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Alzheimer’s disease (AD) is a neurodegenerative disorder which spans several years from
preclinical manifestations to dementia. In recent years, interest in the application of
machine learning (ML) algorithms to personalized medicine has grown considerably,
and a major challenge that such models face is the transferability from the research
settings to clinical practice. The objective of this work was to demonstrate the
transferability of the Subtype and Stage Inference (SuStaIn) model from well-
characterized research data set, employed as training set, to independent less-
structured and heterogeneous test sets representative of the clinical setting. The
training set was composed of MRI data of 1043 subjects from the Alzheimer’s disease
Neuroimaging Initiative (ADNI), and the test set was composed of data from 767 subjects
from OASIS, Pharma-Cog, and ViTA clinical datasets. Both sets included subjects
covering the entire spectrum of AD, and for both sets volumes of relevant brain
regions were derived from T1-3D MRI scans processed with Freesurfer v5.3 cross-
sectional stream. In order to assess the predictive value of the model, subpopulations of
subjects with stable mild cognitive impairment (MCI) and MCIs that progressed to AD
dementia (pMCI) were identified in both sets. SuStaIn identified three disease subtypes, of
which the most prevalent corresponded to the typical atrophy pattern of AD. The other
SuStaIn subtypes exhibited similarities with the previously defined hippocampal sparing
and limbic predominant atrophy patterns of AD. Subject subtyping proved to be consistent
in time for all cohorts and the staging provided by the model was correlated with cognitive
performance. Classification of subjects on the basis of a combination of SuStaIn subtype
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and stage, mini mental state examination and amyloid-β1-42 cerebrospinal fluid
concentration was proven to predict conversion from MCI to AD dementia on par with
other novel statistical algorithms, with ROC curves that were not statistically different for the
training and test sets and with area under curve respectively equal to 0.77 and 0.76. This
study proves the transferability of a SuStaIn model for AD from research data to less-
structured clinical cohorts, and indicates transferability to the clinical setting.

Keywords: alzheiemer’s disease, patient subtyping, patient staging, SuStain model, inter-cohort validation

INTRODUCTION

Interest in the application of advanced statistics and machine
learning (ML) in medicine has been constantly rising during the
last years and their predictive capability allowed advancements in
many fields. Particularly, data-driven approaches may contribute
greatly to the advancement of neurosciences (Oxtoby et al., 2017;
Ten Kate et al., 2018; Redolfi et al., 2020), where diseases are
regularly modeled heuristically and patient care is influenced by
clinicians’ expertise (Braak and Braak, 1991; Jack et al., 2010; Jack
et al., 2013).

Alzheimer’s disease (AD) is one of the most impactful
neurodegenerative diseases, affecting more than 50 million
patients worldwide and costing healthcare systems $800 billion
per year (Chan et al., 2019). The common underlying pathology
of this disease is the combination of deposition of amyloid
plaques with tau neurofibrillary tangles (NFT) (Braak and
Braak, 1991), which is the driving cause of neurodegeneration
and brain atrophy that leads to a progressive cognitive
deterioration that affects multiple domains and eventually to a
complete loss of function (Jack et al., 2010). Some basic questions
still remain unresolved, such as: how homogeneous is AD? Is the
course of progression more or less the same for most patients or
are there significant variations?

Heuristic models of the temporal evolution of AD have been
largely hypothesized (Braak and Braak, 1991; Jack et al., 2010;
Jack et al., 2013), but most of these had the limitation of defining a
mean average for the disease evolution that fits the majority of the
AD patients. Instead, the phenomenology of AD is heterogeneous
in terms of spatial distribution of tau NFT (Murray et al., 2011)
and detecting rarer disease patterns may help in patient
stratification, potentially allowing for specific drug targeting
(ten Kate et al., 2018). Another major limitation of most
heuristic and data driven models is the lack of validation in
independent data, which is fundamental in order to translate
models from the research setting to the clinical practice. For all
these reasons well-validated ML tools are needed in order to
promote advancements in clinical practice.

In recent years, the collection of numerous data sets
containing demographic, clinical and biologic data of subjects
from all stages of AD made possible the employment of statistical
models and ML approaches (Oxtoby and Alexander, 2017). This
context helped deploying disease models that allowed the
definition of new strategies for biomarker-informed patient
staging (Sperling et al., 2011). Among these algorithms, the
family of event-based models (EBM) has been proven

successful in defining discrete models for a wide battery of
brain diseases (Young et al., 2015; Eshaghi et al., 2018;
Wijeratne et al., 2018; Venkatraghavan et al., 2019; Firth et al.,
2020; Oxtoby et al., 2021), showing utility in fine-grained staging
of patients (Young et al., 2014). Generally, the assumption of
these EBMs is that the sequence of events describing the disease
progression is common for all subjects, which ignores the
observed variation between individuals that may indicate the
presence of subtypes of AD (Poulakis et al., 2020).

One key limitation of early subtyping approaches in literature
(Whitwell et al., 2012; Nettiksimmons et al., 2014; Noh et al.,
2014; Hwang et al., 2015), is that they do not account for temporal
variation of the disease, implicitly assuming that all subjects were
at the same disease stage.

