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Understanding the order and progression of change in biomarkers of neurodegeneration is
essential to detect the effects of pharmacological interventions on these biomarkers. In
Huntington’s disease (HD), motor, cognitive and MRI biomarkers are currently used in
clinical trials of drug efficacy. Here for the first time we use directly compare data from three
large observational studies of HD (total N � 532) using a probabilistic event-based model (EBM)
to characterise the order in which motor, cognitive and MRI biomarkers become abnormal. We
also investigate the impact of the genetic cause of HD, cytosine-adenine-guanine (CAG) repeat
length, on progression through these stages. We find that EBM uncovers a broadly consistent
order of events across all three studies; that EBM stage reflects clinical stage; and that EBM
stage is related to age and genetic burden. Our findings indicate that measures of subcortical
and white matter volume become abnormal prior to clinical and cognitive biomarkers.
Importantly, CAG repeat length has a large impact on the timing of onset of each stage and
progression through the stages, with a longer repeat length resulting in earlier onset and faster
progression. Our results can be used to help design clinical trials of treatments for Huntington’s
disease, influencing the choice of biomarkers and the recruitment of participants.
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INTRODUCTION

The development of disease modifying treatments for Huntington’s disease (HD), a fatal
neurodegenerative condition, has taken remarkable steps in recent years. There are a wide range
of clinical trials attempting to validate a treatment for HD currently ongoing, including trials testing
antisense oligonucleotide and micro RNA therapies (Rodrigues et al., 2020). As we move towards
larger Phase III clinical trials, it is imperative that both patient recruitment and endpoint selection are
targeted to ensure trials have high sensitivity to detect the efficacy of pharmacological interventions.
In order to tailor cohorts and clinical trial endpoints for different therapeutic targets, we require a
detailed understanding of candidate biomarkers in HD.

Onset of HD symptoms typically begins in mid-life, with individual genetic burden
determining a large amount of variance in the timing of disease onset (Bates et al., 2015).

Edited by:
Enrico Capobianco,

University of Miami, United States

Reviewed by:
Jessica A. Turner,

Georgia State University,
United States

Pekka Ruusuvuori,
University of Turku, Finland

*Correspondence:
Peter A. Wijeratne

p.wijeratne@ucl.ac.uk

Specialty section:
This article was submitted to
Medicine and Public Health,

a section of the journal
Frontiers in Big Data

Received: 31 January 2021
Accepted: 07 July 2021

Published: 05 August 2021

Citation:
Wijeratne PA, Johnson EB, Gregory S,
Georgiou-Karistianis N, Paulsen JS,

Scahill RI, Tabrizi SJ and Alexander DC
(2021) A Multi-Study Model-Based

Evaluation of the Sequence of Imaging
and Clinical Biomarker Changes in

Huntington’s Disease.
Front. Big Data 4:662200.

doi: 10.3389/fdata.2021.662200

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 6622001

ORIGINAL RESEARCH
published: 05 August 2021

doi: 10.3389/fdata.2021.662200

http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2021.662200&domain=pdf&date_stamp=2021-08-05
https://www.frontiersin.org/articles/10.3389/fdata.2021.662200/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.662200/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.662200/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.662200/full
http://creativecommons.org/licenses/by/4.0/
mailto:p.wijeratne@ucl.ac.uk
https://doi.org/10.3389/fdata.2021.662200
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2021.662200


It is clear that imaging and fluid biomarkers are sensitive to
disease-related change many years prior to symptom onset
(Tabrizi et al., 2009; Byrne et al., 2018), although the exact
timing and order of these changes is still being studied.
Imaging biomarkers that measure atrophy in regional
brain volume show some of the largest effect sizes in both
pre-manifest HD (PreHD) and manifest HD compared to
other biomarker candidates, particularly in subcortical
structures (Tabrizi et al., 2012; Tabrizi et al., 2013).
Clinical markers assessing motor symptoms and cognitive
decline typically exhibit disease-related change later than
imaging biomarkers, but are currently used as primary
endpoints since they have a more direct relationship with
the clinical benefit of a therapy. However, when moving into
large phase III trials it is important to select endpoints that
relate closely to the disease stage of the patients, and
biomarkers that are likely to be the most sensitive to
change during this time.

