
Autotuning of Exascale Applications
With Anomalies Detection
Dragi Kimovski 1*, Roland Mathá1, Gabriel Iuhasz2,3, Fabrizio Marozzo4, Dana Petcu2,3 and
Radu Prodan1

1Institute for Information Technology, University of Klagenfurt, Klagenfurt, Austria, 2Department of Computer Science, West
University of Timisoara, Timisoara, Romania, 3Institute e-Austria Timisoara, Timisoara, Romania, 4DIMES Department, University
of Calabria, Rende, Italy

The execution of complex distributed applications in exascale systems faces many
challenges, as it involves empirical evaluation of countless code variations and
application runtime parameters over a heterogeneous set of resources. To mitigate
these challenges, the research field of autotuning has gained momentum. The
autotuning automates identifying the most desirable application implementation in
terms of code variations and runtime parameters. However, the complexity and size of
the exascale systemsmake the autotuning process very difficult, especially considering the
number of parameter variations that have to be identified. Therefore, we introduce a novel
approach for autotuning exascale applications based on a genetic multi-objective
optimization algorithm integrated within the ASPIDE exascale computing framework.
The approach considers multi-dimensional search space with support for pluggable
objective functions, including execution time and energy requirements. Furthermore,
the autotuner employs a machine learning-based event detection approach to detect
events and anomalies during application execution, such as hardware failures or
communication bottlenecks.

Keywords: exascale computing, autotuning, events and anomalies detection, multi-objective optimization, IoT
applications

1 INTRODUCTION

In the era of the Internet of Things (IoT), massive amounts of data are created continuously, which
have to be transferred, processed, and analyzed within tight deadlines. To meet the strict constraints,
the emerging exascale computing systems, encompassing high-performance computing systems and
large-scale distributed cloud data centers, are utilized (De Maio and Kimovski, 2020). However, the
complexity of the exascale systems makes designing and deploying distributed applications a very
complex task, which requires a deep understanding of the exascale system and proper
characterization of the applications in terms of runtime parameters (Silvano et al., 2016).

The process of application execution in exascale systems faces many challenges, as it involves the
control of millions of threads running on thousands of heterogeneous devices (Balaprakash et al.,
2018). The applications, which utilize these systems, need to avoid synchronization, reduce the
communication events, and implement complex strategies to avoid failures. To mitigate these
challenges, the research field, known as autotuning, has gained attention (Jordan et al., 2012). In
general, autotuning refers to the process of automatic identification of the most desirable application
implementation in terms of code variations and runtime parameters. Autotuners can produce
efficient code versions and runtime parameters of complex applications by creating multiple code

Edited by:
Javier Garcia-Blas,

Universidad Carlos III de Madrid,
Spain

Reviewed by:
Javier Cuenca,

University of Murcia, Spain
Andrea Tundis,

Darmstadt University of Technology,
Germany

*Correspondence:
Dragi Kimovski

dragi.kimovski@aau.at

Specialty section:
This article was submitted to

Data Mining and Management,
a section of the journal

Frontiers in Big Data

Received: 22 January 2021
Accepted: 20 October 2021

Published: 26 November 2021

Citation:
Kimovski D, Mathá R, Iuhasz G,

Marozzo F, Petcu D and Prodan R
(2021) Autotuning of Exascale

Applications With
Anomalies Detection.

Front. Big Data 4:657218.
doi: 10.3389/fdata.2021.657218

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 6572181

ORIGINAL RESEARCH
published: 26 November 2021

doi: 10.3389/fdata.2021.657218

http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2021.657218&domain=pdf&date_stamp=2021-11-26
https://www.frontiersin.org/articles/10.3389/fdata.2021.657218/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.657218/full
http://creativecommons.org/licenses/by/4.0/
mailto:dragi.kimovski@aau.at
https://doi.org/10.3389/fdata.2021.657218
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2021.657218

variants that are empirically evaluated on the target systems.
Furthermore, they can identify code configurations, which might
not be intuitive for the application developers and therefore lead
to performance improvements.

However, the complexity and size of the exascale systems make
the autotuning process for exascale applications very difficult,
especially considering the number of parameter variations that
have to be identified (Durillo and Fahringer, 2014). This problem is
further aggravated by the high probability of failures in systems
containing thousands of nodes. To address the problem of
autotuning, the concurrent approaches are primarily focused on
improving the execution time of the application and reducing
energy consumption during execution. However, these approaches
are not suitable for the exascale systems, as they do not consider the
high heterogeneity of the exascale environments. Furthermore,
they can not detect events and anomalies during application
execution, such as possible hardware failures or communication
bottlenecks, which can be used to mitigate application failures and
further improve execution efficiency.

Therefore, in this article, we introduce the ASPIDE1

autotuning and optimization algorithm that considers multi-
dimensional search space with pluggable objectives, including
execution time and memory utilization. Moreover, to further
improve the application execution, the ASPIDE approach utilizes
a machine learning (ML) based events detection approach,
capable of identifying point and contextual anomalies (Zhang,
2007). In general, the ASPIDE autotuner assists the developers in
understanding the non-functional properties of their applications
by making it easy to analyze and experiment with the input
parameters. The autotuner further supports them in exposing
their obtained insights using tunable parameters. Lastly, we
evaluated the ASPIDE autotuning approach in a real execution
environment that considers a representative exascale application
focusing on social media platforms.

Therefore, the contributions of this paper are as follows:

1. Background review of the autotuning practices for distributed
applications in the converging high-performance systems and
cloud data centers

2. Multi-objective autotuning approach with pluggable
objectives for identifying optimal application execution
parameters

3. Machine learning-based anomalies and event detection engine,
capable of detecting anomalies during application execution,
including hardware failures and communication bottlenecks,
thus constraining the multi-objective autotuning approach

The remainder of the paper is structured as follows. Section 2
discusses related work. Section 3 describes the proposed ASPIDE
autotuning model with pluggable objective functions. Section 4
presents the novel ASPIDE events and anomalies detection
engine. Section 5 describes the ASPIDE platform and the
interactions between the autotuning and anomalies detection
engine. Section 6 describes a social media case study

application, which has been evaluated using a real testbed in
Section 7. Section 8 concludes the article.

2 RELATED WORK

Autotuning can be applied to the library, code, or application
level. In this work, we focus our efforts on application-level
autotuning, as many exascale applications have been developed
in such a manner that permits the expression of tunable
parameters for various problem sizes or code variants. The
approaches for application-level tuning can be divided into
two categories, based on the optimization objectives: single
objective and multi-objective.

2.1 Single-Objective Approaches
Tiwari et al. (2009) explored a parameter tuning approach based
on a Parallel Rank Ordering (PRO) algorithm, specifically
modified to enable offline optimization. The PRO algorithm
creates an N-dimensional search space that can be explored
with an unknown objective function, where N is the number
of tunable parameters.

Furthermore, Ren et al. (2008) presented a framework for
automatically tuning distributed and parallel applications to
hardware systems with software-managed memory hierarchies.
The approach utilizes a pyramid search algorithm, specifically
tailored for parameter tuning, capable of intelligently choosing
the initial search point and using a non-square grid.