SuStaIn (Young et al., 2018) (Subtype and Stage Inference)
generalizes the EBM approach to include both subtyping and
staging of subjects simultaneously, by using a full trajectory of
change to define each subtype rather than a static pathology
pattern. SuStaIn drops the basic EBM hypothesis of a single
event sequence that fits all subjects, while also modeling the
transition of biomarkers between different intermediate levels
of severity rather than just changing from normal to abnormal.
SuStaIn enables the discovery of different progression patterns
that represent different manifestations of the same disease
while avoiding the confounds of temporal change (Young
et al., 2018).

However, SuStaIn has been tested so far only on well-defined
research datasets or on synthetic data. Well-defined research
datasets are not entirely representative of the general
population (Ferreira et al., 2017) and transferability of a model
to a less-structured clinical data is not granted a priori. In this
paper we trained SuStaIn model on the well-defined research
dataset of Alzheimer’s disease Neuroimaging Initiative (ADNI)
(Aisen et al., 2010), and we tested the subtyping and staging utility
provided by the resulting disease model on a wider and
heterogeneous data cohort composed of independent and less-
well-phenotyped datasets representative of clinical settings and
routine biomarker collection procedures. Our goal was to assess
the transferability of a SuStaIn progression model from research
data to an independent clinical data cohort coming from three
different multi-centric data sets encompassing the entire AD
spectrum that spans from early pre-clinical stages of
cognitively normal (CN) elderly individuals to full blown
dementia. This is a mandatory step in order to adopt SuStaIn
and, more generally, advanced statistical models and ML tools in
the clinical environment.
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MATERIALS AND METHODS

Participants
Data from a total of 1810 subjects gathered from various cohorts
(Table 1) were used for this study. Subjects were divided into a
training set, used to create the disease model, and a test set, used
for model validation. The training set was composed of baseline
data of 1043 subjects from the ADNI cohort that were either CN,
affected by mild cognitive impairment (MCI) or AD dementia
(Table 2), and were not affected by other major neurological
diseases. Subjects diagnosed with subjective memory complaints
(SMC) were included in the CN group since Mini-Mental State
Examination (MMSE) score of these individuals was 28.1 ± 1.6.
Diagnostic criteria used to identify MCI subjects were a clinical
dementia rating (CDR) � 0.5 and amini mental state examination

(MMSE) (Tombaugh and McIntyre, 1992) score ≥24, while AD
subjects were identified as all subjects with CDR ≥ 1 or subjects
with CDR � 0.5 and MMSE<24.

Additionally, two subpopulations of subjects with longitudinal
information, namely stable MCI subjects (sMCI) and progressive
MCI (pMCI) were identified. Specifically, sMCIs were subjects for
which only MCI diagnosis was reported for all available time-
points and pMCIs were subjects that had at least one diagnosis of
MCI and subsequently one diagnosis of AD and never reverted to
MCI in the time-span of 10 years we considered.

The test set was composed of subjects coming from three
independent data cohorts characterized by heterogenous and
less-structured data collection. Specifically, subjects were
selected from the Open Access Series of Imaging Studies
(OASIS) (Marcus et al., 2007), PharmaCog (Galluzzi et al.,

TABLE 1 | Characteristics of the data sets selected.

Data Set Full name Description Categories

Training
Set

ADNI-1 Alzheimer’s Disease Neuroimaging Initiative – 1 The Alzheimer’s Disease Neuroimaging Initiative Aisen et al.
(2010) is a longitudinal multicentre study designed to develop
clinical, imaging, genetic, and biochemical biomarkers for the
early detection and tracking of Alzheimer’s disease (AD). ADNI
was originally launched in 2003 as a public-private
partnership; its primary goal has been to test whether
magnetic resonance imaging (MRI), biological markers,
clinical and neuropsychological assessments can be
combined to measure the progression of MCI and
Alzheimer’s disease. The initial five-year study (ADNI-1) was
extended by 2 years in 2009 by a Grand Opportunities grant
(ADNI-GO), and in 2011 by further competitive renewal of the
ADNI-1 grant (ADNI-2). Through its three phases, it has
targeted participants with AD, different stages of MCI,
and CN.

CN MCI
AD
SMC

ADNI-GO Alzheimer’s Disease Neuroimaging Initiative – Grand
Opportunities

MCI
SMC

ADNI-2 Alzheimer’s Disease Neuroimaging Initiative – 2 CN
MCI
AD
SMC

Test Set OASIS Open Access Series of Imaging Studies OASIS Marcus et al. (2007) consists of I) a cross-sectional
collection of 416 subjects. 100 of the included subjects, over
the age of 60, have been clinically diagnosed with very mild to
moderate Alzheimer’s disease (AD). II) A longitudinal collection
of 150 subjects aged from 60 to 96 years. Each subject was
scanned on two or more visits, separated by at least 1 year for
a total of 373 imaging sessions. In addition, the data set
contains socio-demographic, clinical, and genotype
information.

