
The Old and the New: Can
Physics-Informed Deep-Learning
Replace Traditional Linear Solvers?
Stefano Markidis *

KTH Royal Institute of Technology, Stockholm, Sweden

Physics-Informed Neural Networks (PINN) are neural networks encoding the problem
governing equations, such as Partial Differential Equations (PDE), as a part of the neural
network. PINNs have emerged as a new essential tool to solve various challenging
problems, including computing linear systems arising from PDEs, a task for which
several traditional methods exist. In this work, we focus first on evaluating the potential
of PINNs as linear solvers in the case of the Poisson equation, an omnipresent equation in
scientific computing. We characterize PINN linear solvers in terms of accuracy and
performance under different network configurations (depth, activation functions, input
data set distribution). We highlight the critical role of transfer learning. Our results show that
low-frequency components of the solution converge quickly as an effect of the F-principle.
In contrast, an accurate solution of the high frequencies requires an exceedingly long time.
To address this limitation, we propose integrating PINNs into traditional linear solvers. We
show that this integration leads to the development of new solvers whose performance is
on par with other high-performance solvers, such as PETSc conjugate gradient linear
solvers, in terms of performance and accuracy. Overall, while the accuracy and
computational performance are still a limiting factor for the direct use of PINN linear
solvers, hybrid strategies combining old traditional linear solver approaches with new
emerging deep-learning techniques are among the most promising methods for
developing a new class of linear solvers.

Keywords: physics-informed deep-learning, PINN, scientific computing, Poisson solvers, deep-learning

1 INTRODUCTION

Deep Learning (DL) has revolutionized the way of performing classification, pattern recognition, and
regression tasks in various application areas, such as image and speech recognition, recommendation
systems, natural language processing, drug discovery, medical imaging, bioinformatics, and fraud
detection, among few examples (Goodfellow et al., 2016). However, scientific applications solving
linear and non-linear equations with demanding accuracy and computational performance
requirements have not been the DL focus. Only until recently, a new class of DL networks,
called Physics-Informed Neural Networks (PINN), emerged as a very promising DL method to
solve scientific computing problems (Raissi et al., 2019, 2017a,b; Eivazi et al., 2021). In fact, PINNs
are specifically designed to integrate scientific computing equations, such as Ordinary Differential
Equations (ODE), Partial Differential Equations (PDE), non-linear and integral-differential
equations (Pang et al., 2019), into the DL network training. In this work, we focus on PINN
application to solve a traditional scientific computing problem: the solution of a linear system arising

Edited by:
Javier Garcia-Blas,

Universidad Carlos III de Madrid,
Spain

Reviewed by:
Nathan Hodas,

Pacific Northwest National Laboratory
(DOE), United States

Changqing Luo,
Virginia Commonwealth University,

United States

*Correspondence:
Stefano Markidis
markidis@kth.se

Specialty section:
This article was submitted to

Data Mining and Management,
a section of the journal

Frontiers in Big Data

Received: 17 February 2021
Accepted: 07 October 2021

Published: 19 November 2021

Citation:
Markidis S (2021) The Old and the
New: Can Physics-Informed Deep-
Learning Replace Traditional Linear

Solvers?
Front. Big Data 4:669097.

doi: 10.3389/fdata.2021.669097

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 6690971

ORIGINAL RESEARCH
published: 19 November 2021

doi: 10.3389/fdata.2021.669097

http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2021.669097&domain=pdf&date_stamp=2021-11-19
https://www.frontiersin.org/articles/10.3389/fdata.2021.669097/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.669097/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.669097/full
http://creativecommons.org/licenses/by/4.0/
mailto:markidis@kth.se
https://doi.org/10.3389/fdata.2021.669097
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2021.669097

from the discretization of a PDE. We solve the linear system
arising from the Poisson equation, one of the most common
PDEs whose solution still requires a non-negligible time with
traditional approaches. We evaluate the level of maturity in terms
of accuracy and performance of PINN linear solver, either as a
replacement of other traditional scientific approaches or to be
deployed in combination with conventional scientific methods,
such as the multigrid and Gauss-Seidel methods (Quarteroni
et al., 2010).

