen et al. Deep Graph Learning for Circuit

FIGURE 3 | Comparison with DCNN.

performance. Specifically, we borrowed the idea of parametric
survival analysis (Li et al., 2016) that can be used to predict the
time. It finds the best parameters by optimizing the likelihood
function of all instances:

L(β) =

uncensored
︷ ︸︸ ︷
∏

δi=0

f (Ti,β)

censored
︷ ︸︸ ︷
∏

δi=1

S (Ti,β), (8)

where δi = 0 and δi = 1 mean uncensored and censored
data, Ti denotes predicted time, and β is the model parameter.
Note that taking logarithm on Equation (8) will convert the
product into sum function, i.e., log L(β) =

∑

δi=0
log f (Ti,β) +

∑

δi=1
log S (Ti,β). f (t), S(t) indicate death density function

and survival function, respectively (Wang et al., 2019). Under
survival analysis, f (t) is defined as the probability that the
instance dies at time t, while S(t) indicates the probability
that the instance can survive for longer than a certain time
t. However, Equation (8) is designed for the parametric
model, in which f (t) and S(t) have analytical forms, which is
difficult to be determined, especially in a complex and real-
world scenario.

Inspired by these concepts, we designed a new objective
function, imposing similar regularization to Equation
(8). To further improve the accuracy of prediction,
a consistence loss is added to reconcile uncensored
loss and censored loss. Therefore, the proposed loss
consists of three components with weight parameters α

and β :

L = Luncensored + αLcensored + βLconsist . (9)

Uncensored Loss is designed to represent the
regression loss for the uncensored data. We define
freg(x) as regression model and the uncensored loss is
written as:

Luncensored =
∑

δ=0

‖freg(X)− logY‖2, (10)

where X is the features of instance, and Y is the labeled
runtime of uncensored data (i.e., exact runtime). Both death

density function and survival function are exponential based
due to the death-age relationship. The exponential base
is also employed in freg , that is why our target is logY
rather than Y . Censored Loss characterizes the capacity that
distinguishes whether an instance exceed a censor threshold
or not. Utilizing both censored and uncensored data, a
binary classification task is defined (i.e., larger or smaller
than the threshold). Therefore, its binary cross-entropy
loss is:

Lcensored = −
∑

δ∈{0,1}

δ log fclass(X), (11)

where fclass(x) is a binary classifier. Equation (10) is called
uncensored loss since only uncensored data is considered.
Equation (11) is termed as censored loss since it is
designed to learn whether an instance is below or beyond
the threshold.

Note that uncensored loss and censored loss correspond to
those two components in Equation (8). However, there is a
implicit connection between f (t) and S(t) (Wang et al., 2019):

f (t) = (1− S(t))t = −S(t)t, (12)

and they share the same parameter β . Therefore, a
regularization is proposed to implement this mechanism
between fref and fclass. Consistence Loss is a constraint
that forces freg to predict the right label as fclass does.
Intuitively, if an instance is censored, freg must provide
the value that is large than the threshold as output even
though the exact runtime is unknown for the censored
instance. Specifically, consistence loss is defined as a
ReLU function:

Lconsist = ReLU[(freg − Ŵ) · (1− 2δ)], (13)

where Ŵ is a fixed censor threshold, and (1 − 2δ) is a
mapping that transfers δ ∈ {0, 1} to δ ∈ {1,−1}. Therefore,
when freg > Ŵ (i.e., the test instance is hard instance,
and should be censored) and δ = 0 (i.e., uncensored),
it is inconsistent. In this case, we add a punishment as
above: (freg − Ŵ) and (1 − 2δ) always have the same sign if

Frontiers in Big Data | www.frontiersin.org 6 May 2021 | Volume 4 | Article 608286

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Chen et al. Deep Graph Learning for Circuit

FIGURE 4 | Performance Comparison on Benchmark. X-axis is the threshold (in seconds) for censoring the datasets, while y-axis indicates mean square error (MSE).

Left to right are c432, c499, c880 datasets.

TABLE 1 | Performance comparison on c432.

10 30 50 100 200 300 500

Linear 3.1612e+00 2.1793e+01 6.3305e+01 1.1966e+02 5.5299e+02 1.0539e+03 2.5017e+03

Ridge 3.8178e+00 2.7043e+01 7.6082e+01 1.3196e+02 7.7698e+02 1.1116e+03 2.9605e+03

Lasso 4.5429e+00 3.0166e+01 8.6493e+01 1.4276e+02 1.1425e+03 1.6504e+03 3.1290e+03

MLP 1.2003e+02 4.0424e+02 1.6597e+02 1.9531e+02 1.5453e+03 2.8539e+03 4.3616e+03

Lars 6.1069e+04 1.9969e+07 1.8832e+02 9.9658e+02 3.5244e+03 1.4317e+10 2.2377e+04