CN
MCI
AD

PharmaCog
(E-ADNI)

Prediction of cognitive properties of new drug candidates for
neurodegenerative diseases in early clinical development

PharmaCog is an industry-academic (Innovative Medicines
Initiative – IMI) European project aimed at identifying
biomarkers sensitive to symptomatic and disease modifying
effects of drugs for Alzheimer’s disease Galluzzi et al. (2016).
Several clinical sites participated in this study across Italy
(Brescia, Verona, Milan, Perugia, and Genoa), Spain
(Barcelona), France (Marseille, Lille, and Toulouse), Germany
(Leipzig and Essen), Greece (Thessaloniki) and Netherland
(Amsterdam). 151 MCI patients have been studied
longitudinally for 3 years collecting multimodal image scans,
clinical variables, and bio-specimens.

MCI
AD

ViTA Vienna Transdanube Aging ViTA is a population-based cohort-study of all 75-years old
inhabitants of a geographically defined area of Vienna Fischer
et al. (2002). VITA is composed of 606 subjects followed
longitudinally for 4 years. Recruitment took place between
May 2000 and October 2002. The primary focus of the VITA
work-group was to establish a prospective age cohort for
evaluation of prognostic criteria for the development of AD.

CN
MCI
AD

AD, Alzheimer’s disease; CN, cognitively normal; MCI, mild cognitive impairment; SMC; subjective memory complaints.
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2016), and Vienna Transdanube Aging (ViTA) (Fischer et al.,
2002) cohorts, totaling 767 subjects with the same clinical labels
and diagnostic criteria as the training set. Populations of sMCIs
and pMCIs were identified in the test sets with the same criteria as
in the training set, but in this case the maximum time-span
available was 7.5 years.

The training and test set populations were heterogeneous in
terms of demographic, genetic and biological features (Table 2).
The CN subjects in the test set were younger and less educated
compared to the training set. The MCI subjects in the test set
were less educated, and had higher prevalence of APOE-ε4 non-
carriers compared to the training set’s. Moreover, the pMCIs in
the test set were younger than those in the training set. Finally,
the AD dementia subjects in the test set were older and less
educated compared to the corresponding subjects of the training
set. Importantly, no statistical differences were reported in the
frequency of abnormal cerebrospinal fluid (CSF) concentrations
of amyloid-β1-42 (Aβ1-42) protein between the test and the
training sets for each diagnostic group. In all test set
subgroups, with the exception of pMCIs, the gender
prevalence was statistically different compared to the
training set.

Clinical, Cognitive, Biological and Imaging
Data
Clinical, cognitive, biological and imaging information were
collected for each subject from the training and test set. Imaging
information was derived from 1.5T or 3T T1-3D magnetic
resonance imaging (MRI) scans, and was analyzed with
Freesurfer 5.3 cross sectional stream (http://surfer.nmr.mgh.
harvard.edu) with Desikan-Killiany atlas to obtain volumes of
relevant brain regions of each subject, which were used to build
the SuStaIn disease progression model. Freesurfer outputs were
visually checked and validated by expert neuroscientists. The
volumes of specific regions were used, specifically, we selected
volumes of hippocampus, fusiform gyrus, entorhinal cortex,
middle temporal cortex, precuneus, amygdala, insula, thalamus

putamen, caudate, nucleus accumbens, pallidum and ventricles,
which are among the most used regions employed in both
heuristic and data driven currently available atrophy models
for AD (Frisoni et al., 2010; Vemuri and Jack, 2010; Koval et al.,
2018; Young et al., 2018; Archetti et al., 2019). For each region,
volumes were obtained averaging the respective volume of the
left and right hemisphere, volume of ventricles was obtained as
the sum of 3rd and lateral ventricles. Cognitive information was
provided by the MMSE score and was used as a proxy in order to
verify that the disease model correlated with cognitive decline.
Biological data included CSF concentration of Aβ1-42 protein
and it was used to identify a subpopulation of amyloid-negative
healthy subjects defined as those CN subjects from the training
set that had an Aβ1-42 CSF concentration >192 pg/ml (Shaw
et al., 2009). For the training set, Aβ1-42 CSF concentration was
obtained with Multiplex xMAP Luminex platform with
Innogenetic immunoassay kit–based reagents (Kang et al.,
2012). For demographic purposes Aβ1-42 CSF concentration
was collected for the test set subjects as well, but the CSF
biomarker was only available for PharmaCog subjects. In this
case, Aβ1-42 CSF concentration was obtained with Enzyme
Linked Immunosorbent Assay (ELISA) (Butler, 2000) which
led to different CSF biomarkers distributions with respect to the
training set. In order to tackle this issue, Aβ1-42 CSF
concentrations from PharmaCog were rescaled to match the
mean and standard deviation of Aβ1-42 distribution of training
set subjects. The same cut-off value as the training set was used
to define abnormality. As a compensation for inter-cohort
demographic variability all volumetric measures for both
training and test sets were corrected against the effect of age,
sex, education (Gale et al., 2007), APOE genotype (Liu et al.,
2013) and total intracranial volume (TIV) (Gur et al., 1991;
Király et al., 2016) by means of multiple linear regression, and
were converted into z-scores with respect to the mean and
standard deviation defined by the volumes distribution of the
healthy amyloid-negative subjects from the training set.
Correction of biomarkers was performed separately for
training set and test set.

