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Cancer is a genomic disease involving various intertwined pathways with complex cross-
communication links. Conceptually, this complex interconnected system forms a network,
which allows one to model the dynamic behavior of the elements that characterize it to
describe the entire system’s development in its various evolutionary stages of
carcinogenesis. Knowing the activation or inhibition status of the genes that make up
the network during its temporal evolution is necessary for the rational intervention on the
critical factors for controlling the system’s dynamic evolution. In this report, we proposed a
methodology for building data-driven boolean networks that model breast cancer tumors.
We defined the network components and topology based on gene expression data from
RNA-seq of breast cancer cell lines. We used a Boolean logic formalism to describe the
network dynamics. The combination of single-cell RNA-seq and interactome data enabled
us to study the dynamics of malignant subnetworks of up-regulated genes. First, we used
the same Boolean function construction scheme for each network node, based on
canalyzing functions. Using single-cell breast cancer datasets from The Cancer
Genome Atlas, we applied a binarization algorithm. The binarized version of scRNA-
seq data allowed identifying attractors specific to patients and critical genes related to each
breast cancer subtype. The model proposed in this report may serve as a basis for a
methodology to detect critical genes involved in malignant attractor stability, whose
inhibition could have potential applications in cancer theranostics.

Keywords: Boolean networks, cancer theranostics, systems biology of cancer, breast cancer modeling, gene
regulatory network analysis

INTRODUCTION

Cancer is a multifactorial disease resulting in uncontrolled cell growth and the spread of cancer cells
from the original site to other body areas. The modification of cellular homeostasis through various
processes identifies and characterizes the Hallmarks of cancer (Hanahan and Weinberg, 2011),
typical to all types of tumors. Cell survival, proliferation, and metastatic dissemination are driven by
different cellular pathways, with many genes involved. These highly complex interconnections
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modify the linearity of the pathways allowing the
conceptualization of a reticular structure made up of genes,
proteins and other molecules, characterizing cancer as a
network disease. This structure defines a robust state of
endogenous networks (Yuan et al., 2017; Su et al., 2017),
which dynamically describes the cellular network as composed
of oncogenic factors, tumor suppressors, and other acting agents,
which modulate the main molecular functions.

Breast cancer, which is the type of cancer addressed in this
report, is the leading cause of death due to cancer of the world’s
female population. It accounts for 23% of all cancer deaths of
postmenopausal women (Akram et al., 2017). Current therapies
used to combat this disease frequently produce harmful side
effects. In patients undergoing chemotherapy, 38 symptoms were
identified, classified into 5 clusters characterizing the
symptomatology (Chan et al., 2017). Therefore new
therapeutic strategies aiming to decrease the undesirable
effects produced by current treatment approaches, together
with improved therapeutic efficacy, are needed. Personalized
medicine seems to increasingly gain importance in patient
care. The purpose of this therapeutic approach is to adapt the
treatment to the unique characteristics of the individual patient’s
disease (Sabatier et al., 2014), which are based not only on the site
of the tumor but also on genetic characteristics such as mutations
and gene expression profiles. There are different methodologies
to model gene regulatory networks. The ordinary differential
equations (ODE) and stochastic differential equations (SDE) are
quantitative approaches that allow an instrumental and detailed
description of the system’s dynamic functioning when the exact
mechanisms and kinetic parameters are well known. Given the
noise level of cellular processes, the precise determination of ODE
and SDE parameters is challenging (Nasti, 2020). A qualitative
approach would help avoid ODE and SDE limitations while
providing useful information on the system under study.
Boolean network Modeling is an example of this methodology
(Somogyi and Sniegoski, 1996). It is composed of Boolean
variables representing the nodes (which corresponds to
vertices in a graph) making up the network, whose values are
periodically updated synchronously (i.e., all nodes are updated
simultaneously) or asynchronously. These updated values
represent the activation/inhibition status of the genes that
make up the studied system (Barbuti et al., 2020). The
dynamic simulation of the network, guided by the Boolean
functions that regulate the relations between the various
vertices, reaches a set of final stable states, which can be cyclic
or not. These repetitive states compose network attractors. The
formulation of the concept of “Epigenetic Landscape” by
Waddington (Waddington, 1957) offers the opportunity for
modeling cellular functioning through attractor theory (Huang
et al., 2009). The Boolean paradigm allows the processing and
analysis of vast gene regulatory networks, resulting in an
improved capacity to model the complexity of cancer since no
parameters are required.