Besides, Choi et al. (2010) developed a model for guiding the
autotuning process focused on multi-threaded vector processors,
such as graphical processing units. However, due to its
application domain, the model only optimizes the execution
time for sparse matrix-vector multiplication.

Likewise, Muralidharan et al. (2014) provided a library for
expressing code variants, together with meta-information on the
application, that improves the efficiency of autotuning. The
library applies machine learning algorithms to build a model
by training with the providedmeta-information.When new input
is provided, the library can choose appropriate code variants and
parameters.

Furthermore, Ansel et al. (2009) introduced a new implicitly
parallel language and compiler that enable multiple algorithms to
be described for solving a single problem. This allows the
autotuner to tune the application at a finer granularity,
including data distribution and algorithmic parameters.

From an energy efficiency perspective, Tiwari et al. (2011)
extended over the current software tools for autotuning of
applications with the main goal to minimize the power
requirements while maintaining the application performance.
The autotuning process is conducted concerning application-
level tunable parameters and the scaling of the processor clock
frequency. The tunable parameters are identified and later
explored via an offline search strategy.

2.2 Multi-Objective Approaches
A search-based multi-objective approach has been described by
Tapus et al. (2002), which utilizes two criteria (e.g., execution time1https://www.aspide-project.eu/

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 6572182

Kimovski et al. Autotuning of Exascale Applications

https://www.aspide-project.eu/
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

and efficiency) to adjust the tunable parameters of distributed
applications and libraries. Furthermore, Jordan et al. (2012)
extended this approach by considering both the execution
time and compilation time as conflicting objectives.

Moreover, Balaprakash et al. (2013) provided amulti-objective
optimizationmodel for autotuning a broad set of applications and
architectural designs in high-performance computing. The work
explored multiple conflicting objectives, such as time, power, and
energy, to provide rich insight intp how to tune the application
parameters.

Furthermore, Gschwandtner et al. (2014) presented a multi-
objective model for autotuning parallel applications based on
trade-off analysis for application execution time, energy
requirements, and resource utilization. The model can be
applied for high-level parallel programming languages and
utilizes a novel method, called RS-GDE3, to tune parallel
codes during compilation.

Besides, Ansel et al. (2014) described the OpenTuner
framework, which enables the formulation of the code
optimization problem as a trade-off. The framework enables
the developers to identify potential trade-offs among multiple
objectives and provides a significantly richer knowledge of the
applications through an application behavior analysis.

2.3 Research Gap
The presented research works primarily improve the application’s
execution time and the system’s energy consumption from a
resource provider perspective. They usually omit or consider the
requirements of the users of the applications with lower priority.
Besides, they do not consider the memory footprint of the
applications, which makes them not applicable for memory-
intensive applications that frequently require in-memory
processing.

Furthermore, none of them provides means for detecting
events and anomalies during execution, such as hardware
failures, which can further improve the application execution.
Concretely, they only analyze the influence of the parameters on
the application execution without considering the identified
execution anomalies, which can significantly hinder the
autotuning process.

Therefore, our approach improves over these methods by
applying a multi-objective approach with pluggable objectives
that consider multi-dimensional search space, including memory
utilization, execution time, and energy efficiency. Moreover, to
further improve the application process, our approach utilizes an
events and anomalies detection engine capable of detecting events
and anomalies during application execution.

3 AUTOTUNING MODEL

3.1 Autotuning Process
The ASPIDE autotuner iteratively seeks optimal application
parameter settings tuned for the given exascale infrastructure.
As the number and the definition range of tuning parameters are
application-specific, the size of the parameter and objective
search spaces varies among different applications. Accordingly,

with the increasing search space size also the search complexity
increases. To speed up and guide the search process on higher
scales, the ASPIDE autotuner implements a specifically tailored
genetic algorithm. The autotuner is based on a modular design,
which allows pluggable objective functions to be used. This means
that the main algorithm can take various optimization functions,
such as execution time, energy efficiency, or memory footprint
and utilization. Therefore, the ASPIDE autotuner can optimize
either a single objective or a set of trade-off objectives.

In general, the ASPIDE autotuning approach is based on the
well-known NSGA-II algorithm (Kimovski et al., 2016), which
moves on each iteration closer towards a Pareto optimal set of
application parameters considering anomaly-specific constraints,
such as performance anomalies or hardware failures during
previous executions. Our approach uses a historical set of
previously evaluated application parameter settings to suggest,
during each iteration, new application parameter settings. The
new application settings are evaluated in a real environment, and
the values of the objectives are measured by a Prometheus-based
monitoring tool (see Section 5). After the evaluation step is
completed, the new application parameter settings are added
to the historical setting and shared with the events and anomalies
detection engine for the next iteration.

Figure 1 depicts the data flow diagram of the ASPIDE
autotuner. The autotuner receives the structure of the exascale
application, together with the defined parameters and pluggable
objective functions. Before the autotuning process is started, the
ASPIDE autotuner searches for previous execution parameters in
a centralized database (DB). The information of the previous
executions is used to steer the autotuning process. The output
from the autotuner is provided to the application scheduler,
which in combination with the data location map, decides on
which resources to execute the applications. The execution is
continuously monitored by the M3AT monitoring system (see
Section 5), and the information is used by the event detection
engine (see Section 4) to search for execution anomalies. The
information on the execution parameters and the detected
anomalies is stored again in the DB. This information can be
fetched by the autotuner for further improving the tunable
parameters.

3.2 Implementation
Algorithm 1 presents the pseudo-code of the ASPIDE autotuner
implementation. Note that the pseudo-code shows one iteration

FIGURE 1 | Data flow diagram of the autotuning process.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 6572183

Kimovski et al. Autotuning of Exascale Applications

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

of the autotuner. Accordingly, each autotuner iteration can return
either a single solution or a set of Pareto solutions concerning the
number of objective functions used during optimization.

As the first step in each iteration, the population P is filled with
historical individuals generated and evaluated from previous
runs. The individuals depicted in Figure 2 are represented as
vectors, where the index of the vector corresponds to a given
tunable parameter S and the vector field represents a specific
parameter value. The individual vector contains additional fields
for representing the fitness value of the optimization objectives
based on user-defined pluggable objective functions O. The
utilization of pluggable functions, which the users can define,
allows flexible filtering of individuals by adapting the objective
definitions O and the application parameter definitions AP as
constraints to match the latest requirements continuously.

Algorithm 1. Multi-objective ASPIDE autotuning algorithm

The ASPIDE autotuner relies on an algorithm with a cold start
strategy (Lines 2 and 3). This means, if the population size is
below a predefined threshold Pmin, the ASPIDE autotuner
generates individual vectors with random values to create the
initial population.

If the population size crosses the minimal threshold, then the
autotuner generates new solutions. The solutions are identified
based on the fitness value of the objective function, which can be
execution time, energy efficiency, or economic costs. This is
achieved by the nonDomSort function that sorts the
population P by non-domination (Line 5). Thereafter,
selParents selects two individuals of P as parents, and
crossover creates a solution S out of both selected parents Pa1
and Pa2 (Lines 6 and 7). To reduce the risk of identifying only the
local minimum, in genetic algorithms, it is common practice to
introduce a mutation step (Line 8) that mutates the solution S
with a probability p.