TABLE 2 | Demographic, clinical, genetic and biological characteristics of the training and test sets.

N Age (years) Sex (M/F) Education
(years)

MMSE
(raw
score)

Aβ1-42
(positive/negative)

APOE-ε4
(carriers/

non carriers)

Training set CN 335 73.5 ± 5.9 46%/54% 16.3 ± 2.6 29.1 ± 1.2 40%/60% 27%/73%
MCI 537 72.0 ± 7.2 59%/41% 16.0 ± 2.8 27.7 ± 1.8 66%/34% 51%/49%
AD 171 73.4 ± 8.2 54%/46% 15.5 ± 2.7 23.4 ± 2.0 95%/5% 73%/27%
Total 1043 72.7 ± 7.0 54%/46% 16.04 ± 2.7 27.4 ± 2.5 62%/38% 46%/54%
sMCI 271 72.3 ± 7.1 58%/42% 16.1 ± 2.8 28.0 ± 1.7 56%/44% 42%/58%
pMCI 205 73.1 ± 6.8 59%/41% 15.8 ± 2.8 27.2 ± 1.8 87%/13% 64%/36%

Test Set CN 440 54 ± 25* 37%/63%* 8.4 ± 5.7* 29.0 ± 1.2 NA 2%/7%
MCI 283 72.3 ± 7.6 46%/54* 9.2 ± 5.1* 26.3 ± 2.6* 34%/17% 19%/32%*
AD 44 77.3 ± 7.4* 34%/66%* 5.8 ± 5.3* 21.7 ± 3.8* NA 0%/5%
Total 767 62 ± 21* 40%/60%* 8.6 ± 5.4* 27.2 ± 3.0 12%/6% 8%/16%*
sMCI 152 71.2 ± 7.5 47%/53% 11.5 ± 4.2* 26.7 ± 2.2* 46%/25% 25%/43%
pMCI 39 69.8 ± 6.4* 49%/51% 11.7 ± 3.9* 25.7 ± 2.4* 44%/5% 33%/26%

Values fromCN,MCI and AD contribute to the totals, MCI subpopulations of pMCIs and sMCIs are reported aswell. Valuesmarkedwith * on the test set are significantly different (p-value of
ANOVA for continuous variables and chi-square for discrete variables <0.05) from the corresponding values from training set. Abbreviations: M, male; F, female; N, number.
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Modelling
The disease progression model was built using the SuStaIn
algorithm (Young et al., 2018), which generalizes the EBM
approach (Fonteijn et al., 2012; Young et al., 2015) to allow
for subtyping. Traditional EBMs rely on the assumption that it is
possible to define a common sequence of events where, in the case
of disease models, each event is defined as the value of a
biomarker stepping from normality to abnormality. The
normality and abnormality of the values are usually defined
on the basis of biomarker distributions of healthy and diseased
subjects. However, SuStaIn differs from classical EBM models in
two main features:

1) The hypothesis of the common event sequence is relaxed
in favor of multiple event sequences corresponding to a
data-driven number of different disease subtypes that
represent different disease trajectories of biomarker
change observed in the training set. The optimal
number of subtypes is determined using a popular
model selection criterion called “Cross Validation
Information Criterion” (CVIC) (Gelman et al., 2014).

2) Biomarkers are not treated as binary entities that are either
normal or abnormal but all biomarker trajectories are
modeled as a succession of z-scores progressing linearly
toward abnormality.

Considering such modifications, the disease progression
model is then represented by a set of sequences of integer
z-scores for each biomarker, which represents the different
disease subtypes. For this work z-scores were calculated with
respect to the mean and standard deviation defined by the
biomarker distribution of the healthy amyloid-negative ADNI
subjects.

The maximum number of subtypes was set to 5 and the
maximum value of z-scores for each biomarker was set to 3
(Young et al., 2018), meaning that maximum abnormality of each
biomarker was reached when the z-score was >� 3.

When the disease progression model is defined, it is possible to
outline the subtype that most likely fits any subject as the subtype
for which the likelihood of a subject’s z-scores projected on the
z-score progression is maximized (Young et al., 2018). The
subject is then staged on the most likely stage of the z-score
progression defined by his or her subtype. The SuStaIn algorithm
is publicly available in the form of a python package at the
following link: http://europond.eu/software/.

Model Validation and Statistical Analysis
In order to investigate possible similarities with other subtyping
methods, correlation between subtypes defined with SuStaIn and
subtypes defined on the basis of visual rating scales of regional
brain atrophy (Ferreira et al., 2019) was explored. Specifically, the
visual scales considered were Scheltens’medial temporal atrophy
(MTA) scale (Scheltens et al., 1992), Koedam’s scale for Posterior
Atrophy (PA) (Koedam et al., 2011) and Pasquier’s frontal
subscale of global cortical atrophy (GCA-F) (Pasquier et al.,
1996; Scheltens et al., 1997).

According to visual ratings, typical AD was defined as
abnormal MTA together with abnormal PA and/or abnormal
GCA-F. Hippocampal-sparing was characterized by abnormal
PA and/or abnormal GCA-F but normal MTA, while minimal
atrophy ADwas defined as normal scores inMTA, PA, and GCA-
F. Limbic-predominant was defined as abnormalMTA alone with
normal PA and GCA-F (Ferreira et al., 2017). All the visual
ratings were computed automatically by means of the Automatic
Visual Ratings of Atrophy (AVRA) tool (Mårtensson et al., 2019).