This report analyzed a gene regulatory network specifically
adapted to breast cancer through a qualitative dynamic analysis
using Boolean network modeling. From the choice of the network
vertices (genes), the network topology, and the definition of the

functional relationships at each vertex, one may found the
attractors within the system through the assignment of binary
gene expression values. We adopted a step-by-step network
pruning approach to identify the genes being key determinants
of specific basins of attraction with therapeutic relevance.
Generally, when looking for attractors in a Boolean network,
one considers every possible vertex configuration (Barbuti et al.,
2020). On the other hand, in our approach, we identify
biologically relevant attractors through trajectories. The initial
point of these trajectories is the binarization of the cellular data of
specific gene expression of a given tumor belonging to a given
individual, enabling different and specific outcomes for different
patients.

The network’s basins of attraction that emerged from the
single-cell RNA-seq (scRNA-seq) data (Saliba et al., 2014)
represent this research’s culmination. The essential genes
that contribute to the stability of a basin of attraction can
be considered potential therapeutic targets since they may
modify the epigenetic landscape in which they are involved.
The results described in this work show a difference between
the various basins of attraction related to cancer and control
cells, therefore confirming the relevance of the data-driven
customization procedure based on patients’ transcriptional
data. This work also describes methods for identifying
potential therapeutic targets specific to each patient using
boolean network modeling.

MATERIALS AND METHODS

Overall Description of the Method
The main steps of the method adopted in this report are as
follows:

1) Selection of breast cancer-related genes and subsequent gene
regulatory network construction based on this gene set.

2) Adoption of the Boolean formalism for the dynamic modeling
of the system and Boolean function assignment (i.e., nested
canalyzing functions) to all network nodes.

3) Selection of single-cell RNA-seq (scRNA-seq) data related to
breast cancer, assigning expression values to the gene
regulatory network’s corresponding nodes

4) Binarization, for the set of cells in the dataset of step 3, of the
expression values assigned to each gene.

5) Search for attractors in each cell provided in the dataset. We
use the binarized values assigned to the network genes for each
cell (step 4) as the initial value for a trajectory simulation. The
set of states that compose the final cycle of the trajectory
corresponds to the cell’s attractor.

This procedure allowed us to highlight attractors and related
genes constantly expressed in the dataset of different patients.

This section consists of 6 subsections. In subsection Choice of
the Elements of the Gene Regulatory Network, we describe the
procedure by which we selected the constituent elements of the
gene regulatory network used in this report. The description of
Boolean formalism used to model the network dynamics is in
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subsection Construction of the Boolean Network Model. In
subsection Single-Cell RNA-Seq Data we describe the scRNA-
seq data used to quantify the network genes. In subsection
Binarization of scRNA-Seq Data, we illustrate the method by
which the scRNA-seq values assigned to the constituent elements
of the gene network have been binarized, and describe the tool
used in this report to obtain this result. The last subsection
(Search for Attractors) describes the essential characteristics of
the network’s attractors and the procedure, through an
appropriate software tool, of its identification by simulating
trajectory dynamics.

The following subsections detail the steps shown in Figure 1.

Choice of the Elements of the Gene
Regulatory Network
Hallmarks of cancer represent groups of acquired biological
features that are critical for its development (Hanahan and
Weinberg, 2011). We considered two of these hallmarks,
UNLIMITED REPLICATIVE POTENTIAL, and EVASION
OF CELL DEATH, as starting points for constructing a
representative gene regulatory network of cancer. This
modeling strategy was chosen to reduce cancer cell
proliferation and promote their death. We then obtained
four lists of genes from the MSigDB repository (http://www.
gsea-msigdb.org/gsea/msigdb/index.jsp) based on the two
hallmarks previously considered, each list representing a
specific cellular pathway. The gene lists related to
Apoptosis and TP53 represent the “Evasion of cell death”
hallmark (Wong, 2011), while Kras pathway (up and down-
regulated genes) is indicative of the “Unlimited replicative
potential” hallmark (Jančík et al., 2010; Aubrey et al., 2016).
The choice of these pathways is justified by their particular
relevance in the formation and evolution of tumors, along
with the potential model scalability. We retained only the
significantly differentially expressed genes (DE) between the
MDA-MB-231 cell line, a metastatic triple-negative breast
cancer subtype (TNBC), and the MCF10A cell line, used as
control (Carels et al., 2015).

The selected genes were analyzed considering the number of
interactions (edges) of their respective proteins (vertices) in the
interactome. The human interactome used in this report is from
the intact-micluster.txt file (IntAct database, version updated
December 2017 accessed on January 11, 2018, at ftp://ftp.ebi.
ac.uk/pub/databases/intact/current/psimitab/intact-micluster.
txt). Proteins with edge numbers equal to or greater than 50 were
selected as seeds to build the gene regulatory network. Those
proteins are potential hubs, for which inhibition has been widely
associated with regulatory network disruption (Carels et al.,
2015).