To evaluate the generated application parameters of the
solution S, i.e., to determine the fitness values, the autotuner
defines the function evaluate_solution, which runs and monitors
the application returning the new individual I (Line 10). The
evaluate_solution function is user-defined, which allows for

pluggable optimization objectives to be used. The function
uses monitoring data from previous runs to determine the
fitness values. In the cases where the specific application
parameters are evaluated for the first time, only the fitness
values from the current execution are considered. Otherwise,
the mean value from all previous executions is considered for
evaluating the fitness of the given solution (individual).

Subsequently, the algorithm checks with the events and
anomalies detection engine (see Section 4) if the evaluated
solution satisfies the defined runtime constraints (Line 11). If
the anomalies detection engine identified that the evaluated
parameters caused performance degradation in the past, such
as higher execution time or memory usage, it would discard the
solution. Thereafter, the algorithm will start from the beginning
to search for other possible parameter values.

Finally, if the solution meets the constraints and the evaluation
is completed, the ASPIDE autotuner returns the new individual I
that will be stored in the monitoring database and considered on
the next iteration (Line 12).

4 EVENT DETECTION MODEL

4.1 Events and Anomalies Definition
In the following section, we define the relationship between the
terms events and anomalies. The anomalies are defined as rare
events or observations, which are significantly different from
most data. Therefore, the anomalies pose an additional level of
complexity by their sparse nature, as some anomalies might have
an occurrence rate well under 0.01%. Events and anomaly
detection can be split up into several categories based on the
methods and the characteristics of the available data. The most
simple form of anomalies is point anomalies, characterized by
only one metric (feature). These types of anomalies are fairly easy
to detect by applying simple rules (i.e., CPU is above 70%). Other
types of anomalies are more complex but ultimately yield a much
deeper understanding of the inner workings of a monitored
exascale system or application. These types of anomalies are
fairly common in complex systems.

Contextual anomalies are extremely interesting in the case of
complex systems. These types of anomalies happen when a
certain constellation of feature values is encountered. In
isolation, these values are not anomalous, but when viewed in
context, they represent an anomaly. These types of anomalies
represent application bottlenecks, imminent hardware failure, or
software misconfiguration. The last major type of anomalies,
which is relevant, is temporal or sometimes sequential anomalies
where a certain event takes place out of order or at the incorrect
time. These anomalies are significant in systems with a strong
spatiotemporal relationship between features, which is very much
the case for exascale metrics.

4.2 Events and Anomalies Detection Engine
Architecture
The Events and Anomalies Detection Engine Architecture (EDE)
contains a set of main components, which are based on lambda

FIGURE 2 | Individual vector for representation of the tunable
parameters.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 6572184

Kimovski et al. Autotuning of Exascale Applications

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

type architecture and divided into three layers: data ingestion,
data preprocessing, and training and prediction, depicted in
Figure 3. First, due to the heterogeneous nature of most
modern computing systems (including exascale and mesh
networks) and the substantial variety of solutions that could
constitute monitoring services, the data ingestion component has
to be able to fetch data from a plethora of monitoring systems
using various data formats. The data ingestion component
implements a connector sub-module that serves as adapters
for connecting different monitoring services. Furthermore, this
component can also load data directly from static files in various
formats, including HDF5, CSV, JSON, or raw format. The
ASPIDE EDE supports data ingestion directly via query from
the monitoring solution or streamed queuing service to aid the
event detection methods further. This reduces the time between
the event that was observed and detected.

Afterward, the preprocessing component gathers the raw data
from the data ingestion component and applies the required
transformations. It handles data formatting (i.e., one-hot
encoding), analysis (i.e., statistical information), splitter
(i.e., splitting the data into training and validation sets), and
finally augmentation [i.e., oversampling and undersampling (He
et al., 2008)]. This component is also responsible for any feature
engineering of the incoming monitoring data.

The training and prediction component is divided into two
sub-components. The training sub-component is used to
instantiate and train machine learning models that can be
used for event detection. The end-user can configure the
hyperparameters of the selected machine learning models and
run automatic optimization on these (i.e., Random Search and
Bayesian search). Users cannot only set the parameters to be
optimized but also define the objectives of the optimization. More
specifically, users can define what should be optimized, including
but not limited to the predictive performance of the machine
learning model. The training sub-component handles the
evaluation of the created predictive model on a holdout set.
Current research and rankings of machine learning
competitions show that creating an ensemble of different
methods may yield statistically better results than single model
predictions (Dietterich, 2000). Because of this, we included
ensembling to the training sub-component. The trained and
validated models have to be saved in such a way to enable
easy instantiation in a production environment.

Once a predictive model is trained and validated, it is saved
inside a model repository. Each saved model has to have metadata
attached to it denoting its performance on the holdout set and
other relevant information such as size and throughput.

Lastly, the prediction sub-component encompasses retrieving
the trained model from the model repository and feeding metrics
from the monitored system. The prediction sub-component can
either use the trained models to perform inference, detect events
and anomalies, or utilize a rule-based approach. In the case a rule-
based approach is used, the prediction component has to include
a rule-based engine and a rule repository. Naturally, detection of
anomalies or any other events is of little practical significance if
there is no way of handling them. Therefore, we include a
component that tries to resolve the underlying issues once the

event has been identified. When an event or anomaly is detected,
the ASPIDE EDE is responsible for storing the information
within the monitoring system and signaling this to both the
ASPIDE autotuner and the scheduler. The information from the
prediction component is used by the autotuner and the scheduler
in the ASPIDE system to constrain the application execution
parameters and resources, which may induce anomalies, such as
communication bottlenecks or system failures. All anomalies are
currently exported via the EDE data bus, which is implemented
based on Kafka topics (Garg, 2013).

4.3 Anomalies Induction and Detection
Methods
The ASPIDE EDE uses an anomaly induction tool capable of
inducing anomalies both on a single node or distributed systems
spawning across several nodes. This allows us to validate any
results we might obtain fully.

The anomaly induction tool is designed to allow users to define
different anomaly induction sessions. Users can select from a few
predefined anomalies and create custom distributions that will be
executed. This results in logs which, when combined with metrics
collected using a monitoring solution, result in labeled data sets.

Related to the anomalies detection, we primarily utilize
RandomForest (Svetnik et al., 2003), which is an ensemble
learning method that constructs multiple decision trees. The
RandomForest algorithm tends to overfit and provide
degraded out-of-sample performance compared to other
methods. Therefore, the ASPIDE EDE supports additional ML
algorithms, such as the XGBoost (Chen and Guestrin, 2016),
which, similar to RandomForest, is a decision tree-based
ensemble method. One of the main differences is that it
utilizes gradient boosting. In recent years, it has become the
preferred ML method for small/medium well-structured tabular
data. Lastly, the ASPIDE EDE also supports a Deep Neural
Network (DNN) implemented in Tensorflow2.