OMP 3.3470e+00 3.0490e+01 8.7874e+01 1.4623e+02 6.0280e+02 1.2861e+03 3.0199e+03

SGD 6.0536e+30 2.8940e+30 1.8046e+31 1.3786e+31 1.1936e+31 4.9351e+30 8.8286e+30

PAR 1.7315e+01 4.5457e+01 1.1420e+02 2.6134e+02 1.7128e+03 3.8690e+03 7.4445e+03

Theil 4.0361e+00 3.0620e+01 1.1132e+02 1.8472e+02 1.0692e+03 1.1447e+03 3.2790e+03

SVR 5.8683e+00 4.0667e+01 1.1367e+02 1.5026e+02 1.4733e+03 2.3860e+03 3.4118e+03

DLAP 3.6971e+00 2.5654e+01 8.3923e+01 1.5056e+02 8.8146e+02 2.3792e+03 2.9953e+03

GAT 1.1647e+04 1.8566e+00 2.9676e+00 2.7502e+00 8.0696e+00 1.0336e+01 1.6019e+01

GAT-SA 9.1760e+00 5.4492e+01 1.3112e+02 3.1440e+02 7.3426e+02 4.5563e+02 8.9465e+02

GCN 1.1147e+04 1.8642e+00 3.0435e+00 2.9381e+00 1.0127e+01 1.0484e+01 1.6038e+01

GCN-SA 9.0540e+00 5.3624e+01 1.3155e+02 3.1420e+02 6.4244e+02 4.7414e+03 8.9572e+03

Sage 1.2215e+04 1.8586e+00 2.9289e+00 3.1756e+00 7.8375e+00 1.1503e+01 1.5929e+01

Sage-SA 9.0048e+00 5.8747e+01 1.3238e+02 3.1578e+02 7.9653e+02 4.6765e+02 9.0187e+03

DSAG-WB 1.6674e+06 1.1813e+02 8.8919e+04 5.0438e+06 6.4014e+07 6.8864e+09 1.5945e+08

DSAG 3.4140e-01 5.0372e-01 1.1775e+00 7.9674e-01 1.4410e+00 3.0248e+00 1.9715e+00

inconsistence happens. ReLU is employed to remove consistent
cases from loss.

4. BACKGROUND AND RELATED WORK

4.1. Logic Obfuscation and SAT Attacks
Logic obfuscation, often referred to as logic locking (Yasin
et al., 2016b), is a hardware security solution that facilitates
hiding the Intellectual Property (IP) using key-programmable
logic gates. Although obfuscation schemes try to minimize
the probability of determining the correct key by an attacker
and avoid making pirated and illegal copies, introducing SAT
attack shows that these schemes can be broken (Subramanyan
et al., 2015). In order to perform the SAT attack, the
attacker is required to have access to the functional IC along
with the obfuscated netlist, and different SAT-hard schemes,

such as Yasin et al. (2016a) and Xie and Srivastava (2018),
are proposed.

Furthermore, new obfuscation schemes that focus on non-
Boolean behavior of circuits (Xie and Srivastava, 2017), which are
not convertible to an SAT circuit, is proposed for SAT resilience.
Some of such defenses include adding cycles into the design
(Roshanisefat et al., 2018). Adding cycles into the design may
cause the SAT attack to get stuck in an infinite loop. However,
advanced SAT-based attacks, such as cycSAT (Zhou et al., 2017),
can extract the correct key despite employing such defenses.
Before the proposed defense ensures robustness against SAT
attacks, the defenders need to run the rigorous simulations,
which could range from few minutes up to years.

4.2. Graph Neural Networks
Many graphs and geometric convolution methods have been
proposed recently for modeling graph data (Bronstein et al.,

Frontiers in Big Data | www.frontiersin.org 7 May 2021 | Volume 4 | Article 608286

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Chen et al. Deep Graph Learning for Circuit

TABLE 2 | Performance comparison on c499.

10 30 50 100 200 300 500

Linear 1.1325e+00 7.2451e+00 2.3523e+01 2.0986e+02 3.6043e+02 9.9268e+02 4.9533e+02

Ridge 1.0289e+00 8.5923e+00 2.2871e+01 2.1248e+02 4.2973e+02 1.0718e+03 5.1005e+02

Lasso 1.5789e+00 1.1583e+01 3.2713e+01 2.5499e+02 4.7528e+02 1.1959e+03 5.5367e+02

MLP 2.5265e+00 1.8087e+01 4.6606e+01 3.2670e+02 6.9622e+02 1.5558e+03 8.1077e+02

Lars 9.6250e+00 5.4189e+01 2.3605e+01 2.1020e+02 3.6203e+02 1.8526e+03 5.7809e+03

