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The development of scientific predictive models has been of great interest over the
decades. A scientific model is capable of forecasting domain outcomes without the
necessity of performing expensive experiments. In particular, in combustion kinetics, the
model can help improving the combustion facilities and the fuel efficiency reducing the
pollutants. At the same time, the amount of available scientific data has increased and
helped speeding up the continuous cycle of model improvement and validation. This has
also opened new opportunities for leveraging a large amount of data to support knowledge
extraction. However, experiments are affected by several data quality problems since they
are a collection of information over several decades of research, each characterized by
different representation formats and reasons of uncertainty. In this context, it is necessary
to develop an automatic data ecosystem capable of integrating heterogeneous information
sources while maintaining a quality repository. We present an innovative approach to data
quality management from the chemical engineering domain, based on an available
prototype of a scientific framework, SciExpeM, which has been significantly extended.
We identified a new methodology from the model development research process that
systematically extracts knowledge from the experimental data and the predictive model. In
the paper, we show how our general framework could support the model development
process, and save precious research time also in other experimental domains with similar
characteristics, i.e., managing numerical data from experiments.

Keywords: scientific experiments, experiments management, data management, data validation, simulation
analysis, scientific model development, data quality, combustion kinetics

1 INTRODUCTION

One of the characteristics of Industry 4.0 is the availability of vast amounts of experimental data that
facilitates the development and refinement of predictive models. Such models are fundamental to
speed up the development process, as they allow analyzing the characteristics of systems being
designed and the properties of objects, thus improving their quality. Consequently, the need emerged
to systematically store and manage large quantities of experimental data collected and shared by
various stakeholders. Such Data Ecosystems (cfr. Cappiello et al. (2020)) present several challenges
and advanced requirements, ranging from the need to reconcile different and sometimes
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incompatible representations of data, assessing and guaranteeing
agreed quality levels, and preserving property rights while
sharing data.

Such systems are being discussed in the Industry 4.0 domain
(cfr. Jarke et al. (2019)), as a pillar for improving different
industry sectors, e.g., in the automotive, airline, or machine-
building industries. In particular, in supply chains, lengthy
negotiations for agreeing on formats of shared data and their
management should be semi-automatically negotiated, executed,
and monitored for contractual and legal compliance. As a result,
frameworks for data exchange are supported by data analysis
capabilities and data quality assessment tools. In general, data re-
purposing for analysis and the development of models with AI
technologies require a mutual understanding of the data and their
associated characteristics.

In this context, there is a need to define an automated and
standardized procedure that limits the errors in the collected
experiments but at the same time responds to the characteristics
of Data Science applications on big data such as large volume,
acquisition speed, and variety, as described by George et al.
(2016), while maintaining the FAIR (Findable, Accessible,
Interoperable, Reusable) policy requirements (cfr. Wilkinson
et al. (2016)).

In addition, it is clearly emerging how data management, while
necessary, it is only a precondition in Data Science. For instance,
Stodden (2020) advocates the need of supporting the Data Science
life cycle with adequate tools and considering it a process
composed of different phases for which different strategies and
tools are needed. First of all, it is necessary to clearly define the
roles of users in such processes and the sharing modalities. As
discussed in Curry and Sheth (2018), in new data-driven smart
systems the participants can achieve results that would not be
achievable by each participant in isolation. As discussed in the
paper, the pillars of such systems are, in addition to data
management, adaptivity and user interactions support, and all
are based on trusted data platforms to enable data sharing.
Different models of interdependence among participants can
emerge, depending on the level of control of the participants
on data and the relationships among participants. Current
approaches follow a so-called “Directed data ecosystem”,
according to the typologies defined in Curry and Sheth (2018),
as they are centrally controlled to fulfill a specific purpose. The
envisioned evolution is toward “Virtual data ecosystems” to pool
resources towards specific goals.

In the present paper, we discuss these concepts in the context
of the development of prediction models and simulators in fuel
analysis, in the numerical combustion domain. This sector aims
to minimize the environmental impact of combustion in terms of
greenhouse gas emissions and pollutants formation, improving
the combustion efficiency and defining the optimal operating
conditions (temperature, pressure, composition) for each fuel.
Even the most negligible improvements in fuel consumption
would result in huge savings of fuel itself and parallel
reductions in gas and particles polluting emissions. Developing
reliable kinetic models describing the combustion behavior in the
broadest range of operating conditions is necessary to achieve
these goals. These models are essential at the industrial level to

design industrial reactors and burners, minimizing pollutant
emissions.

Existing tools focus on analyzing small sets of experiments and
comparing them with the results of models, also managing
uncertainty in the experimental data. In contrast, it has been
shown how the large-scale analysis of multiple experiments/
models can drive the discovery of new knowledge (see, for
example, Hansen et al. (2018)). Therefore, automatic tools and
repositories for systematic, large-scale analysis of multiple
experiments and models hold great promises for automatic
discovery and knowledge extraction.

In fact, being able to automatically simulate and analyze a large
number of experiments and models, overcome the limitation of
manual analysis, and detect systematic features or errors in the
model or the data, as keep track of the evolution of the model
itself through different versions. As a side result, the overall
procedure to develop a predictive model is standardized and
reduced in the time needed since the most time-consuming
phases are automated.

Several challenges are arising from the construction of such a
system. A major limitation is the quality of the experimental data,
subject both to actual experimental errors and errors due to
misrepresentation, data entry errors, and lack of data about the
experiment itself (i.e., metadata), such as uncertainty values (cfr.
Pernici et al. (2021)). Scientific data repositories are information
systems, which are subject to well-known and analyzed data
quality problems (cfr. Batini and Scannapieco (2016)). In
addition, the amount of available data in the last few years has
significantly increased due to more sophisticated technical
equipment available for performing the experiments, also
introducing more heterogeneity.

This paper presents the SciExpeM (Scientific Experiments and
Models) framework as a collection of services to automatically
collect, manage, and analyze experimental data and models,
starting from a first prototype (cfr. Scalia et al. (2019)). In
particular, we focus on new aspects, detailed in the following.
The first aspect regards the design of the new services necessary to
represent more completely the research process. We advocate the
importance of supporting the analysis process in all its phases. In
this direction, we integrate services to improve the data quality
and categorize and dynamically interpret experiments to
automate the downstream analyses. To this purpose, we
propose a framework that supports both storing experiments
and providing services that can be combined to create flexible
analysis processes keeping the possibility of defining user roles
based on the necessity. To increase the framework’s flexibility, a
microservice-based architecture is proposed, together with a data
analysis library, to facilitate the rapid development and
modification of analysis tools and services for uploading,
verifying, and visualizing the data, without the need of
building new GUIs (Graphical User Interfaces) to extend the
system with new functionalities. Therefore, an agile development
process is advocated, constructing and managing a SciExpeM
service library for this purpose, demonstrating the effectiveness
through several use cases.

The paper is structured as follows. In Section 2, we discuss
related work and open problems. In Section 3, we present the
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main goals of data analysis in the numerical combustion sector,
we discuss a methodological approach for the analysis process,
and we introduce our framework for representing experiments,
models and experiment analysis services. In Section 4 we
illustrate the main components of the developed SciExpeM
framework, focusing on services to support the data analysis
life cycle. In Section 5, we illustrate some first results of the
application of the framework, discussing in Section 6 the
advantages of the approach and its current limitations and
possible research directions. Finally, we summarize our work
in the conclusions.

2 RELATED WORK

As profoundly discussed by the Tenopir et al. (2015) survey, data
sharing is an essential factor of modern scholarly debate. In recent
years there has been a steady growth in the tendency to share
scientific data, which can vary by discipline, age, and geographical
location of the research group. The main thrust in data sharing is
the benefit it derives from citations of other works, as shown in
the Piwowar and Vision (2013) study, where generally, a work
that shares data receives about 10% more citations than another
equivalent work. Faniel et al. (2015) discussed that the sharing of
scientific datasets allows the reuse of resources and increases the
dataset’s quality since it is used and verified in various ways by
different entities. However, as data sharing grows, the risks
associated with it grow accordingly. It is often difficult to
agree on the structure and management of the data and the
infrastructure required for its sharing.

Several initiatives are being proposed for enabling data sharing
and reuse in the scientific communities. Initiatives such as EOSC
(European Open Science Cloud)1 and the recent NIST proposal
for a Research Data Framework RDaF2 are going in the direction
of providing a well-defined infrastructure for sharing scientific
data and tools for their analysis. In particular, RDaF emphasizes
the importance of considering the data management process in all
its phases and defining its stakeholders and goals.

Clowder (cfr. Marini et al. (2018)) and Homer (cfr.Allan et al.
(2012)) are an example of a framework inside EOSC to visualize
and manage data but lacks a systematic methodology for handling
scientific experiments together with predictive models in order to
extract value from them automatically. As stated inMirzayeva et al.
(2018), “Methods for determining whether or not the model
predictions are consistent with experimental data have been of
great interest in combustion research over decades.” PrIMe was
one of the first attempts to build a systematic repository of
experiments in the combustion domain (cfr. Frenklach (2007)).
PrIMe includes a database, that can be used to perform selective
analyses of experiments to validate reaction model parameters as
discussed in Mirzayeva et al. (2018). In particular, research has
focused on analyzing the data features, with emphasis on
uncertainty of experimental data. Several other repositories have

been proposed as a basis for comparing models from results of
experiments. ChemKED3 (cfr. Weber and Niemeyer (2018))
provides tools to create databases of thermodynamic data and
chemical reactions, managing data consistency. It provides tools to
retrieve experiments and compare them with provided models.
CloudFlame4 (cfr. Goteng et al. (2013)) provides research tools and
a database for the combustion community. The database includes
digitized data of fundamental combustion experiments published
in journals. ReSpecTh5 (cfr. Varga et al. (2015)) collects
experiments (REaction kinetics, SPEctroscopy and
THermochemistry experiments) and tools to analyze them,
including automatic model validation (such as those used in the
analysis of Olm et al. (2015)).