The parameter space available for these methods is quite
extensive. Thus, we decided on using a guided hyperparameter
optimization (HPO) method, namely, a genetic algorithm-based
one implemented using the DEAP framework3. We used the
scikit-learn wrapper from Tensorfow to enable us to expose
training hyperparameters and topological features from the
event and anomaly detection models. Thus, in the case of the
DNN model, the genetic algorithm can also add or remove layers
(maximum of four layers) and set the number of neurons from
each of these densely connected layers.

5 ASPIDE SYSTEM ARCHITECTURE

The multi-objective autotuner and machine learning-based
events and anomalies detection engine have been integrated
within the ASPIDE exascale framework to exploit massive

2https://www.tensorflow.org/
3https://github.com/DEAP/deap

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 6572185

Kimovski et al. Autotuning of Exascale Applications

https://www.tensorflow.org/
https://github.com/DEAP/deap
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

parallelism (Talia et al., 2019). The ASPIDE framework exposes
analyses and associates a vast set of application execution
parameters with the main goal to improve the application
performance in exascale systems. The key insight behind such
an approach is that the source of a bottleneck in data-intensive
applications is often not where it is detected (i.e., where the data is
processed with a high communication or thrashing overhead) but
where it is allocated. The ASPIDE approach enables the efficient
extension of the GrPPi unified programming model (del Rio
Astorga et al., 2016) with autotuning of high-performance,
automatically adaptable, and tunable data-intensive exascale
applications. The ASPIDE system enables experts and
programmers to build solutions using mechanisms that go
beyond contemporary approaches’ capabilities by putting static
and dynamic optimization and code generation technologies
under their control.

The ASPIDE system depicted in Figure 4 consists of the
following main components:

• Application Programming Interface (API). The ASPIDE
API allows the developers to define their applications
transparently. It is based on the GrPPi generic parallel
pattern interface for stream processing, which facilitates
the development of distributed and parallel applications on
exascale systems by concealing the complexity of the
concurrency mechanisms.

• Applications scheduler. The ASPIDE scheduler is an inter-
changeable service module that delivers pending tasks to the
available resources using task metadata and monitoring

information for exploiting computing resources and data
locality. Therefore, it allows the utilization of different
scheduling algorithms. It is capable of supporting three
types of queues: sequential, parallel, and not-ready tasks.

• Autotuner with pluggable optimization functions. The
ASPIDE autotuner enables developers to utilize pluggable
optimization functions for tuning the application runtime
parameters. It utilizes Pareto based multi-objective
optimization algorithm that iteratively, with each
execution, seeks optimal application parameters tuned for
given exascale infrastructure.

• Events and Anomalies Detection Engine. The ASPIDE
EDE handles the processing of raw monitoring data
from the execution of the applications to identify
relevant events and anomalies, leading to an
application or system failure.

• Scalable monitoring architecture. The ASPIDE monitoring
architecture (Kashansky et al., 2020) is based on the
Prometheus open-source monitoring system that enables
recording numeric time series data. It supports a collection
of multi-dimensional data related to the application
execution and the hardware system performance.

5.1 System Interaction
This section defines the data flow among the components of the
ASPIDE system, with the main focus on the interaction between
the autotuner and the events and anomalies detection engine.
We illustrate the interaction through an usage example. First,
the application owners use the ASPIDE API to describe and
parallel their application based on the GrPPi language. The
ASPIDE API supports an MPI + X model, adapted for
distributed memory systems at a large scale. It utilizes a
task-based back-end for an exascale environment and
employs queues for identifying the relations between the
tasks and data. Afterwards, when the application is
described, and all dependencies between the components
are identified, the application is sent to the autotuner and
the scheduler, which accept the application’s tasks in one of
the three queues (sequential, parallel, and not-ready). The
scheduler can use different scheduling algorithms for the
different queues. Afterward, the scheduler sends a request to
the autotuner for optimal execution parameters. The request
contains a query on which application parameters to be used
for the given available infrastructure, such as the number of
threads and data size. The autotuner, based on the
optimization functions (such as execution time or memory
utilization), applies Pareto optimization and, as a result,
prepares a vector with information on the application
execution parameters. The vector with identified
application execution parameters is then returned to the
scheduler. Based on the execution parameters, the
scheduler prepares a set of possible application schedules
to resources and deploys the application across the exascale
infrastructure. During the execution, the whole process is
monitored by the ASPIDE monitoring system, which then
provides the gathered information to the ASPIDE EDE. The

FIGURE 3 | The architectural model of the ASPIDE event detection
engine.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 6572186

Kimovski et al. Autotuning of Exascale Applications

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

ASPIDE EDE examines if the possible execution parameters
induced communication bottlenecks or irregular application
behavior (including high execution time or memory
utilization). This information is provided to the autotuner
through a time series DB for future reference. Based on the
information from the EDE, the autotuner can remove
unsuitable execution parameters for future executions. If
none of the parameters, identified by the autotuner, meet
the execution requirements identified by the EDE, the whole
process is repeated from the beginning.

6 APPLICATION CASE STUDY

To evaluate the performance and the behavior of the ASPIDE
autotuner and events and anomalies detection engine, we selected
a representative case study concerning the processing of social
media information. The widespread use of social media platforms
allows scientists to collect a huge amount of data posted by people
interested in a given topic or event. This data can be analyzed to
infer patterns and trends about people’s behaviors related to a
topic or an event on a vast scale. Social media posts are often
tagged with geographical coordinates and/or other information
that allows applications to identify user positions, enabling
mobility pattern analysis using trajectory mining techniques.
This case study aims to discover frequent trajectories from
people’s movements to find the common routes followed by
social media users. These most common trajectories occur
between places-of-interest (PoI) that users visit in an area. A
Region-of-Interest (RoI) represents the geographical boundaries
of the PoI’s area (Belcastro et al., 2018). Still, it can also be defined
as “a spatial extent in geographical space where at least several
user trajectories pass through” (Giannotti et al., 2007).

The goal of the application is to process geotagged social media
items by exploiting the metadata they contain to extract user
trajectories. The input of our method is a large set of geotagged
items gathered from Flickr. We used about 2.3 million geotagged
items published in Flickr from January 2006 to May 2020 in
Rome (named dataset-Rome). A geotagged item is a JSON string
that contains a set of metadata elements. For example, a Flickr
item includes the following elements: photo id, information about
the user who published the photo, title, and description, the date
on which the photo was taken, the format of the photo, the
location where the photo was taken, and tags that describe the
photo. To show the basic characteristics of data, an example of a
Flickr post is shown in Listing 1.

FIGURE 4 | Top view of the ASPIDE system architecture.

FIGURE 5 | Workflow of the urban computing use case application.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 6572187

Kimovski et al. Autotuning of Exascale Applications

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Listing 1. Metadata of a Flickr postserialized in JSON format.

The workflow is composed of the five main tasks, depicted in
Figure 5:

A. Crawling: large amounts of data are collected from Flickr using
public APIs or loaded from files stored on distributed file
systems. Preprocessing: Flickr posts are preprocessed to make
them suitable for analysis.