OMP 9.9897e-01 9.7863e+00 2.9870e+01 2.3973e+02 4.3046e+02 1.1364e+03 5.7320e+02

SGD 7.0854e+30 7.8799e+30 9.1582e+30 1.8021e+31 5.7861e+30 6.6850e+30 1.0180e+31

PAR 3.8185e+00 3.7536e+01 4.8887e+01 3.3999e+02 6.2005e+02 1.5992e+03 8.1596e+02

Theil 1.3708e+00 1.2147e+01 3.1260e+01 2.7528e+02 4.7761e+02 1.3549e+03 5.3149e+02

SVR 4.4410e+00 6.6629e+01 7.0891e+01 3.6558e+02 6.5791e+02 1.6024e+03 7.0729e+02

DLAP 2.7471e+00 1.6825e+01 3.7197e+01 2.8338e+02 5.6832e+02 1.4428e+03 6.3257e+02

GAT 2.2144e+03 1.6008e+00 2.6829e+00 3.9028e+00 4.0831e+00 6.3761e+00 3.7974e+00

GAT-SA 7.7677e+00 4.4693e+01 7.0322e+01 2.1557e+02 6.9997e+02 1.3770e+02 1.6765e+02

GCN 7.5068e+03 1.5998e+00 2.7845e+00 3.9008e+00 4.0753e+00 6.3694e+00 3.8145e+00

GCN-SA 7.7510e+00 4.3631e+01 7.1336e+01 1.9336e+02 7.1150e+02 1.3481e+03 1.6710e+03

Sage 3.2712e+03 1.5777e+00 2.6410e+00 4.4357e+00 4.1685e+00 6.0335e+00 3.8338e+00

Sage-SA 7.7442e+00 4.3321e+01 7.1199e+01 1.8746e+02 6.9669e+00 1.3486e+03 1.6615e+03

DSAG-WB 2.7857e+15 5.8248e+16 1.2390e+15 1.0059+16 1.7777e+09.0 3.9907e+15 4.0283e+11

DSAG 3.4719e-01 5.2389e-01 6.4042e-01 1.3016e+00 2.0157e+00 2.7992e+00 1.9103e+00

TABLE 3 | Performance comparison on c880.

10 30 50 100 200 300 500

Linear 2.7754e+00 1.9417e+01 4.4460e+01 2.2991e+02 7.9404e+02 8.3623e+02 3.0158e+03

Ridge 3.8257e+00 2.6167e+01 6.3753e+01 2.6860e+02 8.8931e+02 9.9023e+02 3.3501e+03

Lasso 3.7568e+00 2.5577e+01 6.4954e+01 2.6742e+02 8.9272e+02 1.0711e+03 3.6088e+03

MLP 1.5144e+02 3.1003e+01 7.1854e+01 2.8338e+02 9.3473e+02 1.1511e+03 3.8307e+03

Lars 5.0124e+02 1.4411e+04 6.8009e+01 2.7046e+02 1.1785e+03 1.4192e+03 3.8229e+03

OMP 3.4928e+00 2.3846e+01 5.4433e+01 2.6425e+02 8.9263e+02 1.0718e+03 3.6112e+03

SGD 3.2375e+30 1.0856e+31 1.2071e+31 1.0439e+31 1.0808e+31 5.7292e+30 3.1060e+30

PAR 7.1275e+00 4.1192e+01 1.2508e+02 3.0963e+02 1.0876e+03 1.3523e+03 4.5832e+03

Theil 3.3507e+00 2.0203e+01 5.3617e+01 2.5220e+02 8.9015e+02 1.0767e+03 3.8655e+03

SVR 4.5527e+00 3.0250e+01 7.3403e+01 3.1302e+02 1.0250e+03 1.2775e+03 4.3970e+03

DLAP 4.1121e+00 2.2928e+01 6.3833e+01 1.8452e+02 1.0289e+03 1.2631e+03 1.2631e+03

GAT 6.0733e+02 1.7071e+00 2.4918e+00 3.8402e+00 5.1399e+00 5.5019e+00 8.8471e+00

GAT-SA 7.5801e+00 4.0828e+01 8.1052e+01 2.2951e+02 8.3567e+02 1.4445e+03 3.6633e+03

GCN 6.1568e+02 1.7124e+00 2.4739e+00 3.8181e+00 5.1608e+00 5.4951e+00 8.8469e+00

GCN-SA 7.3204e+00 4.0817e+01 8.1533e+01 2.2746e+02 8.2630e+02 1.3515e+03 3.5722e+02

Sage 6.3035e+02 1.6968e+00 2.5505e+00 3.8779e+00 5.1838e+00 5.3649e+00 8.8540e+00

Sage-SA 7.2826e+00 4.1120e+01 8.1561e+01 2.3649e+02 8.3934e+02 1.3618e+03 3.6242e+03

