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Production networks are integral to economic dynamics, yet dis-aggregated network

data on inter-firm trade is rarely collected and often proprietary. Here we situate

company-level production networks within a wider space of networks that are different in

nature, but similar in local connectivity structure. Through this lens, we study a regional

and a national network of inferred trade relationships reconstructed from Dutch national

economic statistics and re-interpret prior empirical findings. We find that company-level

production networks have so-called functional structure, as previously identified in

protein-protein interaction (PPI) networks. Functional networks are distinctive in their

over-representation of closed squares, which we quantify using an existing measure

called spectral bipartivity. Shared local connectivity structure lets us ferry insights

between domains. PPI networks are shaped by complementarity, rather than homophily,

and we use multi-layer directed configuration models to show that this principle explains

the emergence of functional structure in production networks. Companies are especially

similar to their close competitors, not to their trading partners. Our findings have practical

implications for the analysis of production networks and give us precise terms for the

local structural features that may be key to understanding their routine function, failure,

and growth.

Keywords: production networks, inter-firm networks, complexity economics, economic statistics, trade linkages,

functional networks, bipartivity

1. INTRODUCTION

It has become established knowledge within complexity economics (Arthur, 2021) that network
structure affects economic dynamics over the short-, medium-, and long-term. Cascading processes
over networks have been used to model supply disruptions that propagate in a matter of days or
weeks (Burkholz, 2016; Inoue and Todo, 2019). Trade linkages have been used to explain aggregate
fluctuations in business activity that play out over months or years (Acemoglu et al., 2012; Carvalho
and Tahbaz-Salehi, 2018). Structural changes happen over decades and we know that national
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growth trajectories are strongly affected by the network
structure of economic activity (Hausmann and Hidalgo, 2013;
McNerney et al., 2018). The routine function, failure, and
growth of economic production networks are at the heart of
these dynamics.

The mechanisms underlying dynamics on and of production
networks are thought to operate at the level of trade relationships
among individual companies (see Hazama and Uesugi, 2017;
Carvalho and Tahbaz-Salehi, 2018; Inoue and Todo, 2019).
However, our understanding of company-level production
networks is limited; empirical network data on customer-
supplier ties is not often available and, when it is, generally
proprietary (Fujiwara and Aoyama, 2010; Ohnishi et al., 2010;
Magerman et al., 2015). Moreover, findings based on such data
remain difficult to interpret in the context of wider research on
production networks because they combine local and national
scales. Trade relationships are more often considered either
in detailed, local case studies or as aggregated trade linkages
among sectors, industries, and countries based in officially-
prepared macroeconomic statistics (Uzzi, 1997; Coenen et al.,
2010; Acemoglu et al., 2012; Miller and Temurshoev, 2017;
McNerney et al., 2018).

In this work, we situate company-level production networks
within a wider space of networks that are different in nature,
but similar in structure. For this we develop a typology based
on well-known and recognizable local connectivity structures.
Random networks, social networks, and two-mode networks
are the most important and well-known connectivity types and
they form the basis for our typology (Borgatti and Everett,
1997; Newman et al., 2001; Rivera et al., 2010). Commonalities
among networks with the same local connectivity type present
opportunities to use established knowledge from one domain
to better understand networks in another. Specifically, a new
network type with a distinctive local connectivity structure has
recently been identified in work on protein-protein interaction
(PPI) networks (Kovács et al., 2019; Kitsak, 2020). This adds so-
called functional networks to our typology. We highlight several
existing empirical findings (Fujiwara and Aoyama, 2010; Ohnishi
et al., 2010) to suggest that company-level production networks
are best characterized as functional networks and go on to explore
this hypothesis.

Specifically, we consider a regional and a national company-
level production network reconstructed from Dutch national
economic statistics. As detailed in Hooijmaaijers and Buiten
(2019), Statistics Netherlands (CBS) has used official statistics
to systematically infer customer-supplier ties among companies
in the Netherlands for each of 677 product groups (e.g.,
“Electricity,” “Fertilizer,” “Shipping services,” etc.). Starting from
this multi-layer network, we analyze the local connectivity
structure of the network of unique (inferred) trade relationships
among companies with 5+ employees within Zeeland province
and the whole of the Netherlands. We then generalize
the CBS reconstruction process to produce ensembles of
networks of (hypothetical) trade relationships among the
Zeeland companies with 5+ employees; this lets us study
how local connectivity structure emerges in company-level
production networks.

To assess whether networks have functional structure, we re-
purpose an existing measure that captures a distinctive feature
of local connectivity in functional networks. Link prediction
performance on PPI networks suggests that three-step closure is
more common than two-step closure (Kovács et al., 2019). That
is, closed squares are more prominent than are closed triangles.
We measure this using spectral bipartivity, which quantifies the
abundance of even vs. odd cycles in a network’s local connectivity
structure (Estrada and Gómez-Gardeñes, 2016), in comparison
to random expectation; functional networks have higher-than-
random spectral bipartivity.

We do indeed find functional structure in both the
national and the regional company-level production networks.
Compared to randomized versions of itself, the reconstructed
regional network has significantly higher spectral bipartivity
[Kolmogorov-Smirnov (KS) statistic 1.0, N1 = 1, N2 = 1, 000,
p < 0.001]. The value itself remains much smaller than 1,
indicating that the network structure is definitely not bipartite
as would be the case if it were a two-mode network. Small values
then let us approximate the logit-transformed spectral bipartivity
and extend our results to the larger Netherlands network. This
measure is again higher than expected (KS = 1.0, N1 = 1,
N2 = 25, p < 0.04) indicating functional structure.