Existing tools focus on analyzing small sets of experiments and
comparing them with the results of models, also managing
uncertainty in the experimental data. In contrast, it has been
shown how the large-scale analysis of multiple experiments/
models can drive the discovery of new knowledge (see, for
example, Hansen et al. (2018)). Therefore, automatic tools and
repositories for systematic, large-scale analysis of multiple
experiments and models hold great promises for automatic
discovery and knowledge extraction.

In previous work of some of the authors (cfr. Scalia et al. (2018;
2019)), we discussed the requirements for a framework that goes
into this direction. We discussed which services are essential for
an information system storing scientific experiments, integrating
them, managing their quality, their interpretation, and
performing different types of data analysis both on the stored
experimental data and on the results of numerical combustion
models. Scalia et al. (2019) discussed the primary services, the
functional requirements, and the first architecture to support the
needs emerging from the large-scale data-driven validation of
scientific models. Moreover, it presented the first version of
SciExpeM, which has been further developed in this work. In
the present paper, we introduce new types of services based on the
SciExpeM service-based architecture, focusing on the systematic
and automatic support of the data science process and on data
quality analysis. For this purpose, we have defined roles and
privileges for the different types of users who interact in the
system, focusing on developing a data analysis pipeline with a
human-in-the-loop process. To improve the scientific
repository’s quality, we propose using simulation-based
prediction techniques as a basis for data cleaning procedures.

3 DATA ANALYSIS IN THE NUMERICAL
COMBUSTION SECTOR: A
METHODOLOGICAL APPROACH

This section introduces the numerical combustion application
domain discussed in this paper with its peculiarities and
challenges (Section 3.1), presenting the general approach to

1https://eosc-portal.eu/
2https://www.nist.gov/programs-projects/research-data-framework-rdaf

3http://www.chemked.com/
4https://cloudflame.kaust.edu.sa/
5http://respecth.chem.elte.hu/
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developing a scientific model (Section 3.2), and identifying the
roles and processes involved (Section 3.3). We describe the
SciExpeM framework (Section 3.4), which is actively involved
in the model development process to speed up and automate
some procedures.

3.1 Combustion Experiments
The development of more and more accurate predictive models
(cfr. Kuhn and Johnson. (2013) as a result of the technology boost
in the capability of performing experiments currently drives
research within the combustion community, as reviewed by
Mishra (2014). However, it also affects the most various
research fields, e.g., biology (cfr. Queen et al. (2002)) and
climatology (cfr. Brázdil et al. (2005)). Regardless of the
involved field, such experiments share the same basic
limitations, i.e., the presence of an intrinsic degree of
uncertainty as illustrated by Moffat (1988), and, very often,
the lack of structure into user-friendly databases due to the
incremental addition of experiments over time.

Concerning uncertainties, only the most recent papers
(approximately after 2000) systematically report uncertainties.
Indeed, their rigorous evaluation (in absolute or relative terms)
would require a repeated evaluation of the samemeasurement for a
sufficiently high number of times to have statistically significant
data. In the past, this was not an easy task due to the high amount
of time and economic resources to perform a single evaluation, and
only recently technological progress hasmade this more affordable.
Table 1 shows an example of large uncertainty present in
experimental data, although the experiment file does not
explicitly report it. At almost identical temperature and pressure
conditions, there is, for example, a variation of the measured
Ignition Delay Time (IDT) of over 65% from the measurement
point of (930K, 3.586 atm) and (930 K, 3.534 atm). Therefore,
uncertainty is always present in all experimental data, but it is often
not reported, although it is significant.

Regarding data organization and standardization, experiments’
heterogeneity is the main limitation to creating a uniform, easy-to-
use database. Although the first classification in combustion
experiments can be made according to the experimental facility
(Table 2), very often, each of them exhibits unique features (e.g.,
temperature/pressure boundary conditions, heat losses, radiation,
the definition of inlet composition), such that the definition of a
standardized database requires the inclusion of a significant
number of rules and exceptions. Besides, an experiment’s
property can be measured using different experimental facilities

requiring the definition of more rules to distinguish every case as
we can see from Table 2.

Finding common features among the different experiments is
a necessary first step to categorize them. In combustion, two
major aspects can be leveraged:

1. The hierarchy of the physical process, according to which the
combustion mechanism of the larger molecules depends on
the smaller ones.

2. The operating conditions in which experiments are
performed.

The first point greatly simplifies the issue since it creates a
hierarchical and modular dependence of experiments and the
related models. Therefore, for example, the combustion features of
n-heptane, i.e., one of the main components of gasoline, are strictly
dependant on those of hydrogen, since largermolecules break out into
smaller ones; on the other hand, the opposite is not valid, and
hydrogen chemistry can be decoupled from n-heptane one. Of
course, the same applies to the related models, and hierarchical
decomposition of chemical mechanisms is a common practice to
set up kinetic models, as done by Ranzi et al. (2012). Second,
classifying them according to operating conditions allows a critical
understanding of model performance, as well as of its weaknesses,
i.e., regions of the domain where model improvements are needed, or
experiments need to be further refined to be able to validate more
carefully the model (i.e., a model-guided design of experiments, as
reviewed in Franceschini and Macchietto (2008)).

In general, it is not possible to define quality-related
parameters to exclude a priori an experiment to be inserted in
the repository. Each experiment could have several problems, but
since the experiments still have a scientific relevance in this
domain, it is essential to be tolerant also to cases, for example,
with an unknown uncertainty or incompleteness of information.
For example, the completeness of an experiment could be
addressed by dedicating additional resources to investigate the
missing information. In the case of uncertainty, it will be the
predictive model itself together with a similarity index to quantify
the experimental data reliability.

3.1.1 Experiments Acquisition
The first major obstacle in creating a structured database is
collecting experiments from decades of research in different
technological conditions. For methane, one of the first
hydrocarbons investigated experimentally and theoretically, the

TABLE 1 | Example of uncertainty in DOI:10.24388/g00000007 experiment by
Pang et al. (2009). In bold and underlined groups of nearby points but with
significantly different measured Ignition Delay Time (IDT).

Temperature [K] Pressure [atm] Ignition delay [us]

930 3.586 7,912
930 3.534 13,090
. . . . . . . . .

938 3.651 7,723
938 3.535 6,973
938 3.52 6,133

TABLE 2 | Experimental facilities needed to measure a certain property as IDT,
Laminar Flame Speed (LFS), and speciation.

Experimental facility Properties

Shock Tube IDT, Speciation
Rapid Compression Machine IDT
Jet Stirred Reactor Speciation
Flow reactor Speciation
Premixed laminar flame LFS, Speciation
Counterflow diffusion flame Speciation
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first studies were performed before and after WWII, e.g. Norrish
and Foord (1936); Burgoyne and Hirsch (1954). As one can
imagine, the degree of accuracy of the experimental facilities
where the oldest studies were performed is quite harsh to
estimate.

All the experimental facilities mostly used for data acquisition
(Table 2) are designed with the common principle of
approximating ideal fluid dynamic conditions: since the target
of the investigation is the mixture chemistry, in most
experimental facilities (Shock Tube, Rapid Compression
Machine, Jet Stirred Reactor, Flow Reactor) the geometry is
simplified as much as possible in order to guarantee ideal
conditions, i.e., a uniform temperature, pressure and
composition such that the role of transport can be neglected.
Despite the impressive acceleration in the measurement
capabilities of the current reactors, the number and typology
of sampled data points need to be designed upstream since the
costs of reactor (i) operation, (ii) maintenance, and (iii) safety are
often significant.

In summary, throughout the whole workflow, (Section 3.3),
going from the experimental facility to the implementation into
the database, the acquisition of datasets must account for the
following independent sources of uncertainties, which can be
characteristics of many experimental domains:

• Uncertainty of the measurement is an unavoidable feature of
any experimental observation. It results from the accuracy
of all the device components (e.g., flow meter, gas
chromatograph, thermocouple, and so on) and should
always be estimated before extensively using the facility.
The same experiment should be repeated a sufficiently high
amount of time, in accordance with the times and costs of
the procedure. Data variance should be then evaluated
(assuming a normal distribution).

• Non-ideality of the facility is often the source of systematic
errors which, if not recognized a priori and removed, can be
incredibly misleading for model validation.

• Data acquisition from literature, especially for the oldest
datasets, when importing data from non-digital sources, the
extraction procedure with or without human intervention
may add further uncertainty to the values added into the
database.

3.2 Model Evolution
The creation of experimental repositories supports the
development and validation of predictive kinetic models
describing the pyrolysis and oxidation of the different fuels.
For this purpose, the hierarchical structure of combustion
mentioned in Section 3.1 is particularly helpful to select the
subset of the database to be used for model validation: using a
modular approach in both model construction and repository
development allows excluding from such validation models and
experiments situated at a higher hierarchical level, as described by
Pelucchi et al. (2019). Despite this simplification, the remaining
amount of datasets to be compared against can still be overly large
for a manual benchmark of a kinetic model. Moreover,
considering the strong non-linearity of chemical kinetics, the

kinetic mechanism improvement could hardly find convergence
to a satisfactory level if the validation is qualitative, i.e., based on
the subjective judgment of the kinetic modeler, who overlaps
experimental data points and modeling predictions. Indeed, two
major drivers make this validation process dynamic and iterative,
rather than static: (i) the availability of newer experimental
measurements, extending the benchmark pool of the kinetic
model, and (ii) the substantial recent advancements in the
field of quantum chemistry as explained by Klippenstein
(2017), paving the way to a more accurate fundamental
evaluation of the kinetic parameters constituting the kinetic
model. As a result, the update process of a kinetic mechanism
is a “continuous-improvement” methodology.