Further heuristic validation of SuStaIn was tested by exploring
correlation of the subjects staging to the cognitive decline
measured by means of MMSE.

The transferability of the model to new individuals was tested
by subtyping and staging subjects from both the training and test
sets on the basis of baseline volumes. Similarities between clinical,
demographic, genetic and CSF features of subjects from the
training and test sets assigned to different subtypes were
explored by means of ANOVA and chi-square tests.

A subset of subjects (502 for the training set and 139 for the
test set) were subtyped using 12-months visit biomarkers
measurement in order to check the temporal consistency of
the subtyping. Predictive capabilities of the model were tested
by measuring the area under curve (AUC) of receiver-operator
characteristic (ROC) curves obtained from classification of
pMCIs and sMCIs from the training and test sets using
various combinations of subtype, stage, MMSE and CSF Aβ1-
42 concentration as predictors in a multivariate logistic model.
Statistical differences between ROC curves were tested by means
of De Long test (DeLong et al., 1988). All ROC analyses were
computed using R (version 3.5.1).

Chi-square and ANOVA tests (α � 0.05) were performed in
python (version 3.6.9) to test differences between the diagnostic
groups and subtypes.

RESULTS

The disease model identified by SuStaIn consisted of three disease
subtypes (Figure 1). The first disease subtype (“Subtype 1” in the
next sections), is characterized by abnormality (Z-score � 1) that
can be observed in the ventricles first, then atrophy occurs in the
hippocampus and entorhinal cortex, that are also the first regions
to show full abnormality (Z-score � 3) alongside amygdala.
Interestingly, ventricles are also the last regions to show full
abnormality meaning a relatively slow but persistent volumetric
expansion process that tracks the disease progression.

The second disease subtype (“Subtype 2” in the next sections)
shows an atrophy pattern where abnormality starts in thalamus
and pallidum (Z-score � 1). Subsequently, atrophy can be
observed in caudate, putamen, insula, precuneus and then
fusiform gyrus and middle-temporal cortex and hippocampus
which is the first biomarker to become fully abnormal (Z-score �
3). In this subtype, ventricles start expanding later than in
Subtype 1. The third subtype (“Subtype 3” in the next
sections) shows an atrophy pattern where ventricles become
fully abnormal before atrophy starts in almost all the other
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regions, for which a less-defined atrophic progression is
manifested in comparison to Subtypes 1 and 2.

SuStaIn subtypes were cross linked to AVRA ratings to evaluate
whether similarities between subtypes defined by the two methods
exist (Figure 2). Subtype 1 was mainly characterized by the
“Typical AD” atrophy pattern (Ferreira et al., 2019); Subtype 2
showed an equal predominance of the hippocampal-sparing
variant; Subtype 3 showed a limbic-predominant subtype. The
minimal atrophy subtype (Ferreira et al., 2020) wasmost consistent
with Subtypes 1 and 2. After correcting against effects of sex, age
and TIV, relevant differences (p-value for ANOVA <0.05) in
volume of hippocampus were observed between subjects from
Subtypes 1 and 2 labeled with minimal atrophy according to the
AVRA scores (Figure 3), with subjects from Subtype 2 exhibiting
larger volumes. Subjects with minimal atrophy from Subtype 3 are
not reported as they are not enough for statistical significance.

Differences in AVRA visual scores between subtypes were
inferred via a linear regression model of visual scores vs. model
stage (Supplementary Figure S1). No relevant subtype differences
were observed for GCA. MTA was shown to progress significantly
faster for Subtype 2 than Subtypes 1 and 3. Subtype 3 also showed a
significantly faster progression of the PA scale. Subjects from each
diagnostic category of both training and test sets that were assigned
to a specific subtype are shown in Table 3. Subjects that were in
stage 0 or in the final stage were excluded from the subtyping as

these stages are equivalent for each subtype. In each diagnostic
group, the majority of subjects were on average assigned to the
typical subtype (65% for training set and 82% for the testing set). A
minority of the subjects were assigned to the hippocampal sparing
subtype, specifically 30% of the training set and 16% for the test set,
while only a limited number of subjects for each dataset were
assigned to the limbic subtype (5% for the training set and 2% for
the test set). For both sets, subjects from each diagnostic category
were staged on average at stages that mirror the worsening of their
clinical condition (Table 3), with the exception of pMCIs and
sMCIs from Subtype 3.

Significant differences between subtypes were observed for
demographic, clinical, biological and genetic variables (Table 4).
For each subtype, subjects from all diagnostic categories were
considered. In both training and test sets, subjects from Subtype 2
were on average more educated and a larger portion of them were
male with respect to subjects from Subtype 1. Similarly, subjects
from Subtype 3 had a lower MMSE with respect to Subtype 2. In
the training set, where CSF data was widely available, the portion
of subjects that had an abnormal Aβ1-42 CSF concentration was
significantly lower with respect to the other subtypes. This effect
was not observed in the test set for the small number of subjects
for which Aβ1-42 is available.