We also added five genes to the analysis (HSP90AB1,
YWHAB, VIM, CSNK2B, and TK1) (Carels et al., 2015)
whose knockdown was shown to inihibit the cell growth and
promote the cell death of MDA-MB-231 in vitro (Tilli et al.,
2016).

We used the human interactome to define the connections
between the proteins coded by the selected genes (network
vertices). In case of a lack of a direct relationship between two
vertices, we looked for possible intermediary vertices (up to
three). We excluded intermediary vertices absent in the gene
expression data or with low expression values in MDA-
MB-231.

We enriched this network with transcriptional factors that
regulate the selected vertices, i.e., differentially expressed hubs
and intermediary proteins. We performed this analysis with the
online tool TRRUST (Han et al., 2015).

The human interactome from IntAct defines the direction of
the interactions (node A regulates node B), but not their function
(activation or inhibition). For the definition of interaction
functions, we used the Metacore algorithm (Ekins et al., 2007).

FIGURE 1 |Workflow illustrating the various stages of the method used
in this work.
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Construction of the Boolean NetworkModel
We constructed a directed graph model based on Boolean logic
from scRNA-seq data. The vertices represent the constituent
elements of the dynamic cellular model, and their connections
are for the functional regulations acting between them (Emmert-
Streib et al., 2014). Boolean network modeling is among the
simplest methods for dynamic modeling (Thomas, 1973), but at
the same time with characteristics of reliability in providing
insights into the dynamics of a system (Herrmann et al., 2012;
Siegle et al., 2018). We have translated the gene expression status
of a gene into the value of a Boolean variable (B), which can be
True or False (1 or 0) based on RNA-seq data. Thus, for the n
vertices of our network, we have:

X � {x1, x2, x3, . . . ., xn} , xi ∈ B (1)

This formalization finds its justification considering that one can
describe many biological processes, such as concentration levels,
through the Hill-Function. For most of the Hill function
coefficient values, the resulting curve is a sigmoidal curve,
which can be approximated by a dichotomous step-function
(Schwab et al., 2020).

The representation of this network’s state in the discrete-state
flow of time is a vector whose components are the network’s
vertices:

�x � (x1(t), . . . . . . , xn(t)) (2)

and the passage from a certain point of the state space of the
system to another is due to the regulatory action of the
corresponding Boolean functions:

xi(t + 1) � f i( �x(t)), f i: Bn →B (3)

for n nodes of the network.
We decided to adopt a synchronous update mode, where all

genes update their values simultaneously at consecutive time
points:

T( �xti , �xt+1i ) � T1(xt1, xt+11 )∧ . . . .∧Tn(xtn, xt+1n ) (4)

In the Eq. 4, where T( �xti , �xt+1i ) represents the transition
function of the state of the network, all the genes in the
network simultaneously perform the transition from the
state �xti to the next state �xt+1i in transitions T1,T2, . . . ,Tn

occorring in the system. Some reports state that
asynchronous updating seems better to model biological
systems (Schwab et al., 2020). Nevertheless, synchronous
dynamic evolution is computationally more efficient for the
type of network used in this report and seems to represent the
network’s dynamic behavior in a very similar way (Schwab
et al., 2020).

Identifying the rules of interaction among the different
entities of a network is usually one of the most challenging
tasks in studying gene regulatory network systems. Our choice
was oriented towards the nested canalyzing functions
(Hinkelmann and Jarrah, 2012), where multiple variables
act simultaneously on the function, determining a
mechanism of domination of one variable or a group of

variables concerning the others based on their Boolean
state. For example, in the expression (A ∧ B) ∨ (C ∧ D), if
A ∧ B = 1, the first two variables dominate and determine the
expression value. If (A ∧ B) = 0, the expression value is defined
by (C ∧ D). Furthermore, it has been shown that nested
canalizing functions are a good representation of biological
regulations (Nikolajewa et al., 2007) (Harris et al., 2002).

Single-Cell RNA-Seq Data
The scRNA-seq data were obtained from the NCBI Gene Expression
Omnibus database (accession number GSE 75688, accessed in March
2020). These data refer to the genomic expression profile of 11 patients
with 549 cells analyzed. Most of those cells were malignants, while
others were not. A large part of the latter were immune T-cells,
immune B-cells, andmyeloid immune cells. The cancer cells analyzed
represented the four subtypes of breast cancer: luminal A, luminal B,
HER2, and TNBC (Chung et al., 2017). We used single-cell data for
the analyzed network’s corresponding genes, excluding data related to
pooled samples (bulk RNA-seq) (Supplementary Table S1). The four
subtypes of breast cancer were present among the samples of the 11
patients: BC01_X and BC02_X for luminal A, BC03_X for luminal B,
BC04_X, BC05_X and BC06_X for HER2, BC07_X, BC08_X,
BC09_X, BC10_X and BC11_X for TNBC. For BC03_X and
BC07_X patients, there were metastatic lymph datasets
corresponding to BC03lN and BC07LN. For the patient BC09_X,
there was another single-cell RNA-seq (BC09Re_X). Note that patient
BC05 is the only patient who received prior treatment (neoadjuvant
chemotherapy and Herceptin).