DSAG-WB 3.4867e+01 4.0870e+04 5.4838e+05 8.6439e+11 1.0066e+07 2.0078e+06 7.9632e+05

DSAG 5.6682e-01 1.1624e+00 8.1095e-01 2.6881e+00 1.5796e+00 1.9264e+00 1.8682e+00

2017; Hamilton et al., 2017b; Zhang et al., 2018; Zhou et al.,
2018; Wu et al., 2019). The spectral convolution methods
(Defferrard et al., 2016; Kipf and Welling, 2017) are the
mainstream algorithms developed as the graph convolution
methods. The theory of these methods is based on the
graph Fourier analysis (Shuman et al., 2013). The polynomial
approximation was first proposed by Hammond et al. (2011).

Inspired by this, graph convolutional neural networks (GCNNs)
(Defferrard et al., 2016) successfully generalize the powerful
convolutional neural networks (CNNs) in dealing with Euclidean
data to modeling graph-structured data. Kipf and Welling
(2017) proposed a simplified type of GCNNs, called graph
convolutional networks (GCNs). The GCN model naturally
integrates the connectivity patterns, features attributes of

Frontiers in Big Data | www.frontiersin.org 8 May 2021 | Volume 4 | Article 608286

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Chen et al. Deep Graph Learning for Circuit

graph-structured data, and outperforms many state-of-the-
art methods.

5. EVALUATION

5.1. Benchmark Datasets
Experiments were conducted on a machine with Intel (R) Xeon
(R) CPU E3-2136 with 32 GB memory1. Evaluation instances
were extracted from ISCAS-89 benchmarks2, and each instance
is encoded as 3-CNF-SAT (three literals in one clause) by
Tseytin transformation. An 80/20% split was employed for
training/testing set. These benchmarks were synthesized using
the Synopsys DC Compiler with the help of 32/28 nm Generic
library3. The synthesized netlist was further converted to the
bench format as per the SAT-solver requirements (Subramanyan
et al., 2015). The in-house developed script replaces the gates
with the lookup table of size 2, as described in a study by Kamali
et al. (2018). The output of the script is the obfuscated bench
file along with the adjacency matrix. The obfuscated bench file
along with the original benchmark were given to the SAT-solver
as input parameters, and a modern SAT-solver (MiniSAT-based)
implementation (Subramanyan et al., 2015) was used to get the
runtime to estimate.

5.2. Baselines and Metrics
We compare, against several state-of-the-art regression models4:
Linear Regression (LR), Passive Aggressive Regression (PAR),
LASSO, Support Vector Regression (SVR), Ridge Regression,
Orthogonal Matching Pursuit (OMP), SGD Regression, Least
Angle Regression (LARS), Theil-Sen Estimators (Theil), and
Multilayer Perceptron (MLP). These regression models cannot
directly learn pattern on graph data, so the experiments prepared
several predefined features, such as size of the clause, size of the
variable, the ratio of clause size to variable size, and so on (i.e.,
feature 1–27 of Figure 2 in Devlin and O’Sullivan, 2008). From
the state-of-art graph deep learning models, competitive GNN
models, such as GCN (Kipf andWelling, 2017), GAT (Veličković
et al., 2017), GraphSAGE (Hamilton et al., 2017a), were selected
as another set of baselines. Since GCN/GAT/GraphSAGE were
designed for node embeddings originally, we took mean function
to aggregate all node representations in each single CNF graph
instance and added three fully-connected layers to predict
runtime. Another competitive baseline is encoding SAT as
images and applying CNNs (DLAP) (Loreggia et al., 2016). In
this experiment, the mean square error (MSE) of the runtime
prediction task was utilized as the metric for performance
evaluation. All experiments were repeated five times, and the
average of metrics was shown.

5.3. Runtime Prediction Task
Figure 4 shows the performance comparison among baselines
and the proposed method. There were four groups in the
first subfigure: 1st group, as highlighted, contains most

1Datasets and codes are available at https://github.com/demovis/DSAG.
2http://www.pld.ttu.ee/~maksim/benchmarks/iscas85/verilog/
3https://www.synopsys.com
4https://scikit-learn.org/stable/modules/linear_model.html

FIGURE 5 | Ablation Test for DSAG: neither means no censor and

consistence loss, while both indicates using both censor and consistence

loss. Left to right are c432, c499, c880 datasets.

normal regression models; 2nd group, as marked, contains
graph neural network models, and the remaining two are
SGD (top and purple) and DSAG (bottom and red). It
is obvious that normal regression, such as linear model,
can hardly characterize non-linearity. Introducing graph
topology, the 2nd group improves the normal regression
models significantly (Note that the y-axis is in log scale).
Further, the proposed DSAG improves the 2nd group
dramatically. Several regression models in the 1st group
have higher errors in smaller thresholds (e.g., 10 and 30),
which is because a smaller threshold keeps less data for
regression. On the contrary, the error of DSAG decreases
significantly since DSAG still can utilize the censored data.
This superiority of DSAG is consistent throughout all three
datasets. Detailed numbers of runtime prediction is provided in
Tables 1–3.