Subtyping consistency of the SuStaIn progression model was
tested by comparing subtyping of subjects for which 12-months

FIGURE 1 | SuStaIn model built on the basis of volumetric biomarkers of the training set.(A) Z-score progression patterns for each subtype. Color shades indicate
the probability of a Z-score to increment, “N” indicates the number of subjects from the training set assigned to each subtype (B)Representations of early stages for each
subtype.
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follow-up was available (502 for the training test and 140 for the
test set). Few subjects were subtyped to a different group at 12-
months follow up (Figure 4), with only 11% of training set
subjects and 9% of test set subjects assigned to different subtypes.
Changes occurred mainly between subtypes 1 and 2 in both
training and test sets. For subjects with stable subtype assignment,
stage progression was relatively slow in time showing an average
progression of 0.8 ± 1.5 stages over the 12-month period.

The disease progression signature defined by Subtype 1
showed good correlation with cognitive performance measured
by MMSE (Figure 5), with R2 � 0.74 for the training set and R2 �
0.82 for the test set. Similarly, good correlations were registered in

Subtype 2 (R2 � 0.85 training set; R2 � 0.87 test set) and Subtype 3
(R2 � 0.85 training set; R2 � 0.76 test set).

Classification of pMCIs and sMCIs, based on subtype and
stage retuned ROCs with AUC � 0.67 for the training set and 0.72
for the test set. The combination of subtype and stage with other
predictors tracking different aspects of the disease, namely the
MMSE and CSF concentration of Aβ1-42 protein, returned a
better classification performance than the subtype and stage
model alone, with AUC � 0.77 for the training set and AUC �
0.76 for the test set, outperforming also a model that accounts
only for MMSE and Aβ1-42 (AUC � 0.72 for the training set and
AUC � 0.74 for the test set) and a model that accounts for AVRA

FIGURE 2 | AVRA vs. SuStaIn subtypes of AD. Pie graphs represent the percentage of AVRA subtypes subjects for each SuStaIn subtype. Regional atrophy in
AVRA was measured with the MTA, PA and GCA-F scales based on T1-3D weighted images; below, visual examples of the SuStaIn atrophy subtypes are shown.

FIGURE 3 | Hippocampal volume of subjects from Subtypes 1 and 2 labeled with minimal atrophy according to AVRA scores. Hippocampal volumes were
averaged between right and left hemisphere for simpler representation.
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subtype, MMSE and Aβ1-42 (AUC � 0.72 for the training set,
unavailable for the test set). Notably, for each predictor
combination no statistically significant differences were
observed between ROC curves (Supplementary Figure S2) of
the training and test sets (p-value of DeLong test >0.05).

DISCUSSION

In this study, we tested the transferability of a SuStaIn AD
progression model among clinical data cohorts. The disease
progression model trained on volumetric imaging markers

from an observational research study estimated three AD-
related atrophy patterns. Previously, SuStaIn was only tested
on research datasets, such as ADNI and GENetic
Frontotemporal dementia Initiative (GENFI) or synthetic data
(Young et al., 2018), while in the present study we demonstrated
model transferability to clinical cohorts through stable and
consistent subtyping.

Subtype 1 mirrored the typical course of AD as supposed in
heuristic models and as found in previous EBM and data-driven
models (Young et al., 2015; Archetti et al., 2019; Venkatraghavan
et al., 2019), according to which hippocampus is one of the
earliest regions to show considerable atrophy. This subtype also

TABLE 3 | Number and percentage of subjects from each diagnostic category assigned to each subtype.

Subtype 1 Subtype 2 Subtype 3

N Average Stage N Average Stage N Average Stage

Training Set CN 96 (54%) 3 ± 3 74 (41%) 3 ± 3 9 (5%) 4 ± 1
MCI 243 (62%) 5 ± 4 128 (33%) 5 ± 5 22 (5%) 7 ± 4
AD 126 (79%) 8 ± 5 26 (16%) 9 ± 6 7 (5%) 11 ± 5
sMCI 111 (59%) 4 ± 4 67 (36%) 4 ± 4 10 (5%) 8 ± 5
pMCI 116 (69%) 6 ± 5 44 (26%) 7 ± 6 8 (5%) 7 ± 4

Test Set CN 303 (86%) 5 ± 4 37 (11%) 5 ± 4 9 (3%) 5 ± 2
MCI 185 (78%) 7 ± 6 49 (21%) 6 ± 4 3 (1%) 9 ± 2
AD 41 (95%) 9 ± 7 1 (2.5%) 12 1 (2.5%) 9
sMCI 83 (68%) 7 ± 6 35 (29%) 5 ± 4 4 (3%) 8 ± 3
pMCI 32 (84%) 9 ± 6 6 (16%) 11 ± 4 0 (0%) NA

TABLE 4 | Descriptive statistics of the demographic, clinical, biological and genetic variables of subjects for each subtype

Age (years) Sex (M/F) Education (years) MMSE (raw score) Aβ1-42 (positive/negative) APOE-ε4 (carriers/ non
carriers)