As specified in the above description, the different types of
breast cancer encountered in this report have already been
identified in the dataset.

It is worth pointing out that the model is associated with a
specific group of cells for each patient. Nevertheless, this
approach can be conceptually made equivalent to the one
defined as a multi-cell pathway, and that the relatively high
number of available cells analyzed allowed a correct use of the
R “Binarize” application, used in this report for the extraction of
the Boolean value.

Binarization of scRNA-Seq Data
Once the genes making up the network were found and its
topology defined, and finally assigned the corresponding
scRNA-seq values to each element of the network, the next
operation necessary for the Boolean network modeling of the
systemwas to binarize the gene expression values assigned to each
single node, such as f : R→B using

f (u) � { 0 u≤ t
1 u≥ t (5)

where t is the separation threshold. This result was achieved
through the use of the BASC-B algorithm (Binarization Across
multiple SCales) (Hopfensitz et al., 2012). The BASC algorithm
considers as input values a sorted vector in ascending order
(u1, . . . , uN ) ∈ R, and based on it, BASC defines a discrete,
monotonically increasing step function f(x) with N steps and
N - 1 discontinuities:
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f (x) � ∑N
i�1

uiIAi(x) (6)

with i ∈ {1, . . . ,N}. Defining di � N − 1 as discontinuities, we
have Ai as intervals defined as follow

Ai �
(0, di], if i � 1
(di−1,N], if i � N
(di−1, di], otherwise

(7)

and IA as

IAi(x) � { 1, if x ∈ A
0, otherwise

(8)

Once the step function f(x) is obtained using the output vector
ordered in increasing order, the algorithm calculates additional step
functions that approximate this function with a smaller number of
discontinuities. The algorithm then finds the strongest discontinuity
in each step function and estimates the strongest discontinuities’
location and variation. This algorithmwas implemented through the
R Software package BiTrinA (Müssel et al., 2016).

Search for Attractors
After defining the binarized RNA-seq values on each node of the
network and establishing the rules that determine its dynamics, we
sought the network’s stable equilibrium state, i.e., the attractors,
which can be either singleton (composed of a single state) or cyclic
(composed of multiple states) (Huang et al., 2009). The hypothesis
under which one may consider the malignant state as a particular
type of attractor (Huang et al., 2009; Creixell et al., 2012; Yu and
Wang, 2016; Poret and Guziolowski, 2018) has oriented our
investigations towards the localization and characterization of
attractors in Boolean networks. Furthermore, basins of attraction
include all the system states that evolve into a given attractor. They
conceptually represent the epigenetic barriers that delimit the basin
of attraction (Conforte et al., 2020). We obtained the corresponding
attractors matching the gene network for each scRNA-seq dataset of
the eleven patients with breast cancer (Chung et al., 2017). Attractor
analysis allowed us to highlight the key genes in each basin of
attraction and how their inhibition could determine a change in cell
fate by using the python Open Source software application
“BooleanNet” (Albert et al., 2008).

We performed the following procedure to search for attractors
from the available data:

• We used BooleanNet (Albert et al., 2008) to assess the logic
functions assigned to each gene of our regulatory network
and search for Boolean attractors.

• The Boolean values of the 103 genes making up the network
were obtained by the binarization of scRNA-seq relative to
each patient sample. This setting was the initial state of a
trajectory that eventually evolved to a cyclic attractor.

• Considering that all the attractors obtained were cyclical for
each cell analyzed, we assessed the behavior of every single
gene in the network by noting whether they varied in their
boolean value during the attractor cycle or if they kept a
fixed Boolean value for the entire attractor cycle. In the first

case, we indicated genes in each particular cell with an “X,”
in the second case with its Boolean value True or False.

• By grouping all cells according to their batch samples
(BCXX_X) and their carcinogenic features for each
patient, we selected only the genes that did not show
variations in boolean values in any of the attractors for
all cells, i.e., we kept their Boolean value True or False in
most states of the attractor cycle, for at least 95% of the
number of cells making up the group under analysis.

Figure 2 summarizes the adopted procedure.

RESULTS

Breast Cancer Gene Regulatory Network
The process of choosing the elements (genes) constituting the
gene regulatory network adopted in this report produced the
following results.