Figure 1 illustrates the workflow, as applied to the CRECK
predictive kinetic model, formulated following a hierarchical and
modular methodology. This is composed of three separate steps,
connected together through a continuous-improvement
methodology: i) after the predictive model is developed, using the
proper numerical tools, it is used to simulate the available
experimental datasets. ii) Afterwards, the output obtained from the
numerical simulations is compared to the experimental datasets, and a
quantitative answer about the accuracy of such predictions is provided
(cfr. Section 3.2.1). iii) Finally, according to the results of the
validation phase, the model is updated to improve the predictions
in the weak performing areas, and the loop is restarted to check again
the model performance against the whole experimental database.

3.2.1 Model Validation
In order to provide an objective, quantitative answer to the
agreement between experiments and models, a score-based
procedure must be devised, able to provide a global assessment
of model performance via a single value. With this ultimate target,
the Curve Matching similarity measure was first devised by Bernardi
et al. (2016), and the most recent version, implemented in this work,
can be found in the work by Pelucchi et al. (2019). The Curve
Matching provides an index in the [0,1] range to evaluate how close
the results of a simulation are to the experimental data, taking into
account also the uncertainty of experimental data.

The methodology is based on the functional analysis, whose
basic principles are reported in Ramsay (2004), of both the
experimental data points and the model predictions,
performed through a spline-based interpolation of both data
series. A smoothing procedure is carried out by adopting a
roughness penalty on the second derivative. Such penalty is
weighted via a generalized cross-validation methodology,
applied on the first derivative of the function. In this way,
continuous functions, as well as their derivatives, can be
compared between each other.

Traditionally, literature has always quantified the agreement
between experimental data points and related predictions by
assessing the sum of squared deviations between them, as done
for example by Olm et al. (2014), Olm et al. (2015). This approach is
quite immediate to be implemented. Yet, the obtained index value
does not provide any information about the source of the deviations,
since it does not consider the shape of the curves. On the other hand,
including them in the model classification allows for a
comprehensive, multifaceted analysis of the differences between
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experiments and modeling. Moreover, the value provided by the
sum-of-squared deviations is only valid in relative terms, i.e., it
classifies model predictions only compared to other models.

The Curve Matching similarity measure solves both issues by
laying its foundations on three major cornerstones:

• The evaluation of distance indices, based on L2 norm, and
similarity indices, based on the Pearson Correlation, for
both functions and the related derivatives. Doing so, the
difference in shape can be accounted for, too, while still
keeping the information about the sum-of-squared
deviation via the distance index between experiments and
models.

• The formulation of such indices to be bounded between 0
and 1, where the boundaries indicate the maximum
dissimilarity and similarity, respectively. In this way the
agreement of a given model can be assessed independently
from the presence of other comparisons.

• The evaluation of a shift index, evaluating the differences
between experiments andmodels in the horizontal direction, too.

In this way, a global index is returned by averaging the
performance indices, thus giving an overall evaluation of the
model accuracy, for which the separate analysis of the indices
allows identifying the source of the deviations.

A detailed description of the approach is available in the work
by Pelucchi et al. (2019). Here, the cornerstones of the approach
are recalled. Four indices are conceived in such a way to be
constrained between 0 and 1, with the two boundaries
representing maximum dissimilarity and similarity,
respectively. Such indices are based on the following definitions:

• f and g, i.e. the functional curves representing experiment
and model data points, respectively, and f ′ and g ′ their
derivatives

• D, i.e. the intersection of the domains of f and g
• ‖h‖, i.e. the norm of a generic curve h in the L2 space:

‖h‖ �
���������∫

D
h(x)2dx

√
(1)

The dissimilarity indices are respectively introduced as:

d0
L2
( f , g) � 1

1 + ‖ f−g‖
D

∈ (0, 1) (2)

d1
L2
( f , g) � 1

1 + f ′−g′‖ ‖
D

∈ (0, 1) (3)

d0
P( f , g) � 1 − 1

2
f
‖ f ‖ −

g
‖g‖

�������� �������� ∈ (0, 1) (4)

FIGURE 1 | Continuous-improvement process of the CRECK predictive kinetic model - Ranzi et al. (2012).
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d1
P( f , g) � 1 − 1

2
f ′

f ′
���� ���� − g ′

g ′
���� ����

���������
��������� ∈ (0, 1) (5)

Equation 2 can be considered as the functional version of
the error function value based on the sum-of-squared
deviations used in literature to compare models and
experiments Olm et al. (2014, 2015). Yet, limiting the
comparison to such value would not take into consideration
the shape of the curves. Indeed, the remaining three indices
exhibit the following properties:

d1
L2
( f , f + a) � 1 ∀ a ∈ R (6)

d0
P( f , f × a) � 1 ∀ a ∈ R (7)

d1P( f , f × a + b) � 1 ∀ a, b ∈ R (8)

These properties related to the respective indices Eqs 3–5
quantify the trend similarity of two curves in terms of a vertical
shift (Eq. 6), a dilation (Eq. 7), or a dilation and a vertical shift
(Eq. 8). As a fifth criterion, the horizontal shift between model
and experiments is calculated as:

S � max 1 − δ

D
, 0( ) ∈ (0, 1) (9)

where δ is the shift amount of the model, chosen as the one
maximizing the sum of Eqs 2–5:

δ � argmaxδ(d0
L2
+ d1

L2
+ d0

P + d1
P) (10)

The global index M evaluating model performance is
evaluated as the averaged sum of the values evaluated in Eqs
2–5, recalculated after the shift is completed, and (9):

M � d0L2 ,shift + d1
L2 ,shift

+ d0P,shift + d1P,shift + 2S

6
(11)

As one can imagine, the reliability of this evaluation depends
on the uncertainty of the different measurements, and a
correlation between the uncertainty of data points and
uncertainty of the global index M (11) is necessary. For this
purpose, a bootstrapping procedure, as described in Ramsay
(2004), is performed to complete the analysis: by taking into
account the uncertainty of the single data point, a sufficiently high
number of random values is generated, assumed as normally
distributed with an average value corresponding to the data point
and a standard deviation equal to the related uncertainty. Usually,
some tens of random data points are sufficient to reach a
statistical significance.

As a result, a number of curves equal to the number of data
points can be obtained, and a global index valueM (11) can be
evaluated for each of them. The related average value and
deviation provide the final benchmark about the model-
experiment agreement, and uncertainty range of such
result. Such a range allows identifying the degree of
significance of the different models’ performance against
the same experimental dataset, which is then defined as
relevant only when the related uncertainty range are not
overlapped between each other.

3.3 Research Process
As discussed in the introduction, the development of a scientific
model foresees the interconnection at some points of two distinct
processes. The first process concerns the actual development of
the predictive model. As described in Section 3.2, the process in
Figure 1 is a continuous cycle of improvement, simulation, and
validation of the predictive model. The second process regards the
life cycle of the experiments. In reality, these procedures are more
complex and interconnected, and this section aims to provide
more details on the various stages.

The process that concerns the life cycle of the experiments
includes two macro phases, which are then divided into more
specific tasks as follows:

1. Experiment Collection. In order to validate the developed
module, we need experimental data. The collection of
experiments can take place in two ways:
a. Existing Experiment. The researcher can use experiments

existing in the literature or coming from private
communications between research laboratories.

b. Non-Existing Experiment. The researcher requests to
perform an experiment that does not exist yet (Design
of Experiment).

2. Experiment Curation. Once an experimental campaign on a
specific fuel that describes different characteristics is available,
it is important to check the data’s quality. Otherwise, it is
counterproductive to validate a model against a unreliable
dataset. For this reason, an experiment is verified into three
steps:
a. Check experiment. Syntactic and semantic checks of the

data aimed to identify gross errors.
b. Validate experiment. An expert, using its domain

experience, looks for undetectable errors with automated
procedures.

c. Experiments data cleaning. This task is the assessment of
the consistency of the experimental data respect to the
predictive model. A significant difference between the
experimental data and the simulated data coming from
the predictive model is a precious source of information for
different aspects. In other words, we can use this
consistency check for a data cleaning procedure.

Similarly, the predictive model development process utilizes the
experiments and involves three macro steps as follows:

1. Simulate experiment. Once an experiment is available, it is
simulated with a predictive model. In particular, we can
distinguish two stages:
a. Preparation. It is necessary to prepare specific input files for

each experiment in a format comprehensible by the
simulator, specifying all the characteristics necessary to
simulate the experiment accurately.

b. Execution. The experiment is simulated, and the results are
collected.

2. Validate Model. This step involves comparing the results of the
model with the experimental results. This procedure can take
place in two ways:
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a. Qualitative, involving a qualitative comparison of the
results by the expert.

b. Quantitative, involving the use of quantitative tools that are
able to establish the similarity between an experimental
curve and the simulated data.

3. Improve predictive model. Once the validation results are
available, we need to improve the model to cover the gap
from the experimental data. The predictive model for the
combustion kinetics is hierarchical and modular. This feature
simplifies the simulation and allows researchers to work
independently on more modules at the same time. Each
module covers a portion of the domain regarding a specific
fuel with precise time scales and quantities. The following
steps are:
a. Module selection. Various reasons can bring to the

decision of which modules of the model to improve,
including social or industrial contexts or the availability
of new experiments on a given fuel are the main reasons.

b. Theoretical study. The model’s theoretical development
begins, trying to understand which reactions occur,
estimating or calculating the constants of the reactions
depending on the problem’s complexity.

c. Integration. The developed module is translated into the
simulator model format and integrated into the
combustion kinetics model.