In the literature on protein-protein interactions, network
structure is thought to be shaped by the principle of
complementarity as opposed to the principle of homophily well-
known to shape social networks (McPherson et al., 2001; Kitsak,
2020). Node complementarity in PPI networks reflects the
practical fact that proteins physically bind with one another
at compatible binding sites (Kovács et al., 2019). This is a
useful concept for company-level production networks, as well,
since trade relationships imply the exchange of some product
between companies that hold complementary roles as customer
and supplier. Trade compatibility imposes a specific constraint
on the formation of trade relationships that might explain the
emergence of functional structure in production networks.

To test this explanation, we use multi-layer directed
configuration models to generate ensembles of networks made
up of trade-compatible relationships within Zeeland. In each
layer, we make a random selection of the possible ties between
customers and suppliers of products in a product group.
By defining trade compatibility according to progressively
more detailed product categorizations, we ramp up the
strictness of the constraint. These generated networks are then
compared against their randomized version where customer-
supplier complementarity has been broken. Our analysis finds
that imposing more stringent complementarity introduces
consistently and significantly more functional structure (KS =

1.0, N1 = 25, N2 = 25, p < 10−14).
Identifying functional structure in company-level production

networks has practical implications for the analysis of such
networks and wider implications for network science and
complexity economics. Under the logic of functional networks,
companies trade with complementary others and are especially
similar to their close competitors, not their trading partners.
This also implies that production networks are markedly
different from social and economic networks driven by
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homophily; they are more comparable to PPI networks and
food webs. More generally, we have demonstrated the usefulness
of network categorization according to a typology of local
connectivity structure. In our case, identifying functional
structure lets us bring in precise language from previously
unrelated domains to describe defining features of company-
level production networks: “node complementarity,” “closed
squares,” and “functional modules” (Barabási and Oltvai, 2004;
Kovács et al., 2019; Kitsak, 2020). Studying these structural
features of production networks could be key to furthering our
understanding of their routine function, failure, and growth.

The remainder of the paper is structured as follows. In
section 2, we describe several types of networks with distinct
local connectivity structure and discuss in detail highly relevant
prior work. Section 3 describes the company-level production
networks that we study and the methods we use to characterize
their local connectivity structure. In section 4 we present our
findings and in section 5 we discuss their implications.

2. THEORY

Networks studied in different domains can nonetheless be similar
in structure. Section 2.1 develops a network typology based
around the local connectivity structures of random, social, and
two-mode networks. To this typology we add recently identified
so-called “functional” networks. In section 2.2 we advance the
hypothesis that company-level production networks are best
characterized as functional networks.

2.1. Network Typology
Different types of networks can have systematically different
structural properties. Many network analysis tools have been
developed especially for use with networks of some particular
type (Opsahl, 2013; Masuda et al., 2018). The same algorithms
can have markedly different performance across network
types (Ghasemian et al., 2020) and the same measures will often
have different typical ranges (Newman, 2003b; Costa et al., 2007).
Network measures also tend to be correlated (Jamakovic and
Uhlig, 2008; Bounova and de Weck, 2012) with local network
features affecting global ones (Colomer-de Simón et al., 2013;
Jamakovic et al., 2015; Asikainen et al., 2020). As such, we use the
following network typology based in recognizably distinct local
connectivity structures.

2.1.1. Random Networks
Random networks are those where the set of existing links
might have come to occur by chance. Several celebrated network
properties, such as the emergence of a giant component and
the small world property, are identifiable already in random
networks (Bollobás, 2001; Newman et al., 2001). Other common
network properties, such as the existence of hubs or communities,
can be introduced using block-wise random networks (Holland
et al., 1983; Newman et al., 2001; Karrer and Newman, 2011).
This flexibility makes random networks especially useful as a
baseline comparison for empirical network data and generative
network models (Costa et al., 2007). Some measures, such as

modularity (Newman, 2006) and degree assortativity (Pastor-
Satorras et al., 2001; Newman, 2003a), directly incorporate a
comparison to random expectation.

2.1.2. Two-Mode Networks
Two-mode networks are those where the links are affiliations
between categorically different nodes. For instance, directors
are affiliated with the corporate boards on which they
serve (Mizruchi, 1996; Seierstad and Opsahl, 2011; Takes and
Heemskerk, 2016; Valeeva et al., 2020). Two-mode networks are
bipartite in that the nodes can be separated into two groups
where links exist between, but not within, groups (Borgatti and
Everett, 1997; Holme et al., 2003). This is a hard constraint
on the existence of network links that affects the interpretation
of any network-structural property. As such, there are specific
network analysis techniques and particular versions of centrality,
modularity, closure, and other measures developed for two-mode
networks (Borgatti and Everett, 1997; Barber, 2007; Zhou et al.,
2007; Opsahl, 2013; Berardo, 2014; Kunegis, 2015).