Disease progression models can reveal disease-related
changes at the group and individual levels directly from
observed data (Oxtoby and Alexander, 2017). Here we
focus on the event-based model (EBM), which infers the
order in which biomarkers become abnormal from cross-
sectional data. We have previously applied the EBM in HD to
reveal a sequence of regional brain volume changes in the
TRACK-HD study, a large multi-site study of HD (Wijeratne
et al., 2018). We demonstrated that three subcortical
structures (the putamen, caudate and pallidum) were the
first to become abnormal, followed by regions of the insula,
CSF spaces, and amygdala. We have also applied the EBM to
reveals the sequence of mixed biofluid, imaging and clinical
changes in the HD-CSF study, a smaller single-site cohort
study of HD (Byrne et al., 2018; Rodrigues et al., 2020).

However, these analyses were performed separately, and no
direct comparison was made between studies to determine which
features and findings were consistent. The analysis we present
here is the first cross-study EBM analysis performed in HD (or
any other disease), using data from the three largest imaging
cohort studies in HD: TRACK-HD, PREDICT-HD and IMAGE-
HD (Paulsen et al., 2008; Tabrizi et al., 2013; Poudel et al., 2015).
We also add commonly used phenotypic cognitive and motor
markers to the analysis to compare the stage at which these
become abnormal across cohorts. Furthermore, we investigate the
impact of genetic burden, as measured by cytosine-adenine-
guanine (CAG) repeat length, on progression through the
sequence of events. We therefore provide new information on
the consistency of measurable imaging and clinical biomarker
changes across differing study designs and individual-level
genetic information, which has direct relevance to the design
of multi-centre clinical trials in HD.

MATERIALS AND METHODS

Cohorts
Participants from the PREDICT-HD, TRACK-HD and IMAGE-
HD studies with MRI data collected at three time-points (study

baseline plus two follow-ups) on the same scanner were included in
the study. All scans underwent visual quality control (QC) prior to
inclusion, after which there were 284 participants from four centres
in TRACK-HD; 171 participants from 20 centres in PREDICT-HD;
and 77 participants from one centre in IMAGE-HD. We note that
no participants underwent any disease modifying treatment during
data collection. Table 1 shows the demographic, clinical and
cognitive data at baseline for all cohorts and groups. As noted
previously (Wijeratne et al., 2020), there are differences between the
groups in a number of criteria due to different recruitment strategies.

TRACK-HD Study
Data for TRACK-HD were collected at four centres; Leiden, London,
Paris and Vancouver between 2008–2011 (Tabrizi et al., 2013). HD
gene-carriers were recruited fromHDclinics andwere required to have
a CAG of ≥40. At baseline, 123 controls, 120 PreHD participants and
123HD participants were recruited. PreHD participants were required
to have a burden of pathology score > 250 (calculated as [age x (CAG-
35.5)] (Langbehn et al., 2004), and a UHDRS Total Motor Score
(UHDRS-TMS) (Huntington Study Group, 1996) of less than five,
indicating minor motor symptoms. Manifest HD participants were
required to have a diagnostic confidence level (DCL) of four and a
Total Functional Capacity of seven or more, as measured by the
UHDRS TFC (Huntington Study Group, 1996). 3T T1-weighted scans
were acquired from four scanners (two Siemens, two Philips). The
parameters for Siemens were TR � 2200ms, TE � 2.2ms FOV �
28 cm, matrix size � 256 × 256, 208. For Philips TR � 7.7ms, TE �
3.5ms, FOV � 24 cm, matrix size � 242 × 224, 164. The acquisition
was sagittal to cover the whole-brain. There was a slice thickness of
1mm, with no gap between slices. These acquisition protocols were
validated for multi-site use. The study was approved by the local ethics
committees, and written informed consent was obtained from each
participant.