Each activity requires different levels of knowledge of the
domain, and for this reason, theoretically, different roles can be
identified within the process. However, since there is no exact
and fixed mapping between the qualification of users (student,
intern, researcher, etc.) and a role responsible for a task, fine-
grain privileges, that allow accessing and using each
microservice to perform a particular operation in the system
are defined and then assigned every time to each user based on
its duties.

3.4 SciExpeM Framework
SciExpeM is a scientific framework that speeds up and
supports the development of scientific models (cfr. Scalia
et al. (2019)). The usual process, described in Section 3.3,
is costly and time-consuming because the development of a
model involves, for example, managing large amounts of data,
especially in the predictive model validation phase. The
previous sections presented the typical scientific experiment
management issues that the SciExpeM framework wants to
solve. SciExpeM includes a repository of scientific
experiments, but its microservices architecture also offers
functionalities related to the development, simulation, and
analysis of scientific models.

The main goals of SciExpeM are:

• Management of scientific experiments with attention to
maintaining a high quality of the repository, checking the
semantic and syntax of an experiment, and an automatic
semantic interpretation of the experiment for correct use of
all downstream services.

• An easily extendable service architecture with the possibility
of managing the user permissions.

• Automated analysis procedures aimed to provide
indications and support in the development of scientific
models, improve the database quality, while optimizing the
use of resources.

In Section 3.4.1, we present the general approach to the
problem that can be easily applied to different domains, and
in Section 3.4.2 we illustrate the architecture necessary to satisfy
the system’s characteristics.

3.4.1 Description of the General Method
In scientific research, having a quality database is of primary
importance. It is even more critical when a model development
process is a data-driven approach in which experimental data
play a critical role in the definition and validation of the model
itself. For this reason, it is essential to have a system that can
handle large amounts of scientific data in the most automated
way possible. First of all, it is necessary to identify the main
phases that involve a scientific experiment in the development
of a predictive model. As presented in Section 3.3, the workflow
of the experiments and the predictive models are closely linked
and in some parts they overlap. Therefore, we summarize the
overall process into seven stages. The phases are Collection,
Insert, Check, Validate, Simulate, Analysis, and Improvement as
we can see in Figure 2. Identifying the logical workflow in which
an experiment is involved in the model development allows us
to understand what services are required, organize the
architecture, and identify the tools needed to implement the
system. Furthermore, logically organizing the life cycle of
experiments and the model into phases helps decoupling the
operations performed on each stage’s data, defining
interchangeable and extensible macroblocks.

Collection is a step of the overall process outside the scope of
this work in which experiments and models are collected from
the literature or other sources. The Insert phase considers all
aspects of the experimental and predictive model database’s
enrichment, integrating different insertion methods, even
from different sources and formats. The Check phase limits,
as far as possible, potential sources of errors in the
experiments. Subsequently, in the Validate step, a domain
expert verifies the experiment entered and provides
additional information that allows the system to interpret it
automatically in the subsequent phases. The Simulation phase
represents the execution of a numerical tool with the use of a
numerical model to replicate experimental data. The Analysis
phase can be automated or customized and compares the
results obtained during simulation with other information
from the database. Finally, during the Improvement step,
the model or the experimental database quality is enhanced
using the results of the analysis. Also, this last phase, as for
Collection, is outside the scope of this paper since it is not
interesting for us how the predictive model is improved or
which is the criterion to exclude (clean) an experiment from
the process.
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3.4.2 Advanced Architecture
NIST Big Data Public Working Group in the work of Chang et al.
(2019) presents the NIST Big Data Reference Architecture
(NBDRA) guide that describes, using a functional component

view, the roles with their actions and the components that carry
out the activities for a Big Data architecture. According to these
guidelines, we present in Figure 3 a general overview of the
updated SciExpeM architecture.

FIGURE 2 | A sketch of the logical workflow of the development process of a scientificmodel that involves the continuous interaction with experiments. Filled in grey
are the steps that are not a subject of the SciExpeM framework but are part of the overall process.

FIGURE 3 | Sketch of the architecture adapted from the NIST Big Data Reference Architecture (cfr. Chang et al. (2019)) for the management of experiments to
support the development of scientific models.

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 6634109

Ramalli et al. SciExpeM

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


As we can see in Figure 3, the SystemOrchestrator takes care of
the configuration and management of the other components of
the Big Data architecture.

The component SciExpeM, according to the figure and Chang
et al. (2019), represents the Big Data Application Provider that
encodes the business logic and executes a specific set of operations
to the data. This entity manages the life cycle of experiments and
predictive models with a different application to fulfill the
requirements given by the System Orchestrator.

The union of four submodules represents the Big Data
Framework Provider, with an additional transversal layer
representing the Hypertext Transfer Protocol Secure (HTTPS)
REST Application Program Interface (API) communication
mode with the SciExpeM framework and a module of resource
management and optimization. Beginning from the bottom to get
to the top, we observe from Figure 3 a layered structure of the
framework, in which, starting from the resources in terms of
platforms such as Computing Resources and the Database, we
arrive at the tools such as the Database Manager and the Services
that provide the system functionalities.

Finally, the Experiment Source represent the system’s Data
Provider in terms of both literature, private communications
between research labs, or experiments entered by users.
Researcher is the Data Consumer, representing all the user profiles
that can be derived from Section 3.3, and can interface with the
system to manage it or perform tasks. The system’s interaction can
occur through a user-friendly interface or using the API.

4 RESULTS: REALIZATION OF THE
SCIEXPEM FRAMEWORK

This section illustrates the main elements of the design and the
realization of the SciExpeM system, and it presents the primary
services that allow the SciExpeM framework to support a
predictive model’s development.

Before defining the services that characterize the SciExpeM
framework, we briefly introduce the operational database
structure used to represent the domain on which most
services rely. Figure 4 shows the class diagram model that
represents the combustion kinetics domain. This database
model presents just the essential elements that allow
representing sufficiently the combustion kinetics domain. We
suggest evaluating the database model’s structure and
complexity before implementing a system to represent a
scientific domain. Having additional but not essential details
burdens data management without bringing benefits in the strict
sense to data-driven research. Another feature of the class
diagram is that the association between the Data Column
and Simulation Result Column requires additional knowledge
not representable in a Database. The combustion kinetic
domain is heterogeneous and complex, and representing it
entirely with a defined set of rules is not easy. SciExpeM
encodes this knowledge through a specific service (Section
4.1) to provide the correct mapping between the
experimental data (Data Column) and the model simulation
results (Simulation Result Column).

Regarding combustion kinetics, it is possible to read the class
diagram in Figure 4 in the following way: an Experiment is an
assortment of measures (Data Column) regarding a specific fuel
mixture of Species collected with precise equipment and procedure.
An experiment is internally identify using the id, but it is also
mandatory a DOI of the file that represents the Experiment in a
specific format. Moreover, an Experiment has a status field that
keeps track of the Experiment process stage (Possible statuses are
new, verified, invalid, etc.). Using a predictive Chemical Model it is
possible to simulate an Experiment to replicate the same
experimental results. For this reason, when a Simulation is
concluded, the corresponding measures (Data Column) of the
Experiment are stored in a Simulation Result Column, and for each
pair, a similarity index is computed and saved into the Curve
Matching for future analyses.

FIGURE 4 |Class diagram of the database used in SciExpeM to represent experiment, simulation, models, and analyses (PK) stands for primary key. Some fields of
the entities can be omitted for simplicity.
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Thanks to amodular service structure, as we can see in Figure 5,
we can easily extend the framework capabilities by introducing
additional modules and exposing new services through new
endpoints in the API. The figure is a zoom-in of the services in
Figure 3 and shows the dependencies among the functionalities
represented by an arrow, persuing the decoupling and reuse
principle of a microservices structure as explained by
Alshuqayran et al. (2016) and Kratzke and Quint (2017). A
benefit of SciExpeM derives directly from this approach:
providing essential services to the end-users to combine them as
they prefer.

Each subsection details a group of services that faces a problem
with the corresponding solution. In the implementation phase,
the services should be developed according to their application
domain characteristics, and in some cases, they may be optional.
In particular, we discuss:

1. Manage Experiment (Section 4.1): This group of services takes
care of the management of experiments during their life cycle.

2. Check Experiment (Section 4.2): This collection of services
tries to keep high quality in the SciExpeM scientific repository.

3. Analyze (Section 4.3): This group of services offers
functionalities to investigate a predictive model or an
experiment in different ways to improve the accuracy and
the repository quality, respectively.

4. Other Services (Section 4.4): This block of services represents
all the other services implemented by SciExpeM.

5. External Services (Section 4.5): This collection of services are
external functionalities that are not implemented by us, but
SciExpeM uses their process to complete other services.

Access to SciExpeM services needs to be as easy as possible.
Providing a communication interface through endpoints is very
flexible but may not be accessible for all users. For this reason, two
other ways of interacting with the system have been developed that
use the pre-existing endpoints. A user can access the system through
a web interface that allows, for example, new experiments’ insertion.
Otherwise, a user can use a Python library that maps the Database
entities presented in Figure 4 into Python objects providing
flexibility in implementing custom extensions.

4.1 Manage Experiment
This collection of services represents the system’s functionalities
to manage an experiment’s life cycle.

The first step of an experiment within SciExpeM is the
insertion represented by the Insert Experiment service. This
service must take into account that the import of scientific
data can take place from different formats. However, it is
essential to ensure a unique representation format for the
system’s experiments by choosing a widely accepted format. In

FIGURE 5 | Main experiment related services of SciExpeM system with their dependencies.
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the case of combustion kinetics is ReSpecTh. In this way, the
system should only implement the translation into the main
format without changing its subsequent interpretation from the
primary format to the database schema. Besides, this approach
allows for the easy export of the experiment from the system to
other environments through the Export Experiment service.
Therefore, each experiment in the system has an associated file
in a commonly accepted representation format. For this reason, it
is possible to associate to this file a unique DOI. Two things can
happen during the insertion of a new experiment: the experiment
is provided in the main representation format with an associated
DOI or not. In the latter case, SciExpeM, after a user inserts an
experiment through the interactive form or in a different format
(for example ChemKED), generates the ReSpecTh file for the
experiment, and at the right time, generates the DOI for the file.
Finally, the experiment status is changed to new to highlight the
necessity of subsequent validation by an expert.