FIGURE 2 | Procedure for identifying attractors. (A) we obtain a set of
Boolean values for the cell samples of 11 patients considering a regulatory
network of 105 genes. (B) Each patient’s Boolean data was processed
individually in the gene network to search for cell attractors. (C) For each
detected attractor, the genes that did not change their Boolean value for the
set of states that compose the cyclic attractor received the value “True” or
“False” (1 or 0). The marker “X,” on the other hand, highlights the genes that
did not keep a single Boolean value in the set of states of the cyclic attractor.
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First, we obtained 761 genes derived from the Broad Institute
repository, divided into four lists related to the two cancer
hallmarks used to build the network. The 761 genes were
classified as follows (Supplementary Table S2):

• 161 related to the APOPTOSIS pathway
• 200 related to the TP53 pathway
• 200 related to the KRAS UP pathway
• 200 related to the KRAS DOWN pathway.

In order to retain only differentially expressed genes, we
compared the lists obtained with the RNA-seq data of the
MDA-MB-231 and MCF10A cell lines (Tilli et al., 2016),
obtaining the following results:

• Because they were neither present in the gene expression
data of MDA-MB-231 nor in the MCF10A one 1) 129 genes
were excluded from the APOPTOSIS pathway list, leaving
32 genes;

• 2) 191 genes were excluded from the KRAS_UP pathway
list, leaving 9 genes;

• 3) 192 genes were excluded from the KRAS_DN pathway
list, leaving 8 genes;

• 4) 164 genes were excluded from the TP53 pathway list,
leaving 36 genes.

Among the genes retained, we selected only those that were
differentially expressed, which resulted in a total of 51 genes
(Supplementary Table S3):

• 18 genes of the APOPTOSIS group, 9 Up and 9 Down;
• 7 genes of the KRAS_UP group, 3 Up and 4 Down;

• 4 genes of the KRAS_DN group, 0 Up and 4 Down;
• 22 genes of the TP53 group, 10 Up and 12 Down.

Based on the number of interactions in the interactome, 15
genes of the 51 were selected, from which 5 (HSP90AB1,
YWHAB, VIM, CSNK2B, TK1), considered more relevant for
the present research, have been added to the network (Carels
et al., 2015). As outlined above, 1) the vertice vertex connections
obtained by comparison with IntAct human interactome, 2) the
inclusion of intermediate vertices, 3) the enrichment of the
network with transcriptional factors that regulate the selected
vertices with the online tool TRRUST (Han et al., 2015), and 4)
the activation or inhibition of vertex inputs obtained with the
Metacore algorithm (Karin, 2006) (Supplementary Table S4),
allowed us to obtain a gene regulatory network consisting of 103
vertices (see Figure 3), and whose dynamics were regulated by
nested canalyzing functions (Hinkelmann and Jarrah, 2012)
(Supplementary Table S5).

Binarization of scRNA-Seq Values
The 14 groups of scRNA-seq binarization values from the 11
patients belong to 4 types of breast cancer. They were divided and
organized according to the following criterion: 26 single-cell
datasets for the patient BC01_X, 56 for BC02_X, 37 and 55
for BC03_X and BC03LN, 59 for BC04_X, 77 for BC05_X, 25 for
BC06_X, 51 and 53 for BC07_X and BC07LN, 23 for BC08_X, 29
and 31 for BC09_X and BC09Re, 16 for BC10_X, 11 for BC11_X
(see Figure 4). It is worth noting that the values relating to pooled
single-cell present in each patient group were excluded from
the count.

The gene expression values of every single cell of each patient
were matched to the corresponding 103 genes making up the gene
regulatory network and subsequently binarized using the BASC-B
algorithm (Hopfensitz et al., 2012) (Supplementary Table S6).

Attractors Search
For every single cell of the 14 groups representing the 11 patients
of breast cancer, the 103 binarized values at each node of the gene
regulatory network were processed by the previously described
Boolean attractor search procedure (Albert et al., 2008). The
attractors obtained for malignant cells, stromal cells, immune B
and T-cells, and myeloid cells are thus summarized as follow: 1)
BC01_X: 19 malignant attractors, 2 stromal cell attractors, 5 no
result; 2) BC02_X: 49 malignant attractors, 7 no result; 3)
BC03_X: 15 malignant attractors, 7 immune B-cell attractors,
5 immune T-cell attractors, 10 no results; 4) BC03LN_X: 6
malignant attractors, 35 immune B-cell attractors, 3 immune
T-cell attractors, 11 no results; 5) BC04_X: 42 malignant
attractors, 3 immune T-cell attractors, 2 immune Myeloid
attractors, 12 no results; 6) BC05_X: 74 malignant attractors, 3
no results; 7) BC06_X: 6 malignant attractors, 2 stromal cell
attractors, 6 immune B-cell attractors, 11 no results 8) BC07_X:
24 malignant attractors, 4 stromal cell attractors, 3 immune B-cell
attractors, 4 immune T-cell attractors, 8 immune myeloid
attractors, 8 no results; 9) BC07LN_X: 24 malignant attractors,
19 immune B-cell attractors, 10 no results; 10) BC08_X: 15
malignant attractors, 6 stromal cell attractors, 2 no results; 11)