B. For example, posts can be filtered out if they do not meet some
conditions.

C. Automatic keywords extraction and data grouping: the
keywords that identify the places-of-interests are extracted;
these keywords will be used to group social media items
according to the places they refer to.

D. RoIs detection using a parallel clustering approach: A data-
parallel approach is used to detect Regions-of-Interest (RoIs)
starting from social media data grouped by keywords
(Belcastro et al., 2020). RoIs represent a way to partition
the space into meaningful areas; they are the boundaries of
Points-of-Interest (e.g., a city square).

E. Trajectory mining: This step is run to discover the behavior
and mobility patterns of people by analyzing geotagged social
media items (Belcastro et al., 2019). To implement this step,
the sequential pattern mining algorithm Prefix-Span (Han
et al., 2004) is used.

The workflow has been implemented in Apache Spark. The
main parameters used to configure the execution of the
application are as follows:

• –dataset-path: path to the input dataset. To test the
application with increasing datasets, starting from the
initial dataset with a size of 108 MB, we created the 2X
(219 MB), 4X (439 MB), 6X (658 MB), and 8X (880 MB)
datasets.

• –threads-count (-t): number of threads.
• –number-of-partitions (-n): number of partitions used for
data frame.

• –executor-memory (-e): the amount of memory reserved for
Spark executor.

It is important to specify that our workflow can analyze items
collected from Flickr and from other social media platforms, as
done in some previous works with Twitter (Cesario et al., 2015)
and Instagram (Cesario et al., 2017). In fact, the workflow
requires: i a collection of geotagged items; ii such items must
contain metadata with textual information (e.g., title, tags, and
description); and iii each user must be associated with different
items so as to be able to extract a trajectory for each user and thus
find the most frequent trajectories of a set of users.

7 EXPERIMENTAL EVALUATION AND
DISCUSSION

7.1 Autotuner
7.1.1 Evaluation Testbed
To expose the versatility of the autotuner and evaluate its
performance, we select a parallel system containing Intel Core
i7-5500 with 8 GB RAM per node. Each CPU provides two cores
and four threads, each with a base frequency of 2.4 GHz and a
turbo boost frequency of 3.0 GHz.

For the experiments, we use the urban computing case study
described in Section 6 with the initial dataset with a size of
108 MB. To execute the application case study, we use Docker
and Ubuntu 20.04. To analyze the behavior with different
numbers of CPUs, we limit the number of available CPU
resources a container can use with the -cpus flag of Docker.
We conduct experiments with 1, 2, and 4 CPUs.

For each experiment, we run the autotuner 50 times resulting
in 50 application parameter solutions per experiment. As
presented in Table 1, we used the following three application
parameters: threads count (-t), number of partitions (-n), and
executor memory (-e).

7.1.2 Pluggable Optimization Objectives
As a pluggable objective, for evaluation purposes, we utilize the
execution time Ea and the memory footprintMt of the case study
application. We define the execution time of the application by
measuring the execution time Tt(ti, cl, e) of a given task ti on a
CPU cl with a different number of execution threads e as the
maximal execution time of all predecessors:

Tt ti, cl, e() � pt t1, cl, e(), pred ti() � ∅;
max Tt pred ti(), cl, e()() +Dt ti() pred ti()≠∅,

{
(1)

where pt(ti, cl) is the processing time of task ti, pred(ti) is the
processing time of the predecessors of task ti as measured by the
monitoring system, andDt(ti) is the time required for transferring
the data to the task.

Therefore, the application execution time Ea is equal to the
execution time Tt of the last task tk:

Ea � Tt tk, cl, e(). (2)

Related to the memory optimization we consider the memory
footprint Mt for processing task ti with input data set Cs as
follows:

Mt ti, Cs() � Cs

Cm cl(), (3)

TABLE 1 | Use case application parameter definitions.

Flag Description Definition range

-t Number of threads for Spark driver in local execution (1, 16)
-n Number of partitions used for Dataframe (1, 600)
-e Amount of memory reserved for Spark executor (50, 8000) MB

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 6572188

Kimovski et al. Autotuning of Exascale Applications

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

where Cm(cl) is the available memory to CPU cl. This objective
defines how big a fraction of the memory reserved for the
application is currently used considering the size of the input
data set Cs.

7.1.3 Evaluation Results
Figure 6 depicts our experimental results with one, two, and four
CPUs, encompassing execution with the 8X (880 MB) dataset.
Each solution has a separate y-axis corresponding to the three
application parameters e, n, and t. To simplify the visualization of
the solutions, we depict the number of available CPUs in
correlation with the execution time as the x-axis. We display
the different solution’s execution times with separate colors.

For one CPU, we observe that the fastest solution found has an
execution time of 111s with 2 threads, 490 partitions, and
1612 MB of memory. Overall, the average values for threads
are 6.22 ± 3.31, for partitions 353.56 ± 142.54, and for
memory 4009.14 ± 1645.31.

For two CPUs, the fastest solution has an execution time of 87s
with 11 threads, 46 partitions, and 2554MB of memory. Four
solutions achieve the second-fastest execution times of 88s with
seven threads, a memory of at least 6449MB, and several
partitions of 292, 526, and 434. Additionally, we also observe
the slowest solution with an execution time of 106s close to the
area of second-fastest solutions with 7 threads, 434 partitions, and
memory of 1958 MB. Among all solutions, the average values for
the threads are 6.77 ± 2.51, for partitions 375.36 ± 138.83, and for
memory 5697.31 ± 1565.43.

For four CPUs, the autotuner determined the six fastest
solutions, all with an execution time of 86s. The fastest
solutions have different combinations of the following
application parameter values: for t (487, 1191, 2060, 3210),
for n (97, 205, 246), and for e (6, 7, 11). Considering all
generated solutions, the average values for threads are 9 ± 3.58,
for partitions 190.48 ± 160.58, and for memory 2638.31 ±
1783.81.

In summary, our experimental results show that the ASPIDE
autotuning algorithm proposes fast solutions for different CPU

FIGURE 6 | The solutions and their execution times in seconds, generated by the autotuner for one, two, and four CPUs after 50 iterations.

FIGURE 7 | Distribution of event/anomaly classes.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 6572189

Kimovski et al. Autotuning of Exascale Applications

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

specifications. We observe some intuitive solutions, such as 2
threads with 1 CPU, but also unexpected solutions, such as 11
threads with 2 CPUs. As we observe some fastest and slowest
solutions with small euclidean distance side by side in the search
space, we conclude that the fine-tuning of application parameters
for our case study application is highly sensitive for even small
parameter value changes and can lead to improvements in the
execution time by up to 20%, compared to the standard runtime
parameters.

7.2 Events and Anomalies Detection Engine
7.2.1 Evaluation Testbed
For the evaluation testbed, we have deployed both the ASPIDE
monitoring solution and the case study application. We set up
both platforms on two identical workstations. They run
Intel(R) Xeon(R) CPU E5-2630 with 12 CPU Cores, 32 GB
ECC RAM, 2 TB SSD with a base clock speed of 2.30 Ghz.
These workstations also contain an NVIDIA Tesla K20c GPU.
The operating system installed on these machines is Ubuntu
20.04. GPU acceleration was only used in the case of Deep

Learning models. However, all preprocessing steps are
executed on the CPU (such as data formatting and
augmentation). Theoretically, it is possible to accelerate
some preprocessing steps, but in the case of the
experiments detailed in this article, the datasets easily fit
into the workstations working memory, thus minimizing
memory reallocation overhead.