Once an experiment is in the Database, it is important to offer
a series of services for its maintenance and consultation. Update
Experiment and Delete Experiment represent the services,
respectively, to update or delete an experiment from the
system. However, the use of this type of service is risky.
Updating an experiment is intended to correct errors entered
during the insertion phase and does not modify the experiment
itself. Since a file with a Digital Object Identifier (DOI) is
associated with an experiment, any modification would
invalidate the correspondence between the experiment and the
file with the DOI. On the other hand, removing an experiment
from the system could affect the completeness of the predictive
model validation since an experiment could be the only
experimental data that cover a specific portion of the domain.

If there is a need to modify an experiment in the Database that
already has an associated DOI to the corresponding ReSpecTh
file, we need to apply the changes to the experiment and generate
a new ReSpecTh file and associate a new DOI. For this purpose,
we use Zenodo (cfr. European Organization For Nuclear
Research and OpenAIRE (2013)). Zenodo generates a DOI for
each file that, in our case, is a ReSpecTh file that represents an
experiment. Using its DOI versioning functionalities, we can
update the same record with a new version and a new DOI
while keeping a separate DOI for all the older versions or a unique
DOI to refer them all. In other words, we could monitor the
evolution of our dataset, but in our system, we keep only the last
version of the experiment. Any addition or modification in the
Database regarding the experiments activates the Check
Experiment service (Section 4.2). Query Database is the
general service to query the system to retrieve experiments,
executions, models, and curve matching scores.

Automatic checks provided by Check Experiment reduce the
possibility of errors, but they cannot be removed entirely due to
the problem’s complexity. If an experiment does not pass the
checks it is rejected. Otherwise, an expert has to validate the
experiment inserted with Validate Experiment service. This
service generates the ReSpecTh file and the DOI for the
experiment using Zenodo, if not present, and changes the
experiment status to verified. Having a dataset of validated
experiments is a critical aspect. It allows us to rely more on

experimental data and use them to analyze and validate
simulation models. During validation, the expert can add
other information that helps categorizing it and having an
entire comprehension of the experiment by the SciExpeM
system.

Once an experiment is validated, it becomes available for a
variety of further uses within the system. However, to automate
this experiment’s use and analysis, it needs to be understood by
the system. SciExpeM must apprehend the experiment to know
which specific module of the predictive model to use and what
information from the simulator it should extract to compare the
simulated data with the experimental ones. This seemingly logical
and straightforward problem but is not easy to automate in a
complex domain. Each scientific experiment has its
particularities, and it is even often difficult to associate them
with a type of experiment. Another requirement to be satisfied
with the implementation phase is to decouple the expertise part
from the code implementation part. For this reason, SciExpeM
uses a dynamic interpretation through Interpret Experiment
service. Once the experts have defined an experiment’s
discriminating characteristics, it is possible to complete a table
that specifies how the system must interpret an experiment in
terms of the specific solver for the simulation and interpret its
results correctly. In particular, the table specifies, given the
experiment’s discriminant properties, a mapping of the
experimental data’s information with the simulator output
information. In this way, the experts can update the table that
helps the system to interpret the experiments without any
changes in the platform’s source code.

Finally, Categorize Experiment helps during the analysis phase
of the model. Scientific models try to simulate very complicated
domains. For this reason, it is necessary to use elaborate scientific
models to represent the problem entirely. Since the model deals
with representing all possible experiments in the domain, it is
interesting to understand its behavior in more specific cases. Each
scientific experiment is unique but is part of a family of
experiments. An experiment family can be determined by
different factors depending on the application. These
characteristics can be computed from the information already
present in the experiment, alternatively, they can be specified by
an expert. SciExpeM associates metadata to each experiment that
help the system in the analysis phase. Using the categorization of
the experiment, it is possible, for example, to measure the
performance of a model on a specific portion of the Database,
improving the comprehension of the effectiveness of a model
adjustment.

4.2 Check Experiment
A newly inserted data may be syntactically or semantically
incorrect. In this case, the system refuses the experiment and
notifies the user. To verify these errors it is necessary to carry out
a series of checks that guarantee a higher experiment repository
quality. In an experimental context, all information or properties
must be present to characterize an experiment, that defines its
syntax. However, it is also necessary to carry out some basic
checks on the semantics of the data entered, resulting from typing
or domain-specific errors. The system performs the checks every
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time a service interacts with the database to add or update an
experiment. The controls should happen automatically and
transparently without the necessity to invoke them explicitly.
SciExpeM leverages, to implement these features, the database
management layer’s presence in the architecture that virtualizes
the database and intercepts any interaction between the system
and the database. To ensure a syntactic check over the experiment
database, SciExpeM integrates OptimaPP, a software that
controls whether the requirements to define a combustion
kinetics experiment in ReSpecTh format is fulfilled (cfr. Varga

(2020)). Regarding the semantics of an experiment, the system
controls some essential elements, such as, for instance, the
congruence between the unit of measurement and the declared
property, or other simple experiment consistency checks.

4.3 Analyze Model
Providing analysis tools is fundamental to support the
development process of predictive models.

The first step in this procedure is to be able to use the Simulate
Experiment service, described in Figure 5, to simulate an

FIGURE 6 | Business Process Model and Notation (BPMN) for the request of an experiment simulation. We can observe the interaction of the various SciExpeM
services to fulfill the requirements about the reuse of resources and a non blocking request.

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 66341013

Ramalli et al. SciExpeM

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


experiment through a predictive model. The services presented in
Section 4.1 ensure that an experiment is verified, i.e., an expert
has checked the experiment validity, and SciExpeM has all the
information to simulate it. Simulating an experiment also
requires knowing the specific model to use. The user provides
this information in case of a specific request or, automatically,
against all the system models. Simulating an experiment can take
anywhere from a few seconds to several days. For this reason, it is
crucial to fulfill two requirements. First, the simulation of an
experiment must not be a blocking request. Second, it is also
necessary to verify that a simulation has not already occurred or
started to reuse a previous result and save resources. Figure 6
shows a Business Process Model and Notation (BPMN) that
describes the interaction between various services and entities to
perform a simulation fulfilling the previous requirements. When
a user submits a request to start a simulation, the system creates a
transaction.Within the atomic transaction, SciExpeM checks that
there are no other simulations already completed or started. In
any case, the system replies with the result if available, otherwise
with a response containing information regarding the
simulation’s status. If the request regards a new simulation,
the system starts it after updating the corresponding starting
time field of the Database’s entry. When the external process
finishes the simulation’s execution, the system saves the results
and updates the simulation status regarding the ending time.
From now on, the simulation results are available.

The second step is to compare the simulation results with the
experimental data to measure the scientific model’s performance
using the Validate Model service in Figure 5. This service
provides a general overview of the model performance using a
quantitative tool like Curve Matching to measure the difference
between the model’s simulation results and the experimental
information as presented in Section 3.2.1. SciExpeM offers other

analysis tools like Outlier Detection. This kind of service wants to
help the improvement process of a scientific model differently.
Instead of providing information regarding a model’s general
performance, it gives more precise information regarding the
model’s anomalous behavior in some specific cases. Since the
scientific model for combustion kinetics is hierarchical and
modular, Outlier Detection works very well with the Categorize
Experiment service detecting precisely possible module defects.
SciExpeM can automatically carry out these analyses using the
Interpret Experiment service that provides the necessary
knowledge to compare the simulator’s results with the
experimental data correctly.

4.4 Other Services
SciExpeM relies on other services that work under the hood providing
additional functionalities to the framework to support, for example,
the user interface, other services, or the control over the system itself.

TheUser profile is a critical aspect of the system since it maps a
research group’s roles in the permission to use a SciExpeM
service. SciExpem provides authentication and service
permission management to guarantee a secure working
environment, reliable analysis results, and correct use of the
resources. The design strategy to offer this functionality is to
request specific permission for each service. In such a way, when
SciExpeM offers a new service, it is necessary to associate to it a
permission and then add the corresponding authorization to
users that need access. A user can log in to the system
through the web interface or use its authentication token and
attach it to any HTTPS request to leverage the SciExpeM API.

Finally, among theOther Services there is a logger functionality
that helps monitoring an experiment’s history and the user’s
activity, in such a way it is easier to rollback a wrong operation or
discover a glitch in the system.

FIGURE 7 | Combustion kinetics model comparison for an experiment (cfr. Chaumeix et al. (2007)) using Curve Matching as similarity score.
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4.5 External Services
SciExpeM uses a set of external services to be able to complete its
services. These services are performed directly by SciExpeM but on a
different process, after which the results are collected. In this case,
SciExpeM uses OpenSMOKE++ (cfr. Cuoci et al. (2015)) as the
simulator of the experiments, OptimaPP byVarga (2020) to check the
syntax of the experiments in the ReSpecTh format and the Curve
Matching to compare the curves. Using thismodular service approach
allows SciExpeM to manage services independently.

4.6 Implementation
The new implementation is based on the first version of
SciExpeM (Scalia et al. (2019)). The SciExpeM system is
developed using a PostgreSQL relational database to which a
back end in Django is interfaced. We use PostgreSQL extensions
to support complex data types not available in standard SQL, such
as lists. Django exposes an HTTPS API that allows interactions
with the system through a user interface in React. js. The
transmission of data through the API has been optimized by
compressing the server’s responses. In addition, a Python library
that wraps the API and allows personalizing the analysis with
Jupyter Notebooks is provided.