PREDICT-HD Study
Participants were recruited at 33 global centres, with most
participants either PreHD or healthy controls (Paulsen et al.,
2008). All participants were required to have had genetic testing
(CAG ≥ 39 repeats) independent of the research study. PREDICT-
HD recruited a total of 1,013 PreHD and 301 gene-negative controls
between 2001 and 2012. Participants were excluded from the study
at enrolment if there was a diagnosis of HD or evidence of an
unstable illness, alcohol or drug abuse, a history of special education
or central nervous system disease, a pacemaker ormetallic implants,
anti-psychotic medications prescribed in the previous 6 months or
use of phenothiazine-derivative anti-emetic medication for
3 months or more. MRI acquisition parameters for the
PREDICT-HD scanners included in this analysis are provided in
(Wijeratne et al., 2020). The study was reviewed and approved by
institutional review boards at all study and data processing sites.
Participants underwent informed consent procedures and signed
consents for both participation and to allow de-identified research
data to be sent to collaborative institutions for analysis.

IMAGE-HD Study
IMAGE-HD was a single-centre study which recruited control,
PreHD and manifest HD participants (Poudel et al., 2015). Gene
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carriers had a CAG of ≥ 39 repeats, and PreHD and manifest HD
participants were allocated to each group based on their UHDRS-
TMS, with those having a score of five or less included in the PreHD
group and participants with a score of greater than five included in
the manifest HD group. 108 participants were recruited at baseline,
with imaging data available for 31 PreHD, 31 manifest HD and 29
control participants. Data were collected using a Siemens Magnetom
Tim Trio 3T scanner with a 32 channel head coil. T1-weighted
images were acquired with 192 slices, 0.9 mm slice thickness, 0.8mm
× 0.8 mm in-plane resolution, TE� 2.59ms, TR� 1900ms, flip angle
� 9°. The study was approved by the Monash University and
Melbourne Health Human Research Ethics Committees and
informed written consent was obtained from each participant
prior to testing in accord with the Helsinki Declaration.

Image Analysis
Structural MRI for each participant at baseline plus two follow-ups
were analysed. T1-weighted MRI data at 3T were used from the
TRACK-HD and IMAGE-HDdatasets, and at 1.5T (N� 136) and 3T
(N � 35) from the PREDICT-HD dataset. For each dataset
longitudinal registrations were performed on each participant via
SPM12 using MATLAB version 2012b. The serial longitudinal
registration pipeline was applied to all participants with data from
three consecutive timepoints using default settings (Ashburner and
Ridgway, 2012). This registration process resulted in an average scan
for each participant along with Jacobean deformationmaps. For every
participant, the average scanwas parcellated into 156 regions using the
Geodesic Information Flows (GIF) software (Cardoso et al., 2015).
Each region was then multiplied by Jacobian deformation maps to
create a volumetric map for every region for every time-point.

Bilateral regions were combined across hemispheres as there is
little evidence of hemispheric differences in HD atrophy
(Minkova et al., 2017; Minkova et al., 2018). To enable
interpretation of our results, we included a subset of
biomarkers in this analysis based on HD pathology. These
were the putamen, caudate, pallidum, lateral ventricles and
global white matter. Total intracranial volume was calculated
as the sum of cerebrospinal fluid (CSF), cortical gray matter, deep
gray matter, and white matter (WM). All scans, registrations and
segmentations underwent visual QC to remove scans due to poor
quality defacing that was conducted on the MRI scans, or failures
in registration and segmentation, or due to other pathology.

Other Variables
To facilitate further comparison among the three studies, three
additional measures of phenotypic progression from the Unified

Huntington’s Disease Rating Scale (UHDRS) that were available
from all three cohorts were included. The UHDRS Total Motor
Score (TMS) was used to measure motor symptoms
(Huntington Study Group, 1996). Two cognitive scores from
the UHDRS—the symbol digit modalities test (SDMT) (Smith,
1991) and stroop word reading test (SWRT) (MacLeod, 1991)—
were used as cognitive outcome measures, and CAG repeat
length was used to quantify approximate lifetime genetic
burden.