We used an anomaly inducer solution to induce four types of
anomalies, as described in the Section 4.3. It is important to note
that these experiments were performed in such a manner to
validate the EDE functionalities and integration with the ASPIDE
framework.

Figure 7 shows the distribution of anomalous instances induced
by the anomaly inducer tool. We can see that most events (marked
with 0) are normal events and the rest of the anomaly occurrences
have a similar distribution. It is important to note that true anomalies
willmost likely occur at a far lesser degree in a real-world scenario. In
this case, we wanted to gauge the ability of each predictive model to
detect anomalies without dealing with extremely imbalanced
data sets.

TABLE 2 | Genetic Algorithm parameters.

ID Scorer Splits CV type Jobs Population Tournament
size

Mutation
prob.

Crossover
prob.

N Accuracy 4 StratifiedKfold -1 40 4 0.2 0.5
D Accuracy 2 Kfold 1 20 4 0.2 0.5

FIGURE 8 | Hyperparameter optimization experimental results.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 65721810

Kimovski et al. Autotuning of Exascale Applications

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

We run the case study application on the largest data set (8x
with a compressed file size of 880 MB). We limited the execution
time of the application to 1 h. We set up the ASPIDE monitoring
to collect metrics every second, resulting in 3900 data points
containing 67 features. After the execution of the preprocessing
steps, we were left with 63 features. No further preprocessing and
feature engineering was done during these experiments.

7.2.2 Evaluation Results
7.2.2.1 Hyperparameter Optimization
The first stage of the experiments encompasses evaluating the
hyperparameter optimization (HPO) technique with

RandomForest, XGBoost, and DNN. This allowed us to
optimize the performance of each predictive model separately.
Each HPO iteration was executed until the model reached 1000
epochs. Table 2 shows the genetic algorithm parameters used
during optimization. Due to technical limitations, it was
necessary to use a distinct parameter space in the DNN
models. This was largely because, unlike the other two
methods, the DNN training can only be executed sequentially
as it is reliant on a GPGPU. Furthermore, all inputs had to be hot
encoded; thus, the type of cross-validation score used had to
support this type of ground truth (StratifiedKFold does not
support one-hot encoding).

TABLE 3 | Best performing parameters.

RandomForest DNN XGBoost

Parameters Values Parameters Values Parameters Values

n_estimators 10 optimizer Adam n_estimators 1000
max_depth 50 learning_r 0.01 max_depth 4
max_features 50 kernel_init he_normal learning_rate 0.01
min_samples_split 5 layer_0 50 sub_samples 0.2
min_samples_leaf 6 layer_1 0 min_child_weight 6

layer_2 50 gamma 0
layer_3 100
Drop 0.3
activation_1 Relu
out_activation Sigmoid

FIGURE 9 | Model scores with cross-validation (5-fold).

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 65721811

Kimovski et al. Autotuning of Exascale Applications

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Figure 8 shows the HPO algorithm score for each of the
optimization runs and the three cross-validation scores (CV1,
CV2, and CV3). We can observe that RandomForest and
XGBoost have considerable score churn, while DNN has a
greater amplitude with a shorter churn duration. The DNN
optimization score converges in our experiments 70 to 120
generations before the other methods, which proves its suitability
for detecting anomalies. Another distinction evident from Figure 8
is that only two experiments were executed in the case of DNN.
Althoughwe used early stopping during training for each phenotype,
the total training times of the DNN were significantly longer
compared to the other two methods. Therefore, the execution of
the DNN was limited to two experiments, as longer execution times
could hinder the performance of the autotuner, which relies on the
timely detection of the events and anomalies.

7.2.2.2 Accuracy Evaluation
In Table 3, we can see the parameters used for the best
performing phenotypes from each of the three methods.

Considering that the scores presented in Figure 8 are
largely pertinent to the optimization stage, we needed to
individually evaluate the best performing parameter space
solutions. To this end, we run the second stage of our
experiments on the highest scoring parameters for each
method using 5-fold cross-validation while measuring the
model accuracy, balanced accuracy (García et al., 2009), and
the Jaccard index (Hamers et al., 1989). We can see the
resulting scores in Figure 9. We can observe that all models
performed well. The difference between the lowest and highest
obtained accuracy is less than 0.02. Fold number 4 is of
particular interest as it provides the highest average score
between all three scoring functions for all predictive models.

Figure 10 depicts a heatmap representation of the confusion
matrices for all three predictive models. The misclassification
rate for all models is meager as most of these instances are
related to classifying non-events as anomalies or anomalies as
non-events. One exception is that in the case of XGBoost,
where an anomaly was identified incorrectly as (copy instead
of mem),

Finally, we provide a classification report, shown in Table 4,
for the best performing of the three explored methods, namely,
the DNN model. The resulting predictive model, using the
identified parameters, has performed very well in terms of
accuracy. However, one should not consider the validated
model and the used parameters as optimum in all
circumstances. There are no true minority classes in the
validation dataset, and there are a substantial number of
events representing each class, limiting the application of
the best performing DNN model.

FIGURE 10 | Confusion matrix for best performing validation fold.

TABLE 4 | DNN classification report fold 4

Precision Recall f1-score Support

Normal 0.9891 1.0000 0.9912 455
CPU anomalies 0.9903 0.9933 0.9908 150
Memory anomalies 1.0000 0.9901 0.9934 152
Copy anomalies 1.0000 0.9908 1.0000 218
accuracy 0.9918 975
macro avg 0.9923 0.9911 0.9917 975
weighted avg 0.9919 0.9918 0.9918 975

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 65721812

Kimovski et al. Autotuning of Exascale Applications

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

8 CONCLUSION

In this article, we introduced an exascale autotuning approach based
on an NSGA-II multi-objective optimization algorithm integrated
within the ASPIDE exascale computing framework. The approach
considers multi-dimensional search space to support the utilization
of pluggable objective functions, including execution time and
memory utilization. Furthermore, the autotuner employs a
machine learning-based event detection approach to detect
anomalies during execution, such as hardware failures or
communication bottlenecks. We utilize the events and
anomalies detection engine to constrain the search space
of the optimization problem, thus further improving the
execution efficiency of the exascale applications.

We evaluated the ASPIDE autotuner on a representative social
media application and corresponding data set. We have created
experimental scenarios in both simulation and a real-world testbed.
Our results show that the ASPIDE autotuner can reduce the execution
time of exascale applications by up to 20% while maintaining a low
memory utilization ratio of 2638MB. Furthermore, the event detection
engine achieved an average accuracy of 95% for detecting CPU- and
memory-related errors, which significantly increased the execution
efficiency of the case study application.

In the future, we plan to extend the autotuning model to support
application autotuning for GPUs and conduct experimentation with
more case studies over larger exascale infrastructures.