5.4. Ablation Test
To study each component in survival analysis, an ablation test
on the proposed three losses was carried out. Figure 5 shows the
performance using different loss combinations. If using neither
censor loss or consistence loss, the model only applies MSE
as the only objective and is inclined to the output with bigger
errors, such as the threshold of 300 in the second dataset and
threshold of 200 in the third dataset. If using only censor loss,
the model also has large errors, such as threshold of 300 in
the first dataset, threshold of 500 in the second, and threshold
of 100 in the third. The remaining two combinations, i.e.,
consistence loss only and both, have similar performance and
outperform the other two (i.e., neither and censor only). Both
includes the censor loss and consistence loss, but the consistence
loss performed better than censor loss. These two losses both
compare the label and the representation of the censored data,
but the difference is that censor loss use a classification model
with cross-entropy, while consistence loss is associated with
regression component. Therefore, it is natural that consistence
loss is better than censor loss since regression model has loss
value with fine granularity. Combining consistence loss and censor
loss, both achieves the level of the better one, i.e., consistence
loss. Therefore, we can conclude that consistence loss is the
key factor that improves the one without survival analysis (i.e.,

Frontiers in Big Data | www.frontiersin.org 9 May 2021 | Volume 4 | Article 608286

https://github.com/demovis/DSAG
http://www.pld.ttu.ee/~maksim/benchmarks/iscas85/verilog/
https://www.synopsys.com
https://scikit-learn.org/stable/modules/linear_model.html
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Chen et al. Deep Graph Learning for Circuit

TABLE 4 | Ablation test on c432.

10 30 50 100 200 300 500

Neither 8.3943e-01 7.1515e-01 1.1436e+00 7.6344e-01 5.8402e+00 1.5851e+00 2.2145e+00

Censor 4.0860e-01 7.0290e-01 9.6342e-01 3.0432e+00 1.1402e+00 1.6648e+00 2.6891e+00

Consist 3.8342e-01 7.4995e-01 8.7840e-01 1.1675e+00 1.2938e+00 1.4941e+00 4.1502e+00

Both 3.4140e-01 5.0372e-01 1.1775e+00 7.9674e-01 1.4410e+00 3.0248e+00 1.9715e+00

TABLE 5 | Ablation test on c499.

10 30 50 100 200 300 500

Neither 1.9976e-01 3.3945e-01 2.7204e-01 7.2224e-01 8.9144e-01 1.0160e+01 2.4844e+00

Censor 4.4624e-01 4.5780e-01 4.3349e-01 1.2885e+00 1.2926e+00 1.5043e+00 9.1251e+00

Consist 8.0903e-01 4.7088e-01 4.5495e-01 9.3713e-01 3.8482e+00 1.4911e+00 1.0419e+00

Both 3.4719e-01 5.2389e-01 6.4042e-01 1.3016e+00 2.0157e+00 2.7992e+00 1.9103e+00

TABLE 6 | Ablation test on c880.

10 30 50 100 200 300 500

Neither 3.1560e-01 4.8206e-01 7.7573e-01 1.2841e+00 1.9549e+00 1.7395e+00 3.3581e+00

Censor 5.2762e-01 1.2513e+00 9.1296e-01 1.9529e+00 1.6656e+00 7.6368e+00 4.4233e+00

Consist 1.0473e+00 5.2228e-01 2.0164e+00 1.2262e+00 1.2743e+00 2.3473e+00 1.6471e+00

Both 5.6682e-01 1.1624e+00 8.1095e-01 2.6881e+00 1.5796e+00 1.9264e+00 1.8682e+00

neither in red). Detailed numbers of ablation test is provided in
Tables 4–6.

The default setting for the cumulative death distribution
function (i.e., 1 − S where S is the survival function) is
the exponential function, which is not only simple but also
effective. We also conducted different distribution assumptions,
which include log-logistic and Weibull (DSAG-WB). Due to
the inversion in log-logistic (e.g., a small value will cause
a huge value), the gradient is unstable and failed to learn
a model. This is because Weibull set a higher-order on
the scale (et) regarding the time, which results in a much
higher result and error, so Weibull may not be suitable for
our problem.