Covariates
All imaging and clinical variables were adjusted for covariates
(age, sex, site) by regressing against the HC samples in each
study separately. In addition, the imaging variables in the
PREDICT-HD cohort were adjusted for field strength; the
imaging variables in all studies were adjusted for total
intracranial volume; and the clinical variables in all studies
were adjusted for level of education.

Event-Based Model of Disease Progression
We use the event-based model (EBM; Fonteijn et al., 2012;
Young et al., 2014) to infer the sequence of imaging and
clinical biomarker changes in each study cohort. The EBM
defines disease progression as an ordered sequence of
abnormality events, which correspond to the transition of
a biomarker from a healthy to abnormal state. To infer the
most likely sequence of events across the population, the
EBM fits healthy and abnormal distributions for each marker
separately and makes the assumption of monotonic
biomarker change. This assumption is reasonable for
many biomarkers in progressive diseases, and in
particular the imaging and clinical markers we use in this
analysis.

Here we use non-parametric kernel density estimate
mixture models (Firth et al., 2020) to fit the healthy and
abnormal biomarker distributions, as they are more flexible
than Gaussian mixture models. We fit these models to
baseline data from the TRACK-HD cohort, as it provides
the best sampling of HC (i.e., healthy) and HD
(i.e., abnormal) groups (Supplementary Figure S1 for the
distributions and fits). We then use these mixture models to
infer the most likely sequence, S, for each study separately
using their respective baseline cohorts, and estimate the
uncertainty in the sequence ordering using Markov chain
Monte Carlo sampling of the model posterior. After inferring
S, we can obtain a model-based disease stage by calculating

TABLE 1 |Demographic data for the PREDICT-HD, TRACK-HD and IMAGE-HD participants at baseline. Acronyms used: HC � healthy control, PRE � preHD, HD �manifest
HD, P � PREDICT, T � TRACK, I � IMAGE. TIV � Total Intracranial volume, TMS � UHDRS Total Motor Score, DCL � Diagnostic Confidence Level, TFC � UHDRS Total
Functional Capacity, DBS �Disease Burden Score, SDMT � Symbol Digit Modalities Test, SWRT � StroopWord Reading Test. A value of “-” indicates that the data were not
available.

HC_P HC_T HC_I PRE_P PRE_T PRE_I HD_P HD_T HD_I

Age 45.1 ± 10.9 46.3 ± 10.4 43.3 ± 13.6 41.8 ± 11.0 41.2 ± 8.9 39.3 ± 8.2 46.5 ± 10.7 48.5 ± 9.3 53.0 ± 7.9
Sex 25:11 58:42 17:5 85:47 55:49 15:13 3:0 43:37 7:19
TIV (l) 2.07 ± 0.2 2.12 ± 0.22 2.14 ± 0.23 2.01 ± 0.19 2.15 ± 0.22 2.05 ± 0.19 1.89 ± 0.08 2.09 ± 0.19 2.15 ± 0.28
CAG 20.44 ± 3.5 — — 42.4 ± 2.7 43.0 ± 2.3 42.7 ± 2.0 43.3 ± 4.2 43.8 ± 3.0 42.9 ± 2.1
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the likelihood distribution over all stages for a given
individual. We then take the maximum likelihood stage as
the inferred individual-level stage.

Statistical Models of Progression
To interrogate the relationship between EBM stage and
genetic burden, as specified by an individual’s CAG repeat
length, we build polynomial mixed effects regression models.