Training Set Subtype 1 72.5 ± 7.2a 48%/52%a 15.9 ± 2.7a 26.6 ± 2.6a 72%/28%a 48%/52%
Subtype 2 73.8 ± 6.7a 84%/16%a,b 16.4 ± 2.7a 27.9 ± 2.0a,b 53%/46%a,b 44%/56%
Subtype 3 74.8 ± 6.2 61%/39%b 15.9 ± 3.0 26.5 ± 2.6b 79%/21b 42%/58%

Test Set Subtype 1 60 ± 24c 41%/59%a 8.5 ± 5.4a 26.7 ± 3.3 3%/10% 8%/14%
Subtype 2 63 ± 17b 64%/36%a 10.4 ± 5.6a 27.4 ± 2.2b 31%/15% 24%/25%
Subtype 3 74.4 ± 5.7c,b 46%/54% 7.9 ± 6.1 25.7 ± 4.7b 15%/0% 0%/15%

Values marked with aindicate significant differences (p-value < 0.05) between Subtype 1 and Subtype 2 values in the same set; values marked with cindicate significant differences (p-value
< 0.05) between Subtype 1 and Subtype 3 values in the same set; values marked with bindicate significant differences (p-value < 0.05) between Subtype 2 and Subtype 3 values in the
same set.

FIGURE 4 | Longitudinal subtype consistency for training set subjects (left) and test set subjects (right) over a 12-months follow-up period.
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shares similarities with the typical subtype as defined in the
original SuStaIn work (Young et al., 2018) for which
hippocampus and amygdala are among the first regions to
show atrophy. The correspondence of Subtype 1 with the
canonical and most prevalent manifestation of AD (Braak and
Braak, 1991), is reinforced by our subject subtyping results, with
the majority of subjects assigned to this subtype in both training
and test set. In particular, the proportions of AD subjects of the
training and testing set assigned to Subtype 1, 79% and 95%
respectively, are greater than those from other diagnostic
categories. Subtype 1 is also majorly prevalent as assignment
of pMCIs, with a proportion of 69% compared to the other
diagnostic categories.

Subtype 2 shows similarities with the hippocampal-sparing
variant of AD characterized by a relative sparing of the medial
temporal lobe as observed in previous works (Murray et al., 2011;
Whitwell et al., 2012; Ferreira et al., 2019; Krajcovicova et al.,
2019). In this subtype hippocampus starts becoming abnormal

after most of the others deep gray matter structures, with loss
predominantly focused in the insula, caudate nucleus and parietal
cortex. The similarity also extends to the demographic
characteristics of this group, that is characterized by a higher
prevalence of male subjects as reported in previous works
(Ferreira et al., 2020). In this subtype, pallidum, putamen and
caudate are among the first regions to show atrophy as observed
in the subcortical subtype defined in the original SuStaIn work
(Young et al., 2018).

Subtype 3 is characterized by a broader atrophy signature with
less distinct ordering than the other subtypes, with the exception
of ventricles expansion that was clearly the first marker to become
abnormal. In this atypical subtype, atrophy seems to progress
simultaneously in most brain regions. Subtype 3 was observed in
a minority of subjects when considering our whole cohort. These
subjects exhibit similarities with the limbic predominant subtype
of AD (Ferreira et al., 2017). Also, Subtype 3 might have some
characteristics in common with other subtypes as some subjects

FIGURE 5 | Plot of Cognitive performancemeasured byMini Mental State Examination (MMSE) vs. the estimated disease stage subjects from the training (left) and
test (right) sets for each subgroup. Coefficients of determination (R2) of the linear regression of MMSE score vs. disease stage are reported. The x-axes are only reported
up to stage 25 of 39 as no subjects were staged beyond.
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had been labeled as belonging to the typical AD subtype (Ferreira
et al., 2017; Persson et al., 2017). Alternatively, it is possible that
this group does not reflect a distinct AD subtype but just includes
a subgroup of subjects whose ventricles outlie the normal
distribution of ventricles in healthy subjects.

The atrophy subtypes of AD have been assessed via visual
rating scales in several previous studies (Ferreira et al., 2020).
AVRA is a method to automatically quantify these visual rating
scales, which was used just on ADNI data, therefore it represented
the ideal tool to find a correlate between a clinically used
subtyping method and the SuStaIn data driven definition
performed on our training dataset. We have produced the first
comparison of data-driven subtyping results using a disease
progression model (SuStaIn) with existing progression-
ignorant methods of visual ratings and AVRA. Partial
agreement was observed between SuStain and AVRA subtypes
on an individual level, and differences may be imputed to the
selection of brain regions used to train SuStaIn, that do not cover
entirely the same brain region used to assess visual ratings and to
a general lack of harmonization of subtyping methods (Mohanty
et al., 2020). SuStaIn proved to offer a finer-grained
representation of different atrophy patterns as relevant
differences in hippocampal volume were observed between
subjects from subtypes 1 and 2 that were labeled with minimal
atrophy according to the AVRA scores.

The temporal consistency of SuStaIn subtyping was tested on
subjects from the training and test sets for which a 12-months
follow-up visit was available. The test resulted in excellent
consistency with only 10% of subjects receiving a different
subtype assignment across different visits. Since disease stage
was relatively stable across the 12-months interval for individuals
with stable subtype, the excellent subtype consistency was
expected.