5 PRELIMINARY EVALUATION

In this preliminary evaluation, we combine the services offered by
SciExpeM into use cases to illustrate the potential of the system
and the benefits in the model development process with respect to
a manual procedure. SciExpeM, with its services, can be an active
part of the model development process, helping in the
experiments management and providing analysis tools while
saving time. One of its notable contributions regards model
validation. Evaluating a model against a set of experiments is
more exhaustive than comparing a single experiment-simulation
result pair independently, enhancing the model
comprehensiveness and reliability. As described in Section 3.2,
a manual benchmark of the model is not suitable due to the
growing number of experiments. This limitation forces the
researchers to cut down the test set of experiments against

which to examine the model, losing useful information with
respect to a broader test set. SciExpeM overcomes these
limitations and also allows a user to select a test set with
specific characteristics leveraging the categorization service and
reusing previous analyzes, if available. Furthermore, every time
an experiment enters the SciExpeM repository, the experiment is
transparently included in the scientific model’s validation-
simulation-improvement loop.

In these analyses, we used the ReSpecTh repository experiments
that currently contain 2,397 experiments. More precisely, we used a
subset of ReSpecTh regarding the IDT of four species: Hydrogen,
Carbon Monoxide, Methanol, and Ethanol.

The experiments are available online in the ReSpecTh Kinetics
Data Format, and they were integrated into SciExpeM through
the Insert and Check experiment services. After that, SciExpeM
used the Validate and Interpret experiment services to simulate
the experiments with the OpenSMOKE++ simulator described in
Cuoci et al. (2015) and compared the simulated to the
experimental results using the Curve Matching framework
described in Section 3.2.1.

In this section, we illustrate two types of analysis in which we
easily compare the model performance (Section 5.1) and
automatically extract knowledge from the data (Section 5.2).

5.1 Model Comparison
The evolution process of a scientific model is a continuous cycle
of improvement and validation, as explained in Section 3.2. It is
necessary to use quantitative tools to compare the models’ results
and the experimental results to validate a scientific model.
Section 3.2.1 introduced Curve matching as a score of
similarity, among whose characteristics it can consider the
uncertainty present in the experimental data. Curve Matching
is able to compare curves, trends as a whole, rather than just as a
collection of points, such in case of mean square error. In practice,
for each experiment we measure the similarity respect to the
simulated data with a certain predictive model. For this goal,
Curve matching plays a central role in our system since it is an
objective tool, which requires little domain knowledge in using it,
and for this reason, it lends itself very well to automated
procedures.

FIGURE 8 | Heatmap of the average Curve Matching scores for each
combination of species-model. Higher is better.

FIGURE 9 | Heatmap of the minimum Curve Matching scores for each
combination of species-model. Higher is better.
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In this case, researchers use SciExpeM to determine an
improvement or worsening of a model in its different versions
during its evolution. SciExpeM uses Curve Matching results to
determine if there is an improvement between one model and
another; in this case, the focus is not on the absolute value of the
score but on its variation, negative or positive. However, it is not
always immediate to conclude whether there has been a variation
in the model score because the experimental data are strongly
affected by uncertainty.

In Figure 7 there is an example of this analysis.
A researcher used experiment DOI:10.24388/g00000002 (cfr.

Chaumeix et al. (2007)) as a benchmark. In the figure, it is
possible to observe that the different versions of the model, on the
x-axis, have different curve matching scores on the y-axis, but are
within the uncertainty range. For this reason, most of the models
have similar performances for this experiments, except for the
CRECK 2003 H2model, released in March 2020, which exhibits a
significant improvement over the other models. SciExpeM,
through its services, speeds up this quantitative analysis,
reusing previous results and helps researchers understanding
that some improvements between some different versions of
the model do not bring any sensible advantage for this specific
experiment, increasing the overall model comprehension.

5.2 Outliers Detection
In this case study, we want to illustrate how SciExpeM fits into the
model refinement cycle using analysis services such as outlier
detection. Firstly, using SciExpeM’s categorization service, we can
select a collection of experiments with specific characteristics
representing a portion of the domain and the model. In this case,

four species of fuels are selected for which IDT is measured. These
experiments are then automatically simulated with different
models and compared with the experimental data. SciExpeM
measures a series of simple statistical parameters, such as mean
and variance, to determine if the model validated on this data
collection exhibits anomalies. These anomalies can be identified
with statistical measures assuming that the model performs
similarly for experiments belonging to the same category or
collection. For this reason, a drastic variation of measures
suggests a problem in the model or in the repository.

In combustion kinetics experiments, an outlier could be a
point in the experimental data with a significant error of
measurement or a simple typo during the insertion of the data.

Figures 8, 9 provide a visual representation of the results of
applying Curve Matching over a selected set of experiments for
four fuels using three different models. In particular, the heatmap
in Figure 8 shows the average Curve Matching scores for each
model and each fuel, while Figure 9 presents the minimumCurve
Matching scores. Both figures highlight the possible presence of
outliers in the case of methanol.

A researcher can deeply investigate the origin of this
difference. In particular, we can observe a worsening of the
model performance in newer kinetic models for the methanol
experiments. Figure 10 shows a drill down into the details of the
methanol analyses to support the investigation of the problem
source. As we can see, the major effects are due to a specific
experiment. At this point, the researcher evaluates the
specific case.

Usually, two cases can occur: the first consists of isolating the
experiment as it contains inaccurate or unreliable information. This

FIGURE 10 | Heatmap of the Curve Matching scores against three combustion kinetic models regarding a collection of Methanol experiments.
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may be due to a variety of reasons, which can systematically corrupt
the experimental dataset, e.g., i) an incorrect tuning of the
instrumentation, ii) a malfunction of one of the component of
the facilities, or an iii) error in the transcription of the numerical
values. The second involves improving the kinetic model.
Afterwards, the development process can restart its cycle. In the
case of Figure 10, it is possible to observe that the update of the
kinetic model from 2014 to 2019 has caused a significant worsening
of the score of exp_CH3OH_32, which now is flagged as red. At this
point, SciExpeM allows investigating more deeply on the single fuel,
and human intervention can understand the source of the low index.
First of all, the different contributions to the Curve Matching index
(distance, similarity, and shift indices—cfr. Section 3.2.1) are
isolated, and compared with the previous values. Then,
experiments performed in comparable operating conditions are
sought in the database to check whether the model systematically
fails in such a region. At this point, if the bad performance of the
model is not systematic, the single experiment can be classified as
unreliable, and/or further experiments might need to be found in the
literature (if available) in such region. On the contrary, if the model
systematically fails in such a region, SciExpeM can identify an issue
in the kinetic model and highlight the need for further theoretical
research in such an operating range.

6 DISCUSSION

SciExpeM proposes the use of a shared repository of experiments
and of simulation results with different models. Shared
repositories have been proposed in the literature by several
groups and are being discussed at the strategical level (e.g., by
NIST and in the SmartCAT COST Action6 for combustion) as
they present several advantages to the scientific community to
enable sharing and reusing of experimental data in a systematic
way. As far as data storage is concerned, we observe the
advantages of a database model that is simple and functional
to research activities, without overly complicating the
representation of the domain and with automatic checks on
data quality. It is also advisable to store the data according to
a widely recognized experiment format, thus facilitating data
processing and analysis, and the integration of third-party
libraries.

On the other hand, several open challenges mark the long-term
development of such repositories. First of all, as discussed by Curry
and Sheth (2018), it is necessary to clearly define the type and
structure of the community involved. Repositories can involve
many communities and potentially become virtual
environments. In the present phase, SciExpeM focuses on
providing a common structure to share experiments and an
analysis basis for the evolution of a single model, as shown for
instance in Section 5. Other repositories support multiple different
types of models, usually on specific problems, such as in
CloudFlame. It is necessary for a wider scope of repositories to
provide a clear view on the semantics of data contained in the

repository. Currently, in the field, there is no common shared
ontology for the main concepts, and several perspectives should
have to be harmonized and used in parallel, including the different
formats used to represent reactions, such as molecular formulas,
canonical SMILES as described in Weininger (1988), InChI as
defined by Heller et al. (2015), 2-D structures and 3-D conformers.

One of the specific features of SciExpeM is the possibility of
reusing results of simulations. In addition to performing and using
a simulation for a specific research goal, the simulation results will
enable a more general analysis of stored experiments and models,
comparing them in a broader perspective and avoiding the
repetition of experiments and simulations when they are already
available. For such results to be useful, the associated metadata
must be defined clearly and without ambiguities, thus effectively
defining the experiment’s context. Ambiguities may arise in default
values (e.g., atmospheric pressure) or default structures (e.g., not
considering tautomerisms, i.e., different spatial configurations of
the considered species in a reaction).

A further issue is related to experiment management. As
illustrated in the process, activities such as corrections, data
augmentation, and the like can be performed to improve the
quality of the experiment. A clear track of such activities needs to
be maintained as different interpretations might be possible and
invalidate the results in some cases if not properly considered.

Although most of the procedures are automated, some steps of
the procedure require manual supervision. In current Data
Science life cycles, a human-in-the-loop approach is
envisioned, in particular when deep learning techniques are
used for the prediction of properties (see, e.g. Stodden (2020)).
In particular, during the validation phase of the entered data
(Section 3.4.1), the expert must provide additional information
on the experiment to interpret, categorize or simulate it. In the
future, we also want to systematically support this phase with
further services but still maintain human validation and analysis
where necessary.