2.1.3. Social Networks
Social networks are those where links exist between nodes
who associate with one another in some sense. This is a soft
constraint on the formation of links that affects many network
properties. Social networks have high clustering as various
social dynamics are known to generate triadic closure (see
Rivera et al., 2010). They are typically shaped by homophily
leading to high assortativity, where nodes who associate with
one another tend to be similar in some sense (McPherson
et al., 2001; Newman, 2003a). Social networks frequently contain
interpretable communities (Blondel et al., 2008; Davis et al.,
2009) and are often assortative in degree (Johnson et al., 2010).
It has been suggested that the tendency of nodes to form
communities may be a derivative feature of triadic closure
operating locally (Colomer-de Simón et al., 2013; Jamakovic
et al., 2015). The over-representation of triangles also allows link
prediction algorithms that operate on a two-step basis (L2) to
perform well on social networks (Ghasemian et al., 2020). Degree
assortativity may also be related to triadic closure, homoplily, and
community structure (Newman and Park, 2003; Asikainen et al.,
2020).

2.1.4. Functional Networks
Functional networks are those where links form between nodes
that complement one another in fulfilling some function. This
network type has been identified in work on protein-protein
interaction (PPI) networks; proteins bind not with similar others
but with those that have a binding site physically compatible with
their own (Kovács et al., 2019). These networks are shaped by the
principle of complementarity, a different soft constraint that likely
also affects many, related, network properties (Kitsak, 2020).
Kovács et al. (2019) establishes that L2 heuristics under-perform
in link prediction on PPI networks while those operating on a
three-step basis (L3) are more accurate. In analogy with social
networks, this might suggest that functional dynamics generate
tetradic closure. Meso-scale structures in PPI networks have been
termed functional modules as they are often interpretable as key
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TABLE 1 | Key differences between social and functional networks.

Toy network Example Principle Closure Meso-scale

Social People are often friends with others

similar to themselves, and a pair of

friends likely also have friends in

common.

Homophily Triadic Community

Functional Proteins interact at a physical

binding site; proteins are likely to

bind if one is similar to the other’s

other partners.

Complementarity Tetradic Module

to some higher-level cellular function (Barabási and Oltvai, 2004;
Chen and Yuan, 2006; Ghiassian et al., 2015). Disassortativity
in degree may be an expected property of functional networks
more broadly (Johnson et al., 2010; Barabási and Pósfai, 2016).
Food webs and interdisciplinary collaboration networks have
been proposed as additional domains where the same structural
patterns are likely to be found (Kitsak, 2020).

Table 1 highlights the difference in local connectivity
structure between social and functional network types, with links
likely to form shown using dashed lines. In social networks links
form between nodes who associate with one another, nodes who
associate with one another are similar in some sense, and various
social dynamics generate closed triangles. Social networks thus
have a higher clustering coefficient than random networks.
The analogous intuition for functional networks is that links
form between nodes in fulfilling their function, that nodes who
complement the same partners are similar in some sense, and that
various functional dynamics generate closed squares. Functional
networks would score higher than randomnetworks onmeasures
that capture this aspect of local connectivity structure.

2.2. Features of Company-Level
Production Networks
Characterizing local connectivity structure directly, as we do
here, offers a new lens through which to consider known
structural features of networks. Findings within existing studies
of empirical company-level production networks are thus
exceedingly relevant. Here we discuss in detail two papers that
describe the structure of a Japanese inter-firm network produced
by Tokyo Shoko Research Ltd (Fujiwara and Aoyama, 2010;
Ohnishi et al., 2010). This is a company-level production network
where nodes are Japanese firms and links correspond to trade
relationships in materials or services; financial relationships
are downplayed. Several findings in these papers let us form
the hypothesis that company-level production networks have
functional structure.

Ohnishi et al. (2010) perform a comprehensive analysis of
three-node motifs on the Japanese inter-firm network from 2005.
On a simple, directed network there are thirteen possible three-
node motifs and this paper presents their empirical prevalence
compared to random expectation (Ohnishi et al., 2010, Figures
4, 5). Recall that closed squares, but not closed triangles, feature
prominently in the local connectivity structure of functional

networks. In this paper, the most substantially over-represented
motifs in the Japanese inter-firm network are two-link, V-shaped
motifs; these are the most compatible with closed squares.
Three-link loops forming closed triangles are found to be the
most substantially under-represented. These findings can be
interpreted as empirical evidence of functional structure in this
company-level production network.

Fujiwara and Aoyama (2010) conduct a multi-pronged
network analysis of the Japanese inter-firm network compiled in
September 2006. Three of their findings are especially relevant
with respect to our typology of local connectivity structure.
First, this paper shows the network exhibits disassortativity
in degree (Fujiwara and Aoyama, 2010, Figure 3). Recall
that disassortativity may be an expected feature of functional
networks as is assortativity for social networks. Second, this
paper performs a detailed analysis of meso-scale structure within
the sub-network defined by firms in the manufacturing sector.
Using modularity maximization they identify a large number of
small groups with a striking qualitative interpretation: “From the
database of the information on the firms, we found that many of
those small communities are each located in same geographical
areas forming specialized production flows. An example is a
small group of flour-maker, noodle-foods producers, bakeries,
and packing/labeling companies in a rural area” (Fujiwara and
Aoyama, 2010, p. 570). While these groups are referred to as
“communities,” they might be better understood as so-called
“functional modules” in that they are key to the functioning of
economic production at a higher level. Finally, this paper finds
locally bipartite structure within prominent (sub-)industries also
identified by modularity maximization. In each (sub-)industry
there is a handful of large, recognizable firms who are not often
directly linked, as they are competitors, but have many suppliers
(and customers) in common (Fujiwara and Aoyama, 2010,
p. 570). Locally bipartite meso-scale structure means there are
many closed squares, enough that these groups are picked up by
modularity maximization. Closed squares, functional modules,
and disassortativity are all hallmarks of functional networks.