Specifically, we regress the inferred individual-level EBM
stage against age at each time-point (not just baseline) for
each CAG group separately, with individual-level random
intercepts. Instead of taking the maximum likelihood EBM
stage, here we take the weighted average stage, as it
accommodates uncertainty in the staging; as such, the
stage is a continuous measure We construct both linear
and quadratic mixed effects models for each CAG group,

FIGURE 1 | Left column: positional variance diagrams showing the estimated order of regional brain volume and clinical marker abnormality events in
PreHD and manifest HD patients at baseline, from the TRACK-HD, PREDICT-HD and IMAGE-HD cohorts separately. The heatmaps indicate the magnitude of
the probability of the ordering; dark diagonal boxes indicate strong event ordering, and lighter indicate possible event permutations with strength proportional
to the off-diagonal boxes. Right column: individual-level disease stage for each group in each cohort, predicted by the EBM sequence fit to each cohort
separately.

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 6622004

Wijeratne et al. Multi-Study Model of Huntington’s Disease

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


and select the model that provides the best fit as quantified by
the size of the confidence intervals.

RESULTS

Event Sequences Are Consistent Across
Studies
We find sequences of clinical and imaging events that are
remarkably consistent across all three studies (Figure 1 left
column). For all three studies, the imaging biomarkers were
placed before the clinical biomarkers with the exception of the
lateral ventricles, which were positioned either last or second last
for all cohorts. TMS was the fifth marker to become abnormal for
all three cohorts, with SDMT and SWRT in variable positions
after TMS. To quantify the similarity between event sequences,
we calculated the Kendall’s tau distance between each sequence
separately, which returned values of 0.5 (TRACK-HD vs.
PREDICT-HD, IMAGE-HD vs. PREDICT-HD) and 0.57
(TRACK-HD vs. IMAGE-HD), indicating positive correlations
across all studies.

Event-Based Model Stage Reflects Clinical
Stage
We find that EBM successfully stages individuals according to
their clinical stage (HC, PreHD, or HD) in all three studies, when
taking the maximum likelihood stage for each individual
(Figure 1 right column). As expected, the HC group is staged

at or near zero, the PreHD group at intermediate stages, and the
HD group across the later stages. The only exception is in the HD
group in the PREDICT-HD cohort, where two of the three HD
individuals are staged at zero; this is due to a combination of
mismeasurement in the insula white matter and control-like
clinical measurements for one individual, and mostly control-
like volumetric and clinical measurements for the other
individual.

Event-Based Model Stage Is Related to Age
and Genetic Burden
We find that EBM stage and rate of progression depends on age
and CAG length, with higher CAG lengths resulting in faster
progression through the sequence (Figure 2). We can use the
regression models shown Figure 2 to calculate the average group-
level age at each event as a function of CAG repeat length. We
denote the onset of motor symptoms as equivalent to the event at
which TMS becomes measurably abnormal (stage 5). Note that
the dependency of motor onset on CAG is not smoothly
monotonic (in particular CAG � 46); this is due to small
sample sizes for these CAG lengths causing variability in the
regression fits.

DISCUSSION

Here we applied a disease progression model, the EBM, to infer
the patterns of change in brain and cognitive markers across

FIGURE 2 | EBM stage as a function of age and CAG repeat length, for PreHD participants with at least one follow-up across all years in the PREDICT-HD, TRACK-
HD and IMAGE-HD cohorts. Polynomial mixed effects models are fit to each CAG group separately, which are coloured from low CAG repeat count in light yellow to high
CAG repeat count in dark red, with the CAG repeat count denoted by integer values at the end of the curves. Stages are ordered along the vertical axis according to the
ordering obtained by the EBM applied to the TRACK-HD cohort (Figure 1). The stage at which TMS becomes measurably abnormal is indicated by a black
horizontal line (stage 5).
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multiple cohorts in HD, and evaluated the consistency and
genetic correlation of these changes. This is the first such
cross-study model analysis in HD, and our findings suggest
that the measurable changes in imaging and clinical volumes
are largely independent of study protocols and cohort
inclusion criteria. This has implications for large multi-
centre clinical trials, which are necessary in HD due to its
low prevalence, and suggests that the imaging and clinical
biomarkers used in this analysis are suitable candidates for
tracking disease progression.