FIGURE 3 | Breast cancer gene regulatory network developed in this
report. This network is composed by 103 nodes (genes).
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BC09_X: 2 stromal cell attractors, 1 immune B-cell attractors, 7
immune T-cell attractors, 15 immune myeloid attractors, 4 no
results; 12) BC09Re_X: 2 stromal cell attractors, 1 immune B-cell
attractors, 20 immune T-cell attractors, 6 immune myeloid
attractors, 2 no results; 13) BC10_X: 11 malignant attractors, 2
stromal cell attractors, 2 immune myeloid attractors, 1 no results;
and 14) BC11_X: 10 malignant attractors, 1 no results.

Based on these results, we decided to exclude patient data
BC09_X and BC09Re due to the lack of specific tumor cell
attractors (Supplementary Table S7).

The pie-charts in Figure 5 shows these results expressed as a
percentage of the total Single-cell RNA-seq datasets available for
each patient, highlighting the success rate in the search for
specific attractors on tumor cells.

We selected network genes based on tumor cells’ attractors
according to the following criterion: each patient’s attractors
kept their level of gene expression (or non-expression)
constant for a particular gene, formalized respectively with
the symbol “True” or “False”. This criterion allowed us to
formulate the following considerations on the results
obtained:

• BAX is expressed in the attractors of all patients except
BC03_X.

• EGFR is expressed in tumor cells’ attractors for all patients
except BC03_X and BC05_X.

• ERBB2 is expressed in the attractors of all patients, except
BC03_X.

• ETV1 is expressed in the attractors of tumor cells for every
patient, except BC03_X.

• IKBKG is expressed in the tumor attractors of all patients.
• MAP3K7 is expressed in the attractors of all patients except
BC01_X.

• ST14 is expressed in the attractors of all patients except
BC01_X.

• PLAT is expressed in patient attractors BC02_X, BC03_X,
BC07_X, BC07LN_X, BC08_X, BC10_X, BC11_X.

• DDR1 is expressed in the tumor attractor of patient
BC04_X.

These results are summarized in Figure 6.
Interestingly, PLAT is never expressed in patients with breast

cancer classified as TNBC. Unlike for patients of Luminal A and
Luminal B in which the inactivity of PLAT affects 50% of patients,
this characteristic covers all TNBC group cases (Figure 5).

Further considerations concern the comparison between the
attractors of malignant cells with other types of cells from the
same patient. For example, in the BC07LN_ patient sample, it is
interesting to compare EEF1G in malignant and immune B-cells.
In the first case, the gene is expressed in only 4.2% of the
attractors detected (1/24), while in the second case, it is
expressed in 36.9% of the attractors detected (7/19).

FIGURE 4 | Distribution of the scRNA-seq data for each patient.
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Considering DDR1, the attractor rate of expression was 60% (9/
15) in the patient sample BC08_X. For stromal cells, the attractor
level of expression for the same gene is 100% (6/6).

DISCUSSION

The widely spread use of Boolean networks to model gene
regulatory network dynamics is well-established in the
scientific community. Identifying attractors with this type of
model enables the elucidation of long-term cell functioning,
which corresponds to a particular phenotype in molecular
biology. An attractor is a stable state of the cell. Starting from
an initial point of the state space, the cell dynamics simulated by
the model induce a sequence of states driven by the regulatory

interaction among the network nodes until reaching an
equilibrium. This stable set of states manifests itself with the
repetition of the configuration of the network in its Boolean
values in a fixed or cyclical way. Thus, the initial point from where
the trajectory started is part of the basin of attraction of a given
attractor in which all the points (or state spaces) contained in it
converge.

This work’s central hypothesis is the interpretation of
cancer phenotypes as basins of attraction in the epigenetic
landscape (Huang et al., 2009). Another central assumption is
that the perturbation of a subset of genes can produce the
transition from one basin of attraction to another, which
corresponds to another phenotype (Crespo et al., 2013).
Therefore, we modeled the dynamics of breast cancer
through the identification and description of the attractors

FIGURE 5 | Specific categories of attractors representing a group of scRNA-seq data belonging to each patient’s breast cancer sample. Every diagram shows the
percentages of attractors encountered based on the total number of cells analyzed for different cell types. The different colors refer to the type of cells analyzed: red for
cancer, green for stromal cells, yellow for immune B-cells, violet for immune T-cells, cyan for myeloid immune cells. Gray indicates the percentage of cells in which it was
not possible to find any attractors. The last two pie charts do not indicate tumor type attractors (absence of red color).
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associated with a specific gene regulatory network in such a
way as to be able to find out the essential genes that determine
the formation of the basin of attraction. These essential genes
are potential therapeutic targets.