3. DATA AND METHODS

This paper makes use of a network dataset produced by Statistics
Netherlands (CBS) to explore our hypothesis that company-level
production networks have functional structure. In section 3.1 we
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TABLE 2 | Description of the data provided by CBS.

GCC GCC GCC

Nodes Layers Multi-edges Simple edges Nodes Multi-edges Simple edges

NETHERLANDS

All 875,222 677 310,324,477 195,903,806 875,222 310,324,477 195,903,806

5+ 102,461 677 116,652,466 50,930,077 102,461 116,652,466 50,930,077

ZEELAND

All 18,398 667 3,500,797 2,143,412 18,337 3,500,762 2,143,379

5+ 2,497 652 848,015 334,334 2,497 848,015 334,334

Highlighted are the reconstructed networks for the Netherlands and Zeeland province above our company size threshold (measured using the number of employees). Also shown are

the statistics for the giant connected component (GCC) of these networks.

FIGURE 1 | Degree distributions of (A) Zeeland and (B) Netherlands production networks reflecting the unique, unweighted, undirected (inferred) trade relationships

among companies with 5+ employees.

describe the data itself and how we make use of it. Section 3.2
presents our methods, describing how we characterize local
connectivity structure.

3.1. Data
CBS has produced a network dataset of systematically inferred
customer-supplier ties among Dutch companies (Hooijmaaijers
and Buiten, 2019). In section 3.1.1 we describe how we define
a national and a regional company-level production network
from this data; we also briefly relay how this data was produced.
Section 3.1.2 details how we generalize the CBS reconstruction
process, in this work, to construct ensembles of many possible
customer-supplier networks within Zeeland province.

3.1.1. National and Regional Company-Level

Production Networks
We begin with an existing dataset of inferred customer-
supplier ties produced by researchers at CBS (Hooijmaaijers and
Buiten, 2019). This network has 677 layers, each corresponding
to domestic trade in a particular product group. Product
groups include “Electricity,” “Fertilizer,” “Shipping services,”
and “Accounting & tax administration” as in the Dutch
implementation of the European Classification of Products by
Activity (Eurostat, 2008b, CPA 2008). Companies likely to supply

products from a product group were matched with companies
likely to use such products, with inferences based in Dutch
economic statistics for the year 2012. Customer-supplier ties in
each layer should be understood to reflect a selection of trading
pairs among sets of likely customers and suppliers for products in
that product group. Table 2 describes the reconstructed network
of inferred customer-supplier ties within the Netherlands and
within Zeeland province; self-loops have been removed. Zeeland
is a low-lying delta region home to 381,407 people in 2012
(Statline, 2012).

Based on the CBS data, this work defines a national and
a regional company-level production network. For this, we
first consider the sub-network among companies with five or
more employees within Zeeland province and the whole of
the Netherlands. We then focus on the “simple” versions of
these multi-layer, directed, customer-supplier networks. Simple
networks are those with unique, unweighted, undirected links.
That is, we place an (inferred) trade relationship between any
two companies with an inferred customer-supplier tie, in either
direction, in any of the product groups. To give an idea of
the heterogeneity in our version of these networks, Figure 1
describes their degree distributions on a log-log scale. Filtering
out companies with few employees is done as the underlying,
company-level statistics are deemed insufficiently reliable for
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very small companies; these are primarily low-degree nodes.
Zeeland province is deemed a suitable sub-network on which
to focus for its small size and its somewhat lesser integration,
geographic and economic, with the rest of the Netherlands. It is
also considered an industrial cluster by policy makers and so is
expected to have some general internal coherence.

CBS network reconstruction process. Dutch national Supply-
and Use-Tables include aggregated trade flows between industries
by product group (Eurostat, 2008a). These are official statistics
and extensively validated. CBS has applied systematic inference
to dis-aggregate the domestic portion of these flows down to
the company level. Customer-supplier ties are inferred based
on assumptions made about individual companies with regard
to their size, their location, and their role with respect to each
product group. Used in this are economic statistics collected via
official surveys that include total turnover, geographic location,
and industry code according to the Dutch implementation
of the Statistical Classification of Economic Activities in the
European Community (Eurostat, 2008b, NACE Rev. 2). These
surveys are mandatory and use a stratified sampling framework
on the number of employees. Note that their aim is to
achieve statistically representative, not absolute, accuracy and
so inferences are noisy especially for smaller companies. Each
product group in the Dutch CPA (2008) becomes a layer in the
reconstructed network. Within a layer, companies active in an
industry that uses products classified into that product group are
assigned a number of suppliers, i.e., an in-degree. It was assumed
that most companies deal with few suppliers per product-group;
in-degree is kept small. Out-degree, analogously, represents the
number of customers for a company active in an industry
that supplies products in that product group. Estimations
of out-degree were made to reflect empirical distributions
with respect to company size known from studies done in
Japan (Watanabe et al., 2013). Also meant to be representative,
on average, out-degree is noisy for individual companies. Finally,
suppliers are matched with customers. Matching was done using
limited empirical data on known trade relationships combined
with information on geographic distance. The assumption that
geographic distance matters is well-supported (Dhyne and
Duprez, 2016; Bernard et al., 2019; Carrère et al., 2020). For
further details of the CBS network reconstruction process please
consult Hooijmaaijers and Buiten (2019).