DATA AVAILABILITY STATEMENT

The data is available at the EU commission platform Zenodo,
https://zenodo.org/.

AUTHOR CONTRIBUTIONS

DK prepared the introduction, state of the art, and the
architecture section. RM prepared the autotuning model. GI
described the event detection model. FM prepared the case
studies. All authors worked on the evaluation section and the
writing of the manuscript.

FUNDING

This work has been supported by the ASPIDE Project funded
by the European Union’s Horizon 2020 Research and
Innovation Programme under grant agreement No
801091. This work was partially supported by a grant of
the Romanian Ministry of Education and Research, CNCS -
UEFISCDI, project number PN-III-P4-ID-PCE-2020-0407,
within PNCDI III and Competitiveness Operational
Programme Romania under project number SMIS 124562,
MOISE.

REFERENCES

Ansel, J., Chan, C., Wong, Y. L., Olszewski, M., Zhao, Q., Edelman, A., et al.
(2009). PetaBricks. SIGPLAN Not. 44, 38–49. doi:10.1145/
1543135.1542481

Ansel, J., Kamil, S., Veeramachaneni, K., Ragan-Kelley, J., Bosboom, J., O’Reilly,
U.-M., et al. (2014). “Opentuner: An Extensible Framework for Program
Autotuning,” in Proceedings of the 23rd international conference on
architectures and compilation, Edmonton, Canada, August 24–27, 2014,
303–316.

Balaprakash, P., Dongarra, J., Gamblin, T., Hall, M., Hollingsworth, J. K.,
Norris, B., et al. (2018). Autotuning in High-Performance Computing
Applications. Proc. IEEE 106, 2068–2083. doi:10.1109/
jproc.2018.2841200

Balaprakash, P., Tiwari, A., and Wild, S. M. (2013). “Multi Objective Optimization
of Hpc Kernels for Performance, Power, and Energy,” in International
Workshop on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems. Editors S. Jarvis, S. Wright, and S Hammond
(Cham: Springer), 239–260.

Belcastro, L., Kechadi, M. T., Marozzo, F., Pastore, L., Talia, D., and Trunfio, P.
(2020). Parallel Extraction of Regions-Of-Interest from Social media Data.
Concurrency Comput. Pract. Experience 33 (2), e5638E5638. doi:10.1002/
cpe.5638

Belcastro, L., Marozzo, F., Talia, D., and Trunfio, P. (2018). G-roi: Automatic
Region-Of-Interest Detection Driven by Geotagged Social media Data. ACM
Trans. Knowledge Discov. Data 12, 27:1–27:22. doi:10.1145/3154411

Belcastro, L., Marozzo, F., Talia, D., and Trunfio, P. (2019). Parsoda: High-Level
Parallel Programming for Social Data Mining. Social Netw. Anal. Mining 9, 4.
doi:10.1007/s13278-018-0547-5

Cesario, E., Congedo, C., Marozzo, F., Riotta, G., Spada, A., and Talia, D. (2015).
“Following Soccer Fans from Geotagged Tweets at Fifa World Cup 2014,” in
Proc. of the 2nd IEEE Conference on Spatial Data Mining and Geographical
Knowledge Services, Fuzhou, China, 8-10 July 2015, 33–38. 978-1-4799-7748-2.
doi:10.1109/icsdm.2015.7298021

Cesario, E., Marozzo, F., Talia, D., and Trunfio, P. (2017). Sma4td: A Social media
Analysis Methodology for Trajectory Discovery in Large-Scale Events. Online
Soc. Networks Media 3, 49–62. doi:10.1016/j.osnem.2017.10.002

Chen, T., and Guestrin, C. (2016). “Xgboost: A Scalable Tree Boosting System,” in
Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, San Francisco, CA, August 13–17, 2016, 785–794.

Choi, J. W., Singh, A., and Vuduc, R. W. (2010). Model-driven Autotuning of
Sparse Matrix-Vector Multiply on Gpus. ACM sigplan notices 45, 115–126.
doi:10.1145/1837853.1693471

De Maio, V., and Kimovski, D. (2020). Multi-Objective Scheduling of Extreme
Data Scientific Workflows in Fog. Future Generation Comput. Syst. 106,
171–184. doi:10.1016/j.future.2019.12.054

del Rio Astorga, D., Dolz, M. F., Sanchez, L. M., Blas, J. G., and García, J. D. (2016).
“A C++ Generic Parallel Pattern Interface for Stream Processing,” in
International Conference on Algorithms and Architectures for Parallel
Processing, Granada, Spain, December 14–16, 2016 (Springer), 74–87.
doi:10.1007/978-3-319-49583-5_5

Dietterich, T. G. (2000). “Ensemble Methods in Machine Learning,” in
International workshop on multiple classifier systems, Calgary, Italy, June
21–23, 2000 (Springer), 1–15. doi:10.1007/3-540-45014-9_1

Durillo, J., and Fahringer, T. (2014). From Single-ToMulti-Objective Auto-Tuning
of Programs: Advantages and Implications. Scientific programming 22,
285–297. doi:10.1155/2014/818579

García, V., Mollineda, R. A., and Sánchez, J. S. (2009). “Index of Balanced
Accuracy: A Performance Measure for Skewed Class Distributions,” in
Iberian conference on pattern recognition and image analysis, Povoa de
Varzim, Portugal, June 10–12, 2009 (Springer), 441–448. doi:10.1007/978-3-
642-02172-5_57

Garg, N. (2013). Apache Kafka. Birmingham, United Kingdom: Packt
Publishing Ltd.

Giannotti, F., Nanni, M., Pinelli, F., and Pedreschi, D. (2007). “Trajectory Pattern
Mining,” in KDD ’07 Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Hose, CA, August
12–15, 2007 (New York, NY, USA: ACM), 330–339. doi:10.1145/
1281192.1281230

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 65721813

Kimovski et al. Autotuning of Exascale Applications

https://zenodo.org/
https://doi.org/10.1145/1543135.1542481
https://doi.org/10.1145/1543135.1542481
https://doi.org/10.1109/jproc.2018.2841200
https://doi.org/10.1109/jproc.2018.2841200
https://doi.org/10.1002/cpe.5638
https://doi.org/10.1002/cpe.5638
https://doi.org/10.1145/3154411
https://doi.org/10.1007/s13278-018-0547-5
https://doi.org/10.1109/icsdm.2015.7298021
https://doi.org/10.1016/j.osnem.2017.10.002
https://doi.org/10.1145/1837853.1693471
https://doi.org/10.1016/j.future.2019.12.054
https://doi.org/10.1007/978-3-319-49583-5_5
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1155/2014/818579
https://doi.org/10.1007/978-3-642-02172-5_57
https://doi.org/10.1007/978-3-642-02172-5_57
https://doi.org/10.1145/1281192.1281230
https://doi.org/10.1145/1281192.1281230
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Gschwandtner, P., Durillo, J. J., and Fahringer, T. (2014). “Multi-Objective Auto-
Tuning with Insieme: Optimization and Trade-Off Analysis for Time, p and
Resource Usage,” in European Conference on Parallel Processing, Porto Spain,
25–29, 2014 (Springer), 87–98. doi:10.1007/978-3-319-09873-9_8