5.5. Training and Prediction Efficiency
In c432, each training epoch takes 30.65 s, while c499 takes
36.60 s, and c880 takes 37.32 s. The training process takes
around 25 epochs to achieve convergence for all the datasets.
Therefore, it takes 766.25 s for c432, 915 s for c499, and
933 s for c800. Theoretically, the exponential time hypothesis
(Impagliazzo and Paturi, 1999) states that no algorithm can
solve 3-SAT in exp (o(n)) time, where the modern SAT solver
follows exponential runtime growth as the best case w.r.t. the
number of variables. On the contrary, DSAG is a neural network
model, and neural networks accept the intermediate feature with
fixed dimensions as input and apply vector multiplication with
parameters. Therefore, DSAG only needs constant complexity
of O(1) to predict. Therefore, DSAG is exponentially faster
than actually running the SAT solver in the runtime estimation

task. This significantly boosts runtime estimation, especially
when the SAT solver runtime is large. Specifically, DSAG takes
0.9223 s for c432 average, 1.0188 s for c499, and 1.1152 s
for c880.

6. CONCLUSION

This study presents a novel framework to estimate the
runtime of circuit deobfuscation. There is no existing
study on representation learning to address the critical
challenges, including learning on dynamic size, logic
operation of the CNF-SAT instance, and utilizing censored
data. We proposed an energy-based kernel that is
designed to aggregate features of the varying-size graph.
By introducing survival analysis, DSAG integrates the
information from the censored data and improves the overall
performance. Experiments on benchmarks demonstrated
the advantageous performance of the proposed model
over the existing graph neural networks and normal
regression models.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found at: https://github.com/
demovis/DSAG.

Frontiers in Big Data | www.frontiersin.org 10 May 2021 | Volume 4 | Article 608286

https://github.com/demovis/DSAG
https://github.com/demovis/DSAG
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Chen et al. Deep Graph Learning for Circuit

AUTHOR CONTRIBUTIONS

ZC and LZhan designed the model and conducted the
experiments. LZhao provided the feedback on the idea,
writing, and connected with all co-authors. GK, HK, SR,

and SP provided the problem definition, contributed the
domain knowledge, and verified our task. HH and C-TL
offered the feedback on the proposed method and writing.
All authors contributed to the article and approved the
submitted version.

REFERENCES

Ansótegui, C., Giráldez-Cru, J., and Levy, J. (2012). “The community

structure of SAT formulas,” in Theory and Applications of Satisfiability

Testing–SAT 2012. SAT 2012. Lecture Notes in Computer Science, Vol.

7317 (Berlin; Heidelberg: Springer), 410–423. doi: 10.1007/978-3-642-31

612-8_31

Ansótegui, C., and Levy, J. (2011). “On the modularity of industrial SAT instances,”

in CCIA, 11–20.

Atwood, J., and Towsley, D. (2016). “Diffusion-convolutional neural networks,”

in NIPS’16: Proceedings of the 30th International Conference on Neural

Information Processing Systems (Barcelona).

Azar, K. Z., Kamali, H. M., Homayoun, H., and Sasan, A. (2018). SMT Attack:

next generation attack on obfuscated circuits with capabilities and performance

beyond the SAT attacks. IACR Trans. Cryptogr. Hardw. Embedded Syst. 2019,

97–122. doi: 10.13154/tches.v2019.i1.97-122

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. (2017).

Geometric deep learning: going beyond euclidean data. IEEE Signal Process.

Mag. 34, 18–42. doi: 10.1109/MSP.2017.2693418

Cook, S. A. (1971). “The complexity of theorem-proving procedures,” in

Proceedings of the Third Annual ACM Symposium on Theory of Computing

(Shaker Heights, OH: ACM), 151–158. doi: 10.1145/800157.805047

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). “Convolutional

neural networks on graphs with fast localized spectral filtering,” in NIPS’16:

Proceedings of the 30th International Conference on Neural Information

Processing Systems (Barcelona).

Devlin, D., and O’Sullivan, B. (2008). “Satisfiability as a classification problem,” in

Irish Conference on Artificial Intelligence and Cognitive Science (Cork).

El Massad, M., Garg, S., and Tripunitara, M. V. (2015). “Integrated circuit (IC)

decamouflaging: reverse engineering camouflaged ICS within minutes,” in

NDSS Symposium 2015 (San Diego, CA). doi: 10.14722/ndss.2015.23218

Friedrich, T., and Rothenberger, R. (2018). “Sharpness of the satisfiability

threshold for non-uniform random k-SAT,” in Proceedings of the Twenty-Eighth

International Joint Conference on Artificial Intelligence Best Sister Conferences

(Oxford: Springer). doi: 10.1007/978-3-319-94144-8_17

Giráldez-Cru, J., and Levy, J. (2015). “A modularity-based random sat instances

generator,” in IJCAI’15: Proceedings of the 24th International Conference on

Artificial Intelligence (Buenos Aires).

Hamilton, W., Ying, Z., and Leskovec, J. (2017a). “Inductive representation

learning on large graphs,” in NIPS’17: Proceedings of the 31st International

Conference on Neural Information Processing Systems (Long Beach, CA).