3.1.2. Multi-Layer Complementary Configuration

Models
The network theory laid out in section 2 suggests that functional
structure might arise in production networks because trade
connects companies with complementary roles as customers and
suppliers of particular goods. Simulated data is used to assess
this explanation. The CBS reconstruction process is already based
in matching customers and suppliers where the industry pairing
suggests the two companies are compatible in trade, and here
we generalize this process in two ways. First, instead of one
reconstructed network for Zeeland we consider an ensemble
of many possible networks among Zeeland firms with 5+
employees. Second, we leverage the hierarchical structure of
the European CPA (2008). The coarser levels of this product

classification are standardized across Europe; commonly studied
are the top-level sector products (CPA Level 1) and progressively
more detailed CPA Levels 2, 4, and 6. The Dutch national
implementation (here, CPA National) is a minor refinement of
CPA Level 6.

To generate ensembles of hypothetical company-level
production networks we employ a multi-layer directed
configuration model. The configuration model is a standard
approach for generating ensembles of networks by randomly
pairing edge stubs (Newman et al., 2001; Hagberg et al.,
2008). We retain the in- and out-degree sequences from each
product-layer of the CBS network reconstruction among
Zeeland companies with 5+ employees, without self-loops, while
drawing many possible wiring instances from the multi-layer
configuration model. Our implementation generates a random,
directed, multi-network per product group in the classification;
it then combines the layers into one customer-supplier network.
At each CPA Level, the process is repeated multiple times to
generate multiple independent realizations from the multi-layer
configuration model. The result is a set of networks where ties are
trade-compatible relationships under the constraint that trade
occurs between companies supplying a product and companies
using that same product. Customer-supplier complementarity
grows progressively more stringent as we use more detailed
product categorizations to define these roles.

Wherever the directed configuration model introduces self-
loops, a known artifact of stub-matching (see Newman, 2010),
we rewire away the offending links. Specifically, we pair each self-
loop with a random other edge and swap their target node (see
Hanhijärvi et al., 2009, Figure 1A). On the other hand, when the
configuration model generates multi-edges, i.e., edges between
the same two nodes, these are allowed to remain; the networks
are already multi-layer with many multi-edges.

Table 3 describes the complementary ensembles, giving the
network statistics found across 25 independent realizations at
each of the highlighted levels of the European CPA (2008). The
resulting multi-layer networks maintain the total number of
customer-supplier ties as well as the degree and role of each
company in supplying and/or using products with a particular
classification. The hierarchical CPA levels introduce variation
in the number of product groups considered separately, i.e.,
the number of layers. The complementarity constraint—that
customer-supplier ties may only go from companies who supply
to those who use products represented in that layer—is stronger
at finer levels. Notice the relative similarity of CPA Level 6
and CPA National. As before, we focus in this work on the
simple version of these networks where links correspond to
unique trade-compatible relationships. The configuration model
introduces randomness in the wiring diagram of the networks
and the number of unique trading relationships.

3.2. Methods
In this study we analyze the local connectivity structure of the
production networks for Zeeland, the whole of the Netherlands,
and our complementary ensemble. Section 3.2.1 defines spectral
bipartivity, a measure that quantifies the over-representation of
even paths in these networks. Functional networks have high
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TABLE 3 | Network statistics for the multi-layer complementary ensembles over 25 realizations, simulating trade-compatible relationships among companies with 5+

employees within Zeeland province.

Nodes Multi-edges Layers Simple edges

Min Max

ZEELAND, 5+

CPA Level 1 2497 848,015 18 371,446 372,405

CPA Level 2 2497 848,015 79 369,483 370,190

CPA Level 4 2497 848,015 391 369,303 369,977

CPA Level 6 2497 848,015 614 368,324 368,978

CPA National 2497 848,015 652 368,007 368,813

Layers are designated according to the hierarchical levels of the European CPA (2008) and its Dutch implementation.

values of this measure compared to random expectation, as
explained and defined in section 3.2.2. In section 3.2.3 we detail
the statistical tools that we use to conduct this comparison.
This methodology tested in section 3.2.4 on two public network
datasets, producing the expected outcome.

3.2.1. Spectral Bipartivity
Spectral methods can be used to summarize the local connectivity
structure of a network. The Estrada index is an absolute measure
of local connectivity. This measure quantifies the local density
of cycles by having closed paths contribute progressively less
to the value of the measure, as they take more steps to
complete (Estrada, 2000). The value of the Estrada index for
a network, G with n nodes can be computed as the trace
of the matrix exponential of that network’s adjacency matrix,
A. Equation (1) gives this definition as well as an alternative
formulation where λ1 ≤ · · · ≤ λn are the eigenvalues of A.

EE(G) = tr exp(A) =

n∑

j=1

eλj (1)

Most relevant to functional networks is a variation of the Estrada
index that separates the contribution of even and odd closed
paths: spectral bipartivity (bs). This is done using the hyperbolic
sine and cosine matrix functions, which add up to the matrix
exponential, as applied to a network’s adjacency matrix. With
proper normalization, spectral bipartivity ranges from 0 when
the network is fully complete to 1 when the network is fully
bipartite (Estrada and Rodríguez-Velázquez, 2005; Estrada, 2006;
Kunegis, 2015; Estrada and Gómez-Gardeñes, 2016). Two-mode
networks are the extreme case where the bipartite constraint on
link formation entirely disallows odd cycles. Equation (2) defines
several equivalent formulations of spectral bipartivity.

bs(G) =
tr cosh(A)− tr sinh(A)

tr cosh(A)+ tr sinh(A)
=

tr exp(−A)

tr exp(A)
=

∑n
j=1 e

−λj

∑n
j=1 e

λj

(2)
We primarily consider the value of the spectral bipartivity under
a logistic transformation, because thismetric is restricted in range
from 0 to 1 and the Estrada index in the denominator can become
quite large. Indeed, it grows exponentially with the square root of
the number of edges in certain cases (de la Peña et al., 2007).