Another aspect that has to be considered is the development of
new processes within the general Data Science life cycle. Starting
from the application domain, the different processes involved
must be identified. In particular, it is necessary to identify the
parts of the processes that can be easily automated. If the process
requires a comparative analysis, it is important to identify
qualitative analysis tools. Being a data-driven (or experiment-
driven) application, starting from the processes identified above,
it is necessary to identify the logical workflow and how it interacts
with the other processes.

For each block of the workflow, there is a need to identify new
support services, collecting their functional requirements, and
developing the tools needed to implement them following the
microservices perspective proposed for SciExpeM. To achieve
this, the overall system’s architecture must be designed to be
easily extendable and support access to the system in various
ways. Furthermore, the system must offer functionalities for
reusing resources and providing services for specific user profiles.

A framework like SciExpeM that integrates experiments and
model analysis could significantly improve the development of
predictive models. Using the human-in-the-loop pipeline, we
continuously improve the model and the repository where6https://www.smartcats.eu/
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each of these two entities is used to validate each other. In
addition, the methodological procedure and its automation
allow drastically reducing and standardizing the time needed
to analyze and simulate hundreds of experiments with the new
predictive model. This autonomous procedure also benefits from
reducing human errors and working with a more significant
number of data simultaneously, extracting systematic properties
from the experimental and simulated data.

One of the next steps in this research is to transfer this
experience to another experimental domain. It is not easy to
estimate a priori the effort needed for this procedure, but, for
example, the pipeline that we have proposed is general enough to
be applied to most of the experimental domain, ensuring data
quality and predictive model improvement. Regarding the actual
implementation of the database and the services instead, each
case requires a specific evaluation.

7 CONCLUDING REMARKS

The development of scientific models has always been of great
interest because they can be used to represent a domain. In the case
of combustion kinetics, it allows simulating the efficiency of
reactors and fuels in terms of energy and pollutants without
actually carrying out experiments that would otherwise be
expensive in cost and time. Scientific models continuously
improved by experimental data can overcome this problem.
However, the experimental data are complicated to manage, not
only in the combustion kinetic field. The experimental data come
from decades of studies, which have used different representations
with varying degrees of uncertainty and methodology. Besides,
technological advancement has meant that this representation is
become more complex to cover all the new aspects of the domain.
In this context, it is necessary to develop a framework capable of
combining semantic interpretation of a complex domain with
automatic procedures to support the research. SciExpeM
provides a series of data-oriented services to support and
automate the predictive model development process while
managing experimental data, and in this work it has been

further extended, considering the experimental data life cycle
and the model development life cycle, also demonstrating its
effectiveness through several experiments. Frameworks such as
SciExpeM will have an increasingly central role in research as they
help, with their services, to efficiently manage data and models,
minimizing the use of resources and accelerating model
development. SciExpeM provides a basis for developing several
different analysis processes for different types of users and different
types of investigations of research problems. Moreover, the
experimental results highlight that it is possible to extract
knowledge from integrated experimental data, for example
comparing different models and efficiently finding outliers.

DATA AVAILABILITY STATEMENT

The back end SciExpeM source code for this study can
be found in the github repository “sciexpem” at the link
[https://github.com/edoardoramalli/sciexpem]. The front end
SciExpeM source code for this study can be found in the
github repository “SciExpeM_FrontEnd” at the link [https://
github.com/edoardoramalli/SciExpeM_FrontEnd]. The list of
DOIs of the validated experimental data that we used in
SciExpeM are available at the link [http://doi.org/10.5281/
zenodo.5121901]. Please contact the authors to request access
to the framework website.

AUTHOR CONTRIBUTIONS

ER, GS, BP, and AS have contributed to the project and to
the drafting of this paper. AC and TF have contributed to the
project.

FUNDING

The work of ER and GS is supported by the interdisciplinarity
PhD project of Politecnico di Milano.

REFERENCES

Allan, C., Burel, J. M., Moore, J., Blackburn, C., Linkert, M., Loynton, S., et al.
(2012). Omero: Flexible, Model-Driven Data Management for Experimental
Biology. Nat. Methods 9, 245. doi:10.1038/nmeth.1896

Alshuqayran, N., Ali, N., and Evans, R. (2016). “A Systematic Mapping Study in
Microservice Architecture,” in 2016 IEEE 9th International Conference on Service-
Oriented Computing and Applications (SOCA), Macau, China, November 4–6,
2016. 44–51. doi:10.1109/soca.2016.15

Batini, C., and Scannapieco, M. (2016). Data And Information Quality - Dimensions,
Principles And Techniques. Data-Centric Systems and Applications. NewYork: Springer.

Bernardi, M. S., Pelucchi, M., Stagni, A., Sangalli, L. M., Cuoci, A., Frassoldati, A., et al.
(2016). Curve Matching, a Generalized Framework for Models/experiments
Comparison: An Application to N-Heptane Combustion Kinetic Mechanisms.
Combust. Flame 168, 186–203. doi:10.1016/j.combustflame.2016.03.019

Brázdil, R., Pfister, C., Wanner, H., Von Storch, H., and Luterbacher, J. (2005).
Historical Climatology in Europe–The State of the Art. Clim. Change 70,
363–430. doi:10.1007/s10584-005-5924-1

Burgoyne, J., and Hirsch, H. (1954). The Combustion of Methane at High Temperatures.
Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 227, 73–93. doi:10.1098/rspa.1954.0281

Cappiello, C., Gal, A., Jarke, M., and Rehof, J. (2020). Data Ecosystems: Sovereign
Data Exchange Among Organizations (Dagstuhl Seminar 19391).Dagstuhl Rep.
9, 66–134. doi:10.4230/DagRep.9.9.66

Chang, W. L., and Boyd, D.NBD-PWG NIST Big Data Public Working
Group (2019). “Nist Big Data Interoperability Framework,” in Big Data
Reference Architecture, NIST Pubs. 6. Version 2. doi:10.6028/
NIST.SP.1500-6r1

Chaumeix, N., Pichon, S., Lafosse, F., and Paillard, C.-E. (2007). Role of Chemical
Kinetics on the Detonation Properties of Hydrogen/natural Gas/air Mixtures.
Int. J. Hydrogen Energ. 32, 2216–2226. doi:10.1016/j.ijhydene.2007.04.008

Cuoci, A., Frassoldati, A., Faravelli, T., and Ranzi, E. (2015). Opensmoke++: An
Object-Oriented Framework for the Numerical Modeling of Reactive Systems
with Detailed Kinetic Mechanisms. Comp. Phys. Commun. 192, 237–264.
doi:10.1016/j.cpc.2015.02.014

Curry, E., and Sheth, A. P. (2018). Next-generation Smart Environments: From
System of Systems to Data Ecosystems. IEEE Intell. Syst. 33, 69–76. doi:10.1109/
mis.2018.033001418

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 66341018

Ramalli et al. SciExpeM

https://github.com/edoardoramalli/sciexpem
https://github.com/edoardoramalli/SciExpeM_FrontEnd
https://github.com/edoardoramalli/SciExpeM_FrontEnd
http://doi.org/10.5281/zenodo.5121901
http://doi.org/10.5281/zenodo.5121901
https://doi.org/10.1038/nmeth.1896
https://doi.org/10.1109/soca.2016.15
https://doi.org/10.1016/j.combustflame.2016.03.019
https://doi.org/10.1007/s10584-005-5924-1
https://doi.org/10.1098/rspa.1954.0281
https://doi.org/10.4230/DagRep.9.9.66
https://doi.org/10.6028/NIST.SP.1500-6r1
https://doi.org/10.6028/NIST.SP.1500-6r1
https://doi.org/10.1016/j.ijhydene.2007.04.008
https://doi.org/10.1016/j.cpc.2015.02.014
https://doi.org/10.1109/mis.2018.033001418
https://doi.org/10.1109/mis.2018.033001418
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


European Organization For Nuclear Research and OpenAIRE (2013). [Dataset].
Zenodo. doi:10.25495/7GXK-RD71

Faniel, I., Kriesberg, A., and Yakel, E. (2015). Social Scientists’ Satisfaction with
Data Reuse. J. Assoc. Inf. Sci. Tech. 67, 1404. doi:10.1002/asi.23480

Franceschini, G., and Macchietto, S. (2008). Model-based Design of Experiments
for Parameter Precision: State of the Art. Chem. Eng. Sci. 63, 4846–4872.
doi:10.1016/j.ces.2007.11.034

Frenklach, M. (2007). Transforming Data into Knowledge - Process Informatics for
Combustion Chemistry. Proc. Combust. Inst. 31, 125–140. doi:10.1016/
j.proci.2006.08.121

George, G., Osinga, E., Lavie, D., and Scott, B. (2016). Big Data and Data Science
Methods for Management Research. Acad. Manag. J. 59, 1493–1507.
doi:10.5465/amj.2016.4005

Goteng, G. L., Nettyam,N., and Sarathy, S.M. (2013). “CloudFlame: Cyberinfrastructure
for Combustion Research,” in Information Science and Cloud Computing
Companion (ISCC-C), 2013 International Conference on (IEEE), Guangzhou,
China, December 7–8, 2013. 294–299. doi:10.1109/iscc-c.2013.57

Hansen, N., He, X., Griggs, R., and Moshammer, K. (2018). Knowledge Generation
through Data Research: New Validation Targets for the Refinement of Kinetic
Mechanisms. Proc. Combust. Inst. 37, 743. doi:10.1016/j.proci.2018.07.023

Heller, S. R., McNaught, A., Pletnev, I., Stein, S., and Tchekhovskoi, D. (2015).
Inchi, the Iupac International Chemical Identifier. J. Cheminformatics 7, 1–34.
doi:10.1186/s13321-015-0068-4

Jarke, M., Otto, B., and Ram, S. (2019). Data Sovereignty and Data Space
Ecosystems. Bus. Inf. Syst. Eng. 61, 549–550. doi:10.1007/s12599-019-00614-2

Klippenstein, S. J. (2017). From Theoretical Reaction Dynamics to Chemical Modeling of
Combustion. Proc. Combust. Inst. 36, 77–111. doi:10.1016/j.proci.2016.07.100

Kratzke, N., and Quint, P.-C. (2017). Understanding Cloud-Native Applications
after 10 Years of Cloud Computing - a Systematic Mapping Study. J. Syst. Softw.
126, 1–16. doi:10.1016/j.jss.2017.01.001

Kuhn, M., and Johnson, K. (2013). Applied Predictive Modeling. New York:
Springer, 26.