Once subjects from all subtypes were staged on the respective
disease progression sequence, the SuStain stage showed good
linear correlation (Perneczky et al., 2006) with general cognitive
decline on the MMSE (Tombaugh and McIntyre, 1992) test,
particularly for Subtypes 1 and 2, and the ceiling effect that was
observed in previous studies (Hoops et al., 2009; Archetti et al.,
2019) was not detected, likely due to the absence of early markers
of AD in the model, such as CSF markers.

SuStaIn subtype and stage predicted conversion of MCI
subjects to AD with an AUC comparable to other novel
statistical algorithms (Ramírez et al., 2018; Salvatore et al.,
2018). The combination of multiple predictors proved to be
key in improving classification performance as classification
based on subtype and stage alone or on MMSE and Aβ1-42
alone yielded a lower classification performance. Importantly,
classification task performed similarly in the training and test set
for each combination of predictors, thus giving a first indication
of the transferability of SuStaIn disease models and its use in deep
patient phenotypization for future clinical trials as well.

The interpretation of the atrophy subtypes still remains an
open issue as solid subtyping ground truth in AD is lacking, since
heuristic models such as Jack’s (Jack et al., 2010) or Braak’s (Braak
and Braak, 1991) are more aimed at defining a common disease
trajectory rather than detecting different atrophy patterns. Also,

the model presented here differs slightly from the AD model
presented in the original SuStaIn work (Young et al., 2018), and
this difference is provoked by choice of different brain regions as
input data for the two models and partially due to the different
purpose of this study.

Previous works based on cross sectional models were able to
reach better classification performances across a wide range of
neurological diseases (Willette et al., 2014; Archetti et al., 2019),
but in all cases the models were built ab initio using multi-modal
markers accounting for biological features and cognitive scores,
while we used CSF and cognitive data only for post-hoc analyses.
In the present study, we chose to exclude CSF measurements and
cognitive scores because these markers were available only for a
small portion of subjects used as test set.

The most important limitation of the present work is the
relatively small number of subjects used to train and test the
model. The small number of subjects particularly affects the
characterization of rarer subtypes, that cannot be modeled as
accurately as common subtypes. Also, the small number of
subjects considered to assess the predictive value of the model
prevented us from assessing with a usual power level measures of
sensitivity and specificity for the classification of pMCIs and sMCIs.

An important limitation of the model is the relatively low
AUC reached in the classification of pMCIs vs. sMCIs, indeed the
AUC could be improved with the inclusion of CSF and cognitive
scores for the model building phase rather than using them for
post hoc analyses (Archetti et al., 2019), but those biomarkers
were excluded from the model building as they should not be
important factors in atrophy subtype identification. Moreover,
CSF and cognitive scores are more easily affected by inter-cohort
and inter-centre harmonization issues (Costa et al., 2017; Delaby
et al., 2020) thus requiring a more thorough model validation.
Therefore, MRI-only models are more suitable for near-future
implementation of SuStaIn-based models in tools for subtype
detection in single case-scenarios.

Another key factor affecting the AUCs is the unavailability of
the characterization in amnestic and non-amnestic MCI for the
major portion of the subjects. The condition of amnestic MCI is a
more typical prodromal stage for AD that could provide better
classification performances (Cousins et al., 2020). Also, the use of
amnestic MCIs for the training process could indeed generate a
more accurate disease model that better depicts the transition
phase from MCI to dementia.

Future work will concentrate efforts in modeling subtypes using
larger and more diverse cohorts, that will allow for a more precise
definition of subtypes and for a finer-grade characterization of
subjects belonging to each subgroup. Another key factor for an
optimal definition of the subtypes is the selection of brain regions,
and future work will investigate the optimal choice to obtain a
disease model that is descriptive and informant without being
redundant and trying to maximize the individual match between
AVRA subtypes and SuStaIn subtypes. SuStaIn is a suitable
approach to build disease models that include non-imaging
markers, and future work will investigate the possibility of
defining AD progression subtypes based on CSF markers and
cognitive scores coupled with imaging markers, possibly linking
subtypes with demographic genetic and lifestyle factors.
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There are ongoing efforts to extend this work toward full
clinical translation. This includes implementing SuStaIn
progression models in user-friendly interfaces, external
independent validation studies, and usability assessments from
clinicians, all of which form key components of the EuroPOND
(http://europond.eu/) and E-DADS initiatives (https://e-dads.
github.io/).

CONCLUSIONS

We have demonstrated that a data-driven subtyping model
(Young et al., 2018) of Alzheimer’s disease progression trained
on research-quality MRI (ADNI) is transferable to lower-
quality clinical data (PharmaCog, OASIS, ViTA). This is an
encouraging result motivated by the expectation that, in the
near future, healthcare will increasingly adopt data-driven
and ML models in daily clinical practice. Indeed, the
validation and generalization of such models on
independent datasets is a proof of concept required for
their translation from research settings to clinical
environments. Open questions remain about the biological
mechanisms underpinning Alzheimer’s disease subtypes,
which will be an important focus of future studies,
including ongoing drug-development efforts.
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