Moreover, the logit spectral bipartivity can be readily
approximated for networks that fulfill the following two
conditions. First, when the spectral bipartivity is very small, i.e.,
bs ≈ 0, the logistic transformation is closely approximated
by a log transformation. Second, whenever the most positive
and most negative eigenvalues of a network’s adjacency matrix
are substantially larger in magnitude than their neighboring
eigenvalue, i.e., λ1 ≪ λ2 and λn ≫ λn−1, these eigenvalues
will dominate the exponential sums in the numerator and
denominator of spectral bipartivity. Equation (3) describes
these approximations.

logit(bs) = log
bs

1− bs
= log bs − log (1− bs) ≈ log bs

log(bs) = log

∑n
j=1 e

−λj

∑n
j=1 e

λj
≈ log

e−λ1

eλn
= −(λ1 + λn)

(3)

3.2.2. Identifying Functional Structure
Here we propose that spectral bipartivity can be re-purposed
to identify functional structure in networks using a comparison
to random expectation. The measure quantifies the over-
representation of even paths in the local connectivity structure
of a network. Recall that functional networks have especially
many squares with even path length, while social networks have
especially many triangles with odd path length (see section 2.1).
Random networks, with neither social nor functional structure,
would produce values of spectral bipartivity that fall in-between
those of the other two network types. Figure 2 gives a toy example
of how social, random, functional, and two-mode networks with
the same number of nodes and edges are arranged according to
their value of spectral bipartivity. Notably, functional networks
are more bipartite than random expectation.

The random expectation is found by calculating spectral
bipartivity on a set of random networks comparable to our
networks of inferred trading relationships. Degree-preserving
randomization (Rao et al., 1996; Milo et al., 2004; Gionis et al.,
2007) produces random networks that maintain the number of
companies, the number of unique inter-company links, and the
degree of each company. We use a version of this called random
pairwise rewiring, wherein pairs of edges are selected and an end
point of each edge are swapped (see Hanhijärvi et al., 2009, Figure
1A). In section 3.1.2, edge swaps were used to remove self-loops.
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FIGURE 2 | Toy networks with seven nodes and eleven edges, each of a different type, shown in increasing order of their spectral bipartivity value.

Here, edge swaps randomize the network. Our implementation
guarantees that the randomized network remains simple by
following through with an edge swap only so long as it will not
introduce self-loops or multi-edges. Randomization continues
until 10 · m pairs of links have been rewired, where m is the
number of simple edges.

3.2.3. Statistical Test
We use non-parametric statistics to confirm that the networks
described in section 3.1 have functional structure. Section 3.2.1
defines spectral bipartivity and section 3.2.2 describes how we
generate randomized versions of our networks. The spectral
bipartivity computed on these networks are samples drawn from
the reference distribution of this measure, as in a Monte Carlo
test (see Bartlett, 1963; Besag and Clifford, 1989, 1991, discussion
by Barnard, G. A. p. 294). For statistical comparison, we use the
two-sample one-tailed Kolmogorov-Smirnov (KS) test (Smirnov,
1948; Dodge, 2008; Virtanen et al., 2020).

The KS statistic quantifies the (lack of) overlap between
distributions; KS = 0 indicates identical distributions and
KS = 1 indicates non-overlapping distributions, i.e., one
is consistently larger than the other. The statistical power of
the test is a function of the size of the two distributions
and the overlap between then. In analyzing the reconstructed
networks, we compare their values of spectral bipartivity
against those of their many randomized versions. Finding
values consistently and significantly larger-than-random would
indicate functional structure. In analyzing our multi-layer
complementary configuration models, we consider the difference
in logit-transformed spectral bipartivity between each instance
and a randomized version of itself. Finding this difference
to be consistently and significantly greater than zero would
indicate that the model introduces functional structure. Finding
one model’s distribution of differences to be consistently and
significantly larger than another would indicate that it introduces
functional structure to a greater extent. Note that comparisons
between two distributions have much higher statistical power
under non-parametric tests than those between a distribution and
a single value.

3.2.4. Implementation
Our implementation of degree-preserving randomization,
spectral bipartivity, and its (logit) approximation use
networkx (Hagberg et al., 2008, v2.5) and scipy (Virtanen
et al., 2020, v1.5.2). The methodology here described produces
the expected result in a demonstration on two public network
datasets. The first is a network of Facebook friendships among
a group of first-year university students, collected as a part of
the Copenhagen Networks Study (Sapiezynski et al., 2019).
Figure 3A shows its spectral bipartivity is less than random
expectation, indicating social structure. The second is a network
of interactions among proteins in human cells, which was
analyzed in Kovács et al. (2019) and is available in that paper’s
supplementary material. Figure 3B shows its spectral bipartivity
is greater than random expectation, indicating functional
structure. The code to produce these figures is made available
at https://github.com/carolinamattsson/local-connectivity-
structure.