In large gene regulatory networks (with more than 100
vertices, such as the one presented in this work), it is
possible to adopt different approaches to define attractors to
overcome the exponential growth of the state space size
according to the increase in the number of network size. For
example, one approach was to partition the network into small
subnets, finding the attractors corresponding to these partitions
and then combining them to build a stable state relative to the
entire network (Hong et al., 2015). Another approach is to
configure network input vertices with initial Boolean values
representing their gene expression level (Cho et al., 2016).

This report searched the network attractors resulting from the
topological features and logical functions attributed to each
vertex, given the binarized scRNA-seq data available. The use
of single-cell data, allows a better description of the
heterogeneous nature of cancer with a consequent better
therapeutic outcome, unlike Bulk RNA-seq data which provide
average expression levels of a cell population that may include
tumor cells and other cell types. The attribution of a specific
Boolean value to each vertex of the network, obtained through
gene expression binarization, conditioned the initial conditions in
the system’s state space. These initial conditions were the starting
points of a trajectory, driven by the topology and the logic
functions characterizing the network, whose evolution ended
when reaching an attractor. This strategy is very time efficient,
avoiding the nonpolynomial complexity of other strategies to find

FIGURE 6 | The 12 scRNA-seq groups of breast cancer samples of 10 patients, translated into attractors, are divided into four subtypes of tumor: Luminal A and B,
HER+, and TNBC. The green color indicates that the corresponding gene has a constant Boolean value (True or False) for all the patient’s attractors. The red color
indicates that the state of the gene does not remain constant for all the attractors of a specific patient.
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network attractors (Hong et al., 2015). The result obtained can be
considered satisfactory given the percentage of attractors
obtained.

From the analysis of the attractors obtained in this work, we
extracted peculiar characteristics on several genes, demonstrating
the need for a theranostics approach based on specific patient
data. Key genes frequently expressed in attractors identified in
this report were cited in the scientific literature related to breast
cancer. They are BAX (Sturm et al., 2000), DDR1 (Belfiore et al.,
2018), EGFR (Bhargava et al., 2005), ERBB2(Vernimmen et al.,
2003), ETV1 (Ouyang et al., 2015), MAP3K7(Zhou et al., 2017),
PLAT (Theillet et al., 1993), ST14 (Kauppinen et al., 2010).

BAX pro-apoptotic protein is differentially expressed in breast
tumors by the BAX gene. The tumor suppressor gene TP53 regulates
the expression of BAX and its mediated apoptosis. A reduced level of
BAX expression is an adverse prognostic factor in breast cancer
(Sturm et al., 2000).

DDR1, a non-integrin collagen tyrosine kinase receptor, plays
an essential role in cellular communication with the
microenvironment. It is differentially expressed in several
malignant tumors, playing an essential role in tumor
progression, including breast cancer (Belfiore et al., 2018).

EGFR is an epidermal growth factor receptor protein. It is part
of pathways that control several key biological processes like
angiogenesis, cellular proliferation, and apoptosis avoidance.
Indeed, it is worth highlighting the FDA approved GEFITINIB
availability, an anticancer drug that acts as an EGFR tyrosine
kinase inhibitor. In a sample of 175 breast cancer cases, there was
EGFR amplification in 11 of them. On these 11, 10 (91%) had an
EGFR protein overexpression detected by
immunohistochemistry (Bhargava et al., 2005).

ERBB2, commonly referred to as HER2, encodes a member of
the epidermal growth factor (EGF) receptor, a family of tyrosine
kinase receptors. About 30% of invasive breast carcinomas
overexpress this gene and are correlated with poor prognosis.
HER2 encodes a 185 kDa transmembrane receptor belonging to
the EGFR group. The monoclonal antibody Trastuzumab
effectively inhibits the growth of breast cancer tumors that
overexpressed HER2 (Vernimmen et al., 2003).

The ETV1 protein (together with ETV4 and ETV5) forms the
PEA3 subfamily of ETS transcription factors. The PEA3 group
could be a tumorigenic factor in breast cancer. ETV1 expression is
higher in TNBC tissues compared to normal tissues. Negative
regulation of ETV1 can activate COP1 as a tumor suppressor in
patients with TNBC (Ouyang et al., 2015).

MAP3K7 is an enzyme that is encoded by theMAP3K7 gene. This
protein controls a series of cell functions like apoptosis and
transcription regulation. Cell growth assessment performed by
MTT assay showed an increase in MAP3K7 expression in breast
cancer tissues comparedwith non-malignant breast tissue (Zhou et al.,
2017). Given the crucial role of this protein in other types of cancer
(Rodrigues et al., 2015; Cheng et al., 2019; Washino et al., 2019), it
would be interesting investigate inmore detail its role in breast cancer.