Previously, we demonstrated that subcortical volumes become
abnormal prior to other brain regions, which was supportive of the
HD literature (Tabrizi et al., 2013; Byrne et al., 2018; Rodrigues
et al., 2020). By applying the EBM to multiple cohorts we
demonstrated that subcortical imaging biomarkers become
abnormal prior to clinical markers. Across the three cohorts, the
position of the caudate, pallidum, putamen and insula white matter
varied in their position, but were consistently placed prior to
clinical markers. The lateral ventricles were placed last
(TRACK-HD, PREDICT-HD) or second to last (IMAGE-HD).
The three non-imaging biomarkers are all ranked after the
subcortical and white matter measures, with TMS first of these
measures in all three cohorts. The differences in the relative
positions of each imaging change across studies may be due to
subtle between-sample variances related to cohort characteristics or
imaging acquisitions, but by analyzing all data via the same
imaging pipeline we can rule out the effects of different post-
processing procedures. These results highlight the importance of
using imaging biomarkers in clinical trials recruiting PreHD and
early manifest HD participants, as clinical changes may not be
sensitive enough to detect the pharmacological impacts of a
therapy. Currently, the majority of clinical trials are focussed on
manifest HD patients, but the end-goal of a number of therapeutic
approaches is to treat PreHD individuals in order to delay or halt
symptom onset. Trials for PreHD patients are unlikely to detect
significant changes in clinical endpoints, and thus should also
include imaging biomarkers as priority endpoints. The nature of
these endpoints may vary dependent on the pharmaceutical
mechanisms, but our results suggest that there are a variety of
candidate regions available that change prior to clinical measures.

Importantly, we also demonstrate that the rate of progression
through these stages is largely dependent on CAG repeat length,
with wide variation seen in the age at which HD gene carriers
with different CAG repeat lengths might be expected to pass
through each stage. Our analysis of the link between CAG
length, age and progression through the stages of our EBM
suggest that those with shorter CAG repeat lengths undergo
slower progression than those with longer CAG lengths. While
this is supportive of previous work (Penney et al., 1997; Ruocco
et al., 2008; Langbehn et al., 2011; Henley et al., 2012; Langbehn
et al., 2019), Figure 2 demonstrates how significantly this varies.
Those with a CAG repeat length of 49 are expected to have
abnormal sub-cortical and WM volumes by approximately 27 ±
2 years of age, while those with a CAG repeat length of 40 are
estimated to be approximately 70 ± 5 years of age at the same
stage. This large variability indicates that participants with
larger CAG repeat lengths are expected to show faster

progression during a clinical trial, and this should be
considered during recruitment and treatment evaluation.

There are limitations to the analysis we present here. Firstly,
we do not include biofluid biomarkers, such as neurofilament
light, since these measures are only available for a limited
selection of TRACK-HD data, and not at all for PREDICT-
HD and IMAGE-HD. However, in previous work we
demonstrate that these markers appear to be the first to show
abnormalities in HD (Byrne et al., 2018; Rodrigues et al., 2020). In
addition, we limited our investigation to a subset of available
imaging biomarkers. This was done to aid interpretation, but
different pharmacological mechanisms may require the
consideration of other biomarkers not included here.
Methodologically, we applied the basic cross-sectional EBM
and hence were only able to recover the order of events, but
not the time between them. Future work will use the recently
developed temporal EBM (Wijeratne and Alexander, 2020) to
properly leverage longitudinal data, allowing the time between
events to be estimated. Finally, the basic EBM only considers a
single sequence across the whole sample; it would be interesting
to apply the subtyping version of the EBM (SuStaIn; Young et al.,
2018) to investigate the possibility of multiple within-cohort
subtypes.

By applying the EBM to multiple HD cohorts, we have
confirmed that imaging biomarkers become abnormal prior to
clinical and cognitive markers, and that there is large variation
due to CAG repeat length in the age at which these markers
become abnormal. By understanding both the sequence of
changes in these markers and the correlation between the
predicted individual-level stage and genetic burden,
biomarkers can be more effectively selected for clinical trials
in HD.
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