4. RESULTS

In this section we present our analysis of local connectivity
structure in company-level production networks. The
reconstructed Zeeland and Netherlands networks show
functional structure (section 4.1) and this arises, at least in part,
due to the complementary nature of customer-supplier ties
(section 4.2).

4.1. Local Connectivity Structure
We find functional structure in the reconstructed company-level
production networks. The spectral bipartivity of the network of
(inferred) trade relationships in Zeeland is substantially larger
than random expectation; statistical comparison yields a one-
tailed Kolmogorov-Smirnov statistic of 1.0 (N1 = 1, N2 =

1000, p < 0.001). Figure 4A plots the logit-transformed value of
spectral bipartivity for the Zeeland production network against
the distribution of values over 25 randomized instances. The
network falls well above random expectation and can be said
to have functional structure. The value of spectral bipartivity
(in the absolute sense) is small, at 1.6 · 10−142, indicating a
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FIGURE 3 | Value of logit-transformed spectral bipartivity for networks of (A) Person-person friendships and (B) Protein-protein interactions and the comparable

distributions of their randomized versions.

FIGURE 4 | Value of logit-transformed spectral bipartivity of reconstructed (A) Zeeland and (B) Netherlands production networks and the comparable distributions of

their randomized versions.

lack of bipartite structure and that the network is definitely
not two-mode.

Using the approximation described in Equation (3), we
extend this result to the company-level production network
for the whole of the Netherlands (Figure 4B). This network,
consisting of 50,930,077 inferred trade relationships among
102,461 companies with 5+ employees, also has functional
structure. Its logit spectral bipartivity is significantly higher-than-
random (KS = 1.0, N1 = 1, N2 = 25, p < 0.04). Also using
the eigenvalue approximation, we confirm that our result holds
for the reconstructed network of inferred trade relationships
among all 18,398 companies in Zeeland province, including those
with fewer than 5 employees. Again this network is significantly
more bipartite than random expectation, indicating functional
structure (KS = 1.0, N1 = 1, N2 = 25, p < 0.04).

In interpreting these results, recall that the comparison to
random expectation is key to our re-purposing of spectral
bipartivity for analyzing local connectivity structure. Values of
spectral bipartivity, in the absolute sense, reflect also other
network-structural features. In particular, this measure is defined
as a ratio and the denominator of this ratio can be strongly

affected by the number of edges in the network (see section 3.2.1).
The Zeeland network has a higher value of spectral bipartivity
than the Netherlands network because the Netherlands network
is substantially larger in size. Randomization preserves the
number of edges (and the degree sequence) so it is serving
as a way to “center” the scale such that remaining differences
reflect local connectivity structure; this lets us identify functional
structure. Developing measures that would allow for comparison
across networks substantially different in size is a promising area
for future work.

4.2. Customer-Supplier Complementarity
We find evidence that functional structure in production
networks is driven by the principle of node complementarity,
i.e., the practical fact that trade relationships imply the
exchange of some product from a supplier to a customer.
Our multi-layer configuration models allow customer-
supplier ties only between pairs of companies compatible
in trade; a likely supplier and a likely user of products with
a particular classification (see section 3.1.2). Each of the
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FIGURE 5 | Values of logit-transformed spectral bipartivity for simulated networks of trade-compatible relationships and their randomized comparisons, centered by

the median comparison value. Layers are designated according to the European CPA (2008) and its Dutch implementation, which is the most detailed.

resulting networks reflect trade-compatible relationships
between companies with complementary roles in this network.
This constraint gets progressively more stringent as the
product classification that defines the roles gets more detailed
(see Table 3).

Already at the top, sector-level, classification (CPA Level 1)
customer-supplier complementarity introduces some functional
structure. Figure 5 compares 25 instances from our configuration
model at CPA Level 1 to their randomized versions, where the
relationships are no longer necessarily trade-compatible. The
logit-transformed spectral bipartivity is consistently larger-than-
random where customer-supplier complementarity has been
introduced at CPA Level 1 (KS = 1.0, N1 = 1, N2 = 25,
p < 0.04). Stricter complementarity constraints at the more
detailed CPA Levels 2, 4, and 6 each introduce consistently and
significantly more functional structure (KS = 1.0, N1 = 25,
N2 = 25, p < 10−14). On the other hand, and as expected,
the small refinement between CPA Level 6 and the CPA National
product classification produces aminor increase in the separation
between model and random expectation; it is statistically, but
not substantively, significant (KS = 0.44, N1 = 25, N2 = 25,
p < 0.01).

In interpreting this finding, recall that these are simulated
networks whose links are sampled from among the many
possible links between trade-compatible companies. The roles of
individual companies are defined with respect to standardized
industry and product categorizations used in the collection
of official economic statistics throughout Europe (Eurostat,
2008b). These categories are broad relative to the number of
differentiated products traded within the Netherlands and so
trade relationships in our networks reflect potential trade in a
number of relevant products. This means that the constraint
we impose in generating our networks is fairly blunt, even at
CPA National and especially at CPA Level 1. In this way, our
generalization of the CBS network reconstruction process serves
as an important robustness check on the results in section 4.1.
At the same time, functional structure could come about via
various channels. Most trivially, two suppliers and two users
of the same product could form a closed square within one
layer due to redundant purchasing patterns. This is unlikely to
be what we are picking up on as it is assumed that the vast

majority of companies deal with only one or a few suppliers per
product-group (see section 3.1.1). More common, here, would
be the situation where two suppliers of two different products
sell those products to the same two customers; this would form
a closed square when the two layers are collapsed into a simple
network of trade relationships.