PLAT encodes tissue-type plasminogen activator, a serine
protease that transforms the proenzyme plasminogen to plasmin,
an enzyme. Reports in the literature point out the amplification of
PLAT in breast cancer. Literature reports indicate that 15.6% of

breast cancer tumors present PLAT amplification (Theillet et al.,
1993). It is also interesting to note the impact on gene expression
related to migration and invasion in breast cancer, especially PLAT,
obtained from docosahexaenoic acid (DHA), which emerged in a
recent study (Chénais et al., 2020).

ST14 encodes a matriptase protein. It is an epithelial-
derived integral serine protease. The overexpression of this
protein is associated with low tumor survival in node-negative
breast cancer cases. It also seems that a coordinated
overexpression of ST14 and other genes (MNP and MST1R)
is associated with metastasis and poor breast tumor prognosis
(Kauppinen et al., 2010).

IKBKG gene encodes the NF-KAPPA-B essential
modulator (NEMO), a protein that is the regulatory
subunit of the IKB kinase complex’s inhibitor. This
protein’s overexpression may occur in cases of
inflammatory breast cancer (IBC), a rare form of breast
cancer characterized by a particular phenotype (Lerebours
et al., 2008). As this protein is often highlighted in the
literature for its role as a growth and progression factor in
several types of cancer (Karin, 2006), it might be appropriate
to thoroughly investigate its role in breast cancer
development.

All those scientific evidence confirm the effectiveness of the
approach proposed in this work to identify biomarkers and
potential therapeutic targets. The present report also produced a
detailed list of genes never expressed in the attractors obtained. An
example is the ANXA1 never expressed in the attractors related to
the breast cancer sample BC07_X. The overexpression of the protein
produced by ANXA1 seems to indicate poor overall survival in
TNBC (Gibbs and Vishwanatha, 2018). Another example is the
SMAD4, which is never expressed in the attractors of BC02_X. The
protein produced by this gene is part of the SMAD family of
transcription factor proteins, which acts on the TGF-β signal
transduction. SMAD4 expression was lower in breast cancer
tissue than in the surrounding breast epithelium (Stuelten et al.,
2006). These constantly not-expressed genes in tumor attractors can
be used as biomarkers for diagnostics, predictive, and prognostic
purposes (Lerebours et al., 2008), awaiting further research advances
on the challenge of increasing gene-level expression using CRISPR
techniques (Matharu et al., 2019).

It is worth noting that even if we based the choice of genes that
compose the network on differentially expressed genes from the
MDA-MB-231 cell line, which is associated with the TNBC subtype,
we succeed in obtaining attractors for other cancer subtypes as well.
This result indicates that the method used to include intermediary
vertices from the human interactome and related transcription
factors is robust enough to capture key genes possibly involved in
all major breast cancer subtypes.

It is significant to highlight another point that emerged in this
report: the ERBB2 gene is a therapeutic target in breast cancer for
which specific drugs exist (Gomez et al., 2008). ERBB2 is constantly
expressed in all patients analyzed in this report except for one, the
patient BC03-X. For this reason, BC03-X might not need the type of
therapeutic intervention related to ERBB2. Such consideration
allows us to place our method in the context of personalized
medicine. Nevertheless, further specific algorithm development

Frontiers in Big Data | www.frontiersin.org October 2021 | Volume 4 | Article 65639510

Sgariglia et al. Data-Driven Modeling of Breast Cancer

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


for defining the more appropriate therapeutic decision for each
patient is needed.

Different settings in specific parts of the procedure illustrated
in this report may be further studied. For example, one example
of future work is to compare the results obtained with both
asynchronous and synchronous models on the network
dynamics. Another example of future work is to use specific
logic functions for each node of the network instead of the nested
canalyzing function approach used in this analysis.

CONCLUSION

In this work, we model the complex dynamics of a gene regulatory
system related to breast cancer using scRNA-seq data.We computed
the attractors of the analyzed cells, as well as the genes related to
attractor stability. Each group of cells belongs to a different patient,
and a certain degree of differentiation between the various patients
was found in the genes characterizing the attractors. This
characterization drives therapeutic actions differentiated from
patient to patient based on the analysis that emerged. These
considerations allow us to frame the system developed in this
report within the paradigm of personalized medicine. This work
can be expanded inmany ways. One significant advancement will be
to define an algorithm to define optimal therapeutic interventions
based on the analysis of the model. One crucial optimization
parameter for this algorithm is to minimize the number of
therapeutic interventions while providing maximum efficacy.
Another contribution is to evaluate if asynchronous boolean
modeling can provide new insights compared to synchronous
boolean modeling. Our group intends to explore those
questions soon.
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