Marini, L., Gutierrez-Polo, I., Kooper, R., Satheesan, S. P., Burnette, M., Lee, J., et al.
(2018). “Clowder: Open Source Data Management for Long Tail Data,” in
Proceedings of the Practice and Experience on Advanced Research Computing
(Association for Computing Machinery), PEARC ’18, Pittsburgh, PA, July
22–26, 2018.

Mirzayeva, A., Slavinskaya, N., Riedel, U., Frenklach, M., Packard, A., Li, W., et al.
(2018). “Investigation of Dataset Construction Parameters and Their Impact on
Reaction Model Optimization Using PrIMe,” in 2018 AIAA Aerospace Sciences
Meeting, Kissimmee, Florida, January 8–12, 2018. 0143. doi:10.2514/6.2018-0143

Mishra, D. (2014). Experimental Combustion: An Introduction. Boca Raton,
Florida: CRC Press.

Moffat, R. J. (1988). Describing the Uncertainties in Experimental Results. Exp.
Therm. Fluid Sci. 1, 3–17. doi:10.1016/0894-1777(88)90043-x

Norrish, R. G.W., and Foord, S. (1936). TheKinetics of theCombustion ofMethane.Proc.
R. Soc. Lond. Ser. A Math. Phys. Sci. 157, 503–525. doi:10.1098/rspa.1936.0211

Olm,C., Zsély, I. G., Pálvölgyi, R., Varga, T., Nagy, T., Curran,H. J., et al. (2014). Comparison
of the Performance of Several Recent Hydrogen Combustion Mechanisms. Combust.
Flame 161, 2219–2234. doi:10.1016/j.combustflame.2014.03.006

Olm, C., Zsély, I. G., Varga, T., Curran, H. J., and Turányi, T. (2015). Comparison
of the Performance of Several Recent Syngas Combustion Mechanisms.
Combust. Flame 162, 1793–1812. doi:10.1016/j.combustflame.2014.12.001

Pang, G., Davidson, D., and Hanson, R. (2009). Experimental Study and Modeling
of Shock Tube Ignition Delay Times for Hydrogen–Oxygen–ArgonMixtures at
Low Temperatures. Proc. Combust. Inst. 32, 181–188. doi:10.1016/
j.proci.2008.06.014

Pelucchi, M., Stagni, A., and Faravelli, T. (2019). “Addressing the Complexity of
Combustion Kinetics: Data Management and Automatic Model Validation,” in
Computer Aided Chemical Engineering (Amsterdam, Netherlands: Elsevier), 45,
763–798. doi:10.1016/b978-0-444-64087-1.00015-2

Pernici, B., Ratti, F., and Scalia, G. (2021). “About the Quality of Data and Services
in Natural Sciences,” inNext-Gen Digital Services. A Retrospective and Roadmap
for Service Computing of the Future (Cham: Springer International Publishing),
236–248. doi:10.1007/978-3-030-73203-5\1810.1007/978-3-030-73203-5_18

Piwowar, H., and Vision, T. (2013). Data Reuse and the Open Data Citation
Advantage. PeerJ 1, e175. doi:10.7717/peerj.175

Queen, J. P., Quinn, G. P., and Keough, M. J. (2002). Experimental Design and Data
Analysis for Biologists. Cambridge, United Kingdom: Cambridge University
Press.

Ramsay, J. O. (2004). Functional Data Analysis. Encyclopedia Stat. Sci. 4, 37–57.
doi:10.1002/0471667196.ess0646

Ranzi, E., Frassoldati, A., Grana, R., Cuoci, A., Faravelli, T., Kelley, A., et al. (2012).
Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of
Hydrocarbon and Oxygenated Fuels. Prog. Energ. Combust. Sci. 38, 468–501.
doi:10.1016/j.pecs.2012.03.004

Scalia, G., Pelucchi, M., Stagni, A., Cuoci, A., Faravelli, T., and Pernici, B. (2019).
Towards a Scientific Data Framework to Support Scientific Model
Development. Data Sci. 2, 245–273. doi:10.3233/ds-190017

Scalia, G., Pelucchi, M., Stagni, A., Faravelli, T., and Pernici, B. (2018). “Storing
Combustion Data Experiments: New Requirements Emerging from a First
Prototype,” in Semantics, Analytics, Visualization, - 3rd International
Workshop, SAVE-SD 2017, Perth, Australia, April 3, 2017, and 4th
International Workshop, SAVE-SD 2018, Lyon, France, April 24, 2018,
Revised Selected Papers, LNCS, Volume 10959. Editors A. González-Beltrán,
F. Osborne, S. Peroni, and S. Vahdati (Cham: Springer International
Publishing)), 138–149. doi:10.1007/978-3-030-01379-0_10

Stodden, V. (2020). The Data Science Life Cycle: a Disciplined Approach to Advancing
Data Science as a Science. Commun. ACM 63, 58–66. doi:10.1145/3360646

Tenopir, C., Dalton, E. D., Allard, S., Frame, M., Pjesivac, I., Birch, B., et al. (2015).
Changes in Data Sharing and Data Reuse Practices and Perceptions Among
Scientists Worldwide. PLOS ONE 10, 1–24. doi:10.1371/journal.pone.0134826

Varga, T., Busai, Á., Zsély, I. G., Nagy, T., and Turányi, T. (2020). Optima++ v1.2:
A General C++ Framework for Performing Combustion Simulations and
Mechanism Optimization

Varga, T., Turányi, T., Czinki, E., Furtenbacher, T., and Császár, A. (2015). “ReSpecTh: A
Joint Reaction Kinetics, Spectroscopy, and Thermochemistry Information System,” in
Proceedings of the European Combustion Meeting 2015, Budapest, Hungary, March
30–April 2, 2015. 30, 1–5.

Weber, B. W., and Niemeyer, K. E. (2018). ChemKED: A Human-And Machine-
Readable Data Standard for Chemical Kinetics Experiments. Int. J. Chem.
Kinetics 50, 135–148. doi:10.1002/kin.21142

Weininger, D. (1988). Smiles, a Chemical Language and Information System. 1.
Introduction to Methodology and Encoding Rules. J. Chem. Inf. Comput. Sci.
28, 31–36. doi:10.1021/ci00057a005

Wilkinson, M., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak,
A., et al. (2016). The FAIR Guiding Principles for Scientific Data Management
and Stewardship. Scientific Data 3. doi:10.1038/sdata.2016.18

Conflict of Interest: GS is an employee of Roche.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

The handling editor declared a past co-authorship with one of the authors BP.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Ramalli, Scalia, Pernici, Stagni, Cuoci and Faravelli. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 66341019

Ramalli et al. SciExpeM

https://doi.org/10.25495/7GXK-RD71
https://doi.org/10.1002/asi.23480
https://doi.org/10.1016/j.ces.2007.11.034
https://doi.org/10.1016/j.proci.2006.08.121
https://doi.org/10.1016/j.proci.2006.08.121
https://doi.org/10.5465/amj.2016.4005
https://doi.org/10.1109/iscc-c.2013.57
https://doi.org/10.1016/j.proci.2018.07.023
https://doi.org/10.1186/s13321-015-0068-4
https://doi.org/10.1007/s12599-019-00614-2
https://doi.org/10.1016/j.proci.2016.07.100
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.2514/6.2018-0143
https://doi.org/10.1016/0894-1777(88)90043-x
https://doi.org/10.1098/rspa.1936.0211
https://doi.org/10.1016/j.combustflame.2014.03.006
https://doi.org/10.1016/j.combustflame.2014.12.001
https://doi.org/10.1016/j.proci.2008.06.014
https://doi.org/10.1016/j.proci.2008.06.014
https://doi.org/10.1016/b978-0-444-64087-1.00015-2
https://doi.org/10.1007/978-3-030-73203-5\1810.1007/978-3-030-73203-5_18
https://doi.org/10.7717/peerj.175
https://doi.org/10.1002/0471667196.ess0646
https://doi.org/10.1016/j.pecs.2012.03.004
https://doi.org/10.3233/ds-190017
https://doi.org/10.1007/978-3-030-01379-0_10
https://doi.org/10.1145/3360646
https://doi.org/10.1371/journal.pone.0134826
https://doi.org/10.1002/kin.21142
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1038/sdata.2016.18
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Data Ecosystems for Scientific Experiments: Managing Combustion Experiments and Simulation Analyses in Chemical Engineering
	1 Introduction
	2 Related Work
	3 Data Analysis in the Numerical Combustion Sector: A Methodological Approach
	3.1 Combustion Experiments
	3.1.1 Experiments Acquisition

	3.2 Model Evolution
	3.2.1 Model Validation

	3.3 Research Process
	3.4 SciExpeM Framework
	3.4.1 Description of the General Method
	3.4.2 Advanced Architecture


	4 Results: Realization of the SciExpeM Framework
	4.1 Manage Experiment
	4.2 Check Experiment
	4.3 Analyze Model
	4.4 Other Services
	4.5 External Services
	4.6 Implementation

	5 Preliminary Evaluation
	5.1 Model Comparison
	5.2 Outliers Detection

	6 Discussion
	7 Concluding Remarks
	Data Availability Statement
	Author Contributions
	Funding
	References