Hamilton, W. L., Ying, R., and Leskovec, J. (2017b). Representation learning on

graphs: methods and applications. arXiv 1709.05584.

Hammond, D. K., Vandergheynst, P., and Gribonval, R. (2011). Wavelets on

graphs via spectral graph theory. Appl. Comput. Harm. Anal. 30, 129–150.

doi: 10.1016/j.acha.2010.04.005

Impagliazzo, R., and Paturi, R. (1999). “Complexity of k-SAT,” in Proceedings.

Fourteenth Annual IEEE Conference on Computational Complexity (Atlanta,

GA), 237–240. doi: 10.1109/CCC.1999.766282

Informa.com (2012). IHS Technology Press Release: Top 5 Most Counterfeited Parts

Represent a $169 Billion Potential Challenge for Global Semiconductor Industry.

Kamali, H. M., Azar, K. Z., Gaj, K., Homayoun, H., and Sasan, A. (2018). “Lut-

lock: a novel lut-based logic obfuscation for fpga-bitstream and asic-hardware

protection,” in IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

(Hong Kong), 1–6.

Karp, R. M. (1972). “Reducibility among combinatorial problems,” in Complexity

of Computer Computations (Yorktown Heights, NY: Springer), 85–103.

doi: 10.1007/978-1-4684-2001-2_9

Khaleghi, S., and Rao, W. (2018). “Hardware obfuscation using strong pufs,”

in 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

(Hong Kong: IEEE), 321–326. doi: 10.1109/ISVLSI.2018.00066

Kipf, T. N., and Welling, M. (2017). “Semi-supervised classification with graph

convolutional networks,” in ICLR (Toulon).

Li, Y., Xu, K. S., and Reddy, C. K. (2016). “Regularized parametric regression

for high-dimensional survival analysis,” in Proceedings of the 2016 SIAM

International Conference on Data Mining (Miami, FL: SIAM), 765–773.

doi: 10.1137/1.9781611974348.86

Liu, D., Yu, C., Zhang, X., andHolcomb, D. (2016). “Oracle-guided incremental sat

solving to reverse engineer camouflaged logic circuits,” in Design, Automation

& Test in Europe Conference & Exhibition (DATE), 2016 (Dresden: IEEE),

433–438. doi: 10.3850/9783981537079_0915

Loreggia, A., Malitsky, Y., Samulowitz, H., and Saraswat, V. A. (2016). “Deep

learning for algorithm portfolios,” in AAAI’16: Proceedings of the Thirtieth

AAAI Conference on Artificial Intelligence (Phoenix, AZ), 1280–1286.

Mull, N., Fremont, D. J., and Seshia, S. A. (2016). “On the hardness of SAT with

community structure,” in Theory and Applications of Satisfiability Testing–SAT

2016. SAT 2016. Lecture Notes in Computer Science, Vol. 9710 (Cham: Springer),

141–159. doi: 10.1007/978-3-319-40970-2_10

Nair, V., and Hinton, G. E. (2010). “Rectified linear units improve restricted

Boltzmann machines,” in ICML’10: Proceedings of the 27th International

Conference on International Conference on Machine Learning (Haifa), 807–814.

Newsham, Z., Ganesh, V., Fischmeister, S., Audemard, G., and Simon, L.

(2014). “Impact of community structure on SAT solver performance,”

in Theory and Applications of Satisfiability Testing–SAT 2014. SAT 2014.

Lecture Notes in Computer Science, Vol. 8561 (Cham: Springer), 252–268.

doi: 10.1007/978-3-319-09284-3_20

Roshanisefat, S., Mardani Kamali, H., and Sasan, A. (2018). “Srclock: SAT-

resistant cyclic logic locking for protecting the hardware,” in Proceedings of

the 2018 on Great Lakes Symposium on VLSI, GLSVLSI ’18 (Chicago, IL).

doi: 10.1145/3194554.3194596

Shamsi, K., Li, M., Meade, T., Zhao, Z., Pan, D. Z., and Jin, Y. (2017). “APPSAT:

Approximately deobfuscating integrated circuits,” in 2017 IEEE International

Symposium on Hardware Oriented Security and Trust (HOST) (McLean, VA).

doi: 10.1109/HST.2017.7951805

Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and Vandergheynst, P.

(2013). The emerging field of signal processing on graphs: extending high-

dimensional data analysis to networks and other irregular domains. IEEE Signal

Process. Mag. 30, 83–98. doi: 10.1109/MSP.2012.2235192

Subramanyan, P., Ray, S., and Malik, S. (2015). “Evaluating the security of logic

encryption algorithms,” in 2015 IEEE International Symposium on Hardware

Oriented Security and Trust (HOST) (Washington, DC: IEEE), 137–143.

doi: 10.1109/HST.2015.7140252

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y.