5. DISCUSSION

This paper has advanced the hypothesis that company-level
production networks are so-called “functional” networks, with a
distinctive local connectivity structure first identified in network
biology (Kovács et al., 2019; Kitsak, 2020). This hypothesis
was made concrete through a discussion on local connectivity
structures and the re-interpretation of previous empirical
findings through this lens (Fujiwara and Aoyama, 2010; Ohnishi
et al., 2010). We then explored this hypothesis, directly, using
a re-purposed network metric (Estrada and Gómez-Gardeñes,
2016) and an existing dataset of inferred customer-supplier
ties produced by Statistics Netherlands (CBS) (Hooijmaaijers
and Buiten, 2019). This methodology identifies functional
structure in reconstructed production networks representing
trade among companies in Zeeland province and the whole
of the Netherlands. Our generalization of the CBS network
reconstruction process, using multi-layer configuration models,
then illustrates that customer-supplier complementarity is key
to the emergence of functional structure in company-level
production networks.

In interpreting these findings, our company-level production
networks should be understood as a selection of likely trade
relationships where the industry pairing implies the two
companies are compatible in trade. Much nuance is avoided
in that the industry and product categorizations used in the
generation of these networks are standardized and broad;
inferred ties reflect potential trade in a number of relevant
products. However, as noted in section 3.1.1, inferences about
individual companies are noisy as the underlying data are
collected for statistical purposes. For this reason, we limit our
network analysis to characterizing whole-network patterns in
local connectivity structure. To illustrate functional structure
in production networks at a more intuitive scale, section 2.2
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highlights prior work that finds closed squares and interpretable
functional modules in empirical data; it is reassuring that
this fully supports our conclusions. The assumptions made
in the CBS network reconstruction process when matching
customers with suppliers could more directly affect the local
connectivity structure of our networks. On this point, it is
reassuring that functional structure persists also under our
generalized reconstruction process and using less detailed
product classifications. Exploring a wider range of data-
informed network generation processes would allow more
specific hypotheses to be tested and is a promising direction for
future work.

Our findings have practical implications for the analysis
of company-level production networks and wider implications
for the study of economic systems. Practically speaking, our
work helps narrow down the set of network analysis techniques
relevant for use with networks representing trade relationships
among companies, be they empirical, reconstructed, or modeled.
To be interpretable, these should conform to the logic of
functional networks: companies trade with complementary
others and it is close competitors—companies with many shared
customers and suppliers—who are especially similar. For the
problem of link prediction, for instance, heuristics that close
squares (L3) are expected to be especially accurate (Kovács
et al., 2019). On the other hand, there is little reason to expect
high levels of clustering or high levels of reciprocity between
customers and suppliers. Intuitions and techniques developed
within network biology for use with PPI networks are likely to
be especially applicable (Barabási and Oltvai, 2004; Kitsak, 2020).
For instance, identifiablemeso-scale structures can be interpreted
more readily as “functional modules” (Chen and Yuan, 2006)
than as “communities” (Blondel et al., 2008).

Speaking more broadly, structural features of functional
networks can deepen our understanding of short-term dynamics
on production networks. Several ways economic systems can
fail are already studied using detailed simulations over empirical
company-level production networks (Hazama and Uesugi, 2017;
Inoue and Todo, 2020). From such studies, supply disruptions
are known to compound when also the competitors of affected
companies become affected via shared customers and suppliers.
This phenomenon is related to the prominence of closed squares
in the local connectivity structure. An anecdotal example is
that during the 2008 financial crisis the CEO of Ford, Alan
Mulally, gave testimony in favor of US Government support
for General Motors and Chrysler. Mulally argued that the
demise of his competitors would imperil shared suppliers of
highly specialized auto parts (Klier and Rubenstein, 2013,
p. 145). Note that the Japanese automotive industry, also, is
especially locally bipartite with many closed squares (Fujiwara
and Aoyama, 2010, p. 570). In the demand direction, one might
consider the analogous phenomenon where Chinese e-commerce
platforms selling personal protective equipment to many of
the same customers all experienced shortages in sourcing from
many of the same manufacturers following reports of a deadly

outbreak of infectious disease in Wuhan, China in January, 2020
(McMorrow and Liu, 2020).

Local connectivity structure can also help in the study of
routine function and growth of production networks happening
over longer timescales. Identifying functional structure in these
networks has given us precise terminology with which to describe
their defining features and the possible link-level mechanisms at
play. Latent geometry lends us the term “node complementarity”
for the notion that two companies are more likely to interact
if one is similar to the other’s other trading partners (Kitsak,
2020); “closed squares” feature prominently (Kovács et al., 2019).
It may be especially relevant to study the impact of indirect
connections between competitors (via shared customers and
suppliers) on the establishment of price and trust across trade
relationships, which are thought to be key to productivity
improvements at the company level (Uzzi, 1997; Cardoso et al.,
2019). Network biology lends us the term “functional module”
for meso-scale structures that let the network perform more
complex higher-level functions (Barabási and Oltvai, 2004;
Chen and Yuan, 2006; Ghiassian et al., 2015). Interpretable
modules have been described in detail on empirical company-
level production networks (Fujiwara and Aoyama, 2010, p. 570)
and may be related to the development of new capabilities in
local economies (Dawley, 2014; Boschma et al., 2017). Studying
these specific local structural features of production networks
could further our understanding of their routine function, failure,
and growth.
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