Hamers, L., Hemeryck, Y., Herweyers, G., Janssen, M., Keters, H., Rousseau, R.,
et al. (1989). Similarity Measures in Scientometric Research: The Jaccard index
versus Salton’s Cosine Formula. Inf. Process. Manage. 25, 315–318. doi:10.1016/
0306-4573(89)90048-4

Han, J., Pei, J., Yin, Y., and Mao, R. (2004). Mining Frequent Patterns without
Candidate Generation: A Frequent-Pattern Tree Approach. Data mining
knowledge Discov. 8, 53–87. doi:10.1023/b:dami.0000005258.31418.83

He, H., Bai, Y., Garcia, E. A., and Li, S. (2008). “Adasyn: Adaptive Synthetic
Sampling Approach for Imbalanced Learning,” in 2008 IEEE international joint
conference on neural networks (IEEE world congress on computational
intelligence), Hong Kong China, June 1–8, 2008 (IEEE), 1322–1328.
doi:10.1109/ijcnn.2008.4633969

Jordan, H., Thoman, P., Durillo, J. J., Pellegrini, S., Gschwandtner, P., Fahringer, T., et al.
(2012). “A Multi-Objective Auto-Tuning Framework for Parallel Codes,” in SC’12:
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, Salt Lake City, UT, 10–16, 2012 (IEEE), 1–12.
doi:10.1109/sc.2012.7

Kashansky, V., Kimovski, D., Prodan, R., Agrawal, P., Iuhasz, F. M., Justyna, M.,
et al. (2020). “M3at: Monitoring Agents Assignment Model for Data-Intensive
Applications,” in 2020 28th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), Vasteras, Sweden, March
11–13, 2020 (IEEE), 72–79. doi:10.1109/pdp50117.2020.00018

Kimovski, D., Saurabh, N., Stankovski, V., and Prodan, R. (2016). Multi-
objective Middleware for Distributed Vmi Repositories in Federated Cloud
Environment. Scalable Comput. Pract. Experience 17, 299–312.
doi:10.12694/scpe.v17i4.1202

Muralidharan, S., Shantharam,M., Hall, M., Garland, M., and Catanzaro, B. (2014).
“Nitro: A Framework for Adaptive Code Variant Tuning,” in 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, Washington DC
USA, May 19–23, 2014 (IEEE), 501–512. doi:10.1109/ipdps.2014.59

Ren, M., Park, J. Y., Houston, M., Aiken, A., and Dally, W. J. (2008). “A Tuning
Framework for Software-Managed Memory Hierarchies,” in 2008 International
Conference on Parallel Architectures and Compilation Techniques (PACT),
Toronto Canada, October 25–29, 2008 (IEEE), 280–291. doi:10.1145/
1454115.1454155

Silvano, C., Agosta, G., Bartolini, A., Beccari, A. R., Benini, L., Bispo, J., et al. (2016).
“Autotuning and Adaptivity Approach for Energy Efficient Exascale Hpc
Systems: the Antarex Approach,” in 2016 Design, Automation & Test in

Europe Conference & Exhibition (DATE), Dresden Germany, March 14–18,
2016 (IEEE), 708–713. doi:10.3850/9783981537079_1012

Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., and Feuston, B. P.
(2003). Random forest: A Classification and Regression Tool for Compound
Classification and Qsar Modeling. J. Chem. Inf. Comput. Sci. 43, 1947–1958.
doi:10.1021/ci034160g

Talia, D., Trunfio, P., Marozzo, F., Belcastro, L., Garcia-Blas, J., del Rio, D., et al.
(2019). “A Novel Data-Centric Programming Model for Large-Scale Parallel
Systems,” in European Conference on Parallel Processing, Gottingen, Germany,
August 26–30, 2019 (Springer), 452–463.

Tapus, C., Chung, I.-H., and Hollingsworth, J. K. (2002). “Active harmony:
Towards Automated Performance Tuning,” in SC’02: Proceedings of the
2002 ACM/IEEE Conference on Supercomputing, Baltimore, MD,
November 16–19, 2002 (IEEE), 44. doi:10.1109/sc.2002.10062

Tiwari, A., Chen, C., Chame, J., Hall, M., and Hollingsworth, J. K. (2009). “A
Scalable Auto-Tuning Framework for Compiler Optimization,” in 2009 IEEE
International Symposium on Parallel & Distributed Processing, Rome, Italy,
May 23–29, 2009 (IEEE), 1–12. doi:10.1109/ipdps.2009.5161054

Tiwari, A., Laurenzano, M. A., Carrington, L., and Snavely, A. (2011). “Auto-
tuning for Energy Usage in Scientific Applications,” in European Conference on
Parallel Processing, Bordeaux, France, August 29–September 02, 2011
(Springer), 178–187.

Zhang, D. (2007). A Fix-Point Semantics for Rule-Base Anomalies. Int. J. Cogn.
Inform. Nat. Intelligence (Ijcini) 1, 14–25. doi:10.4018/jcini.2007100102

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Kimovski, Mathá, Iuhasz, Marozzo, Petcu and Prodan. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 65721814

Kimovski et al. Autotuning of Exascale Applications

https://doi.org/10.1007/978-3-319-09873-9_8
https://doi.org/10.1016/0306-4573(89)90048-4
https://doi.org/10.1016/0306-4573(89)90048-4
https://doi.org/10.1023/b:dami.0000005258.31418.83
https://doi.org/10.1109/ijcnn.2008.4633969
https://doi.org/10.1109/sc.2012.7
https://doi.org/10.1109/pdp50117.2020.00018
https://doi.org/10.12694/scpe.v17i4.1202
https://doi.org/10.1109/ipdps.2014.59
https://doi.org/10.1145/1454115.1454155
https://doi.org/10.1145/1454115.1454155
https://doi.org/10.3850/9783981537079_1012
https://doi.org/10.1021/ci034160g
https://doi.org/10.1109/sc.2002.10062
https://doi.org/10.1109/ipdps.2009.5161054
https://doi.org/10.4018/jcini.2007100102
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Autotuning of Exascale Applications With Anomalies Detection
	1 Introduction
	2 Related Work
	2.1 Single-Objective Approaches
	2.2 Multi-Objective Approaches
	2.3 Research Gap

	3 Autotuning Model
	3.1 Autotuning Process
	3.2 Implementation

	4 Event Detection Model
	4.1 Events and Anomalies Definition
	4.2 Events and Anomalies Detection Engine Architecture
	4.3 Anomalies Induction and Detection Methods

	5 ASPIDE System Architecture
	5.1 System Interaction

	6 Application Case Study
	7 Experimental Evaluation and Discussion
	7.1 Autotuner
	7.1.1 Evaluation Testbed
	7.1.2 Pluggable Optimization Objectives
	7.1.3 Evaluation Results

	7.2 Events and Anomalies Detection Engine
	7.2.1 Evaluation Testbed
	7.2.2 Evaluation Results
	7.2.2.1 Hyperparameter Optimization
	7.2.2.2 Accuracy Evaluation

	8 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