(2017). Graph attention networks. arXiv 1710.10903.

Wang, P., Li, Y., and Reddy, C. K. (2019). Machine learning for survival analysis: a

survey. ACM Comput. Surv. 51, 1–36. doi: 10.1145/3214306

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. (2019). A

comprehensive survey on graph neural networks. arXiv 1901.00596.

Xie, Y., and Srivastava, A. (2017). “Delay locking: security enhancement

of logic locking against IC counterfeiting and overproduction,” in

ACM/EDAC/IEEE Design Automation Conference (DAC) (Austin, TX),

1–6. doi: 10.1145/3061639.3062226

Xie, Y., and Srivastava, A. (2018). Anti-SAT: mitigating sat attack on logic

locking. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38, 199–207.

doi: 10.1109/TCAD.2018.2801220

Yasin, M., Mazumdar, B., Rajendran, J. J. V., and Sinanoglu, O. (2016a).

“Sarlock: SAT attack resistant logic locking,” in 2016 IEEE International

Frontiers in Big Data | www.frontiersin.org 11 May 2021 | Volume 4 | Article 608286

https://doi.org/10.1007/978-3-642-31612-8_31
https://doi.org/10.13154/tches.v2019.i1.97-122
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1145/800157.805047
https://doi.org/10.14722/ndss.2015.23218
https://doi.org/10.1007/978-3-319-94144-8_17
https://doi.org/10.1016/j.acha.2010.04.005
https://doi.org/10.1109/CCC.1999.766282
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1109/ISVLSI.2018.00066
https://doi.org/10.1137/1.9781611974348.86
https://doi.org/10.3850/9783981537079_0915
https://doi.org/10.1007/978-3-319-40970-2_10
https://doi.org/10.1007/978-3-319-09284-3_20
https://doi.org/10.1145/3194554.3194596
https://doi.org/10.1109/HST.2017.7951805
https://doi.org/10.1109/MSP.2012.2235192
https://doi.org/10.1109/HST.2015.7140252
https://doi.org/10.1145/3214306
https://doi.org/10.1145/3061639.3062226
https://doi.org/10.1109/TCAD.2018.2801220
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Chen et al. Deep Graph Learning for Circuit

Symposium on Hardware Oriented Security and Trust (HOST) (McLean, VA).

doi: 10.1109/HST.2016.7495588

Yasin, M., Rajendran, J. J., Sinanoglu, O., and Karri, R. (2016b). On improving the

security of logic locking. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.

35, 1411–1424. doi: 10.1109/TCAD.2015.2511144

Yasin, M., Sengupta, A., Nabeel, M. T., Ashraf, M., Rajendran, J. J.,

and Sinanoglu, O. (2017). “Provably-secure logic locking: from theory

to practice,” in Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security (Dallas, TX: ACM), 1601–1618.

doi: 10.1145/3133956.3133985

Zhang, Z., Cui, P., and Zhu, W. (2018). Deep learning on graphs: a survey. arXiv

1812.04202.

Zhou, H., Jiang, R., and Kong, S. (2017). “CycSAT: SAT-based attack on cyclic logic

encryptions,” in 2017 IEEE/ACM International Conference on Computer-Aided

Design (ICCAD) (Irvine, CA), 49–56. doi: 10.1109/ICCAD.2017.8203759

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., and Sun, M. (2018). Graph

neural networks: a review of methods and applications. arXiv 1812.

08434.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Chen, Zhang, Kolhe, Kamali, Rafatirad, Pudukotai Dinakarrao,

Homayoun, Lu and Zhao. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Big Data | www.frontiersin.org 12 May 2021 | Volume 4 | Article 608286

https://doi.org/10.1109/HST.2016.7495588
https://doi.org/10.1109/TCAD.2015.2511144
https://doi.org/10.1145/3133956.3133985
https://doi.org/10.1109/ICCAD.2017.8203759
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Deep Graph Learning for Circuit Deobfuscation
	1. Introduction
	2. Problem Setup
	3. Deep Survival Analysis for CNF Graph
	3.1. CNF Graph Representation of IC
	3.2. Energy Model for CNF Graph
	3.3. RBM Model for Extracting Signed Information
	3.3.1. Energy Model for 1st-Order Graph Operators
	3.3.2. Energy Model for the 2nd-Order Graph Operators

	3.4. Deep Survival Analysis

	4. Background and Related Work
	4.1. Logic Obfuscation and SAT Attacks
	4.2. Graph Neural Networks

	5. Evaluation
	5.1. Benchmark Datasets
	5.2. Baselines and Metrics
	5.3. Runtime Prediction Task
	5.4. Ablation Test
	5.5. Training and Prediction Efficiency

	6. Conclusion
	Data Availability Statement
	Author Contributions
	References