PINNs are deep-learning networks that, after training (solving
an optimization problem to minimize a residual function), output
an approximated solution of differential equation/equations,
given an input point in the integration domain (called
collocation point). Before PINNs, previous efforts, have
explored solving PDEs with constrained neural networks
(Psichogios and Ungar, 1992; Lagaris et al., 1998). The major
innovation with PINN is the introduction of a residual network
that encodes the governing physics equations, takes the output of
a deep-learning network (called surrogate), and calculates a
residual value (a loss function in DL terminology). The
inclusion of a residual network, somehow, bears a resemblance
of those iterative Krylov linear solvers in scientific applications.
The fundamental difference is that PINNs calculate differential
operators on graphs using automatic differentiation (Baydin
et al., 2018) while traditional scientific approaches are based
on numerical schemes for differentiation. As noted in previous
works (Raissi et al., 2019; Mishra and Molinaro, 2020a),
automatic differentiation is the main strength of PINNs
because operators on the residual network can be elegantly
and efficiently formulated with automatic differentiation. An
important point is that the PINN’s residual network should
not be confused with the popular network architectures, called
also Residual networks, or ResNet in short, where the name
derives from using skip-connection or residual connections
(Goodfellow et al., 2016) instead of calculating a residual like
in PINNs.

The basic formulation of the PINN training does not require
labeled data, e.g., results from other simulations or experimental
data, and is unsupervised PINNs only require the evaluation of
the residual function (Mishra and Molinaro, 2020b). Providing
simulation or experimental data for training the network in a
supervised manner is also possible and necessary for so data-
assimilation (Raissi et al., 2020), inverse problems (Mishra and
Molinaro, 2020a), super resolution (Wang C. et al., 2020;
Esmaeilzadeh et al., 2020), and discrete PINNs (Raissi et al.,
2019). The supervised approach is often used for solving ill-
defined problems when for instance we lack boundary conditions
or an Equation of State (EoS) to close a system of equations (for
instance, EoS for the fluid equations (Zhu and Muller, 2020)). In
this study, we only focus on the basic PINNs as we are interested
in solving PDEs without relying on other simulations to assist the
DL network training. A common case in scientific applications is
that we solve the same PDE with different source terms at each
time step. For instance, in addition to other computational
kernels, Molecular Dynamics (MD) code and semi-implicit
fluid and plasma codes, such as GROMACS (Van Der Spoel
et al., 2005), Nek5000 (Paul F. Fischer and Kerkemeier, 2008),

and iPIC3D (Markidis et al., 2010, 2020), calculate the Poisson
equation for the electrostatic and pressure solver (Offermans
et al., 2016; Aguilar and Markidis, 2021) and divergence cleaning
operations at each cycle.

Once a PINN is trained, the inference from the trained PINN
can be used to replace traditional numerical solvers in scientific
computing. In this so-called inference or prediction step, the input
includes independent variables like simulation time step and
simulation domain positions. The output is the solution of the
governing equations at the time and position specified by the
input. Therefore, PINNs are a gridless method because any point
in the domain can be taken as input without requiring the
definition of a mesh. Moreover, the trained PINN network can
be used for predicting the values on simulation grids of different
resolutions without the need of being retrained. For this reason,
the computational cost does not scale with the number of grid
points like many traditional computational methods. PINNs
borrow concepts from popular methods in traditional scientific
computing, including Newton-Krylov solvers (Kelley, 1995),
finite element methods (FEM) (Rao, 2017), and Monte Carlo
techniques (Rubinstein and Kroese, 2016). Like the Newton-
Krylov solvers, PINNs training is driven by the objective of
minimizing the residual function and employs Newton
methods during the optimization process. Similarly to the
FEM, PINN uses interpolation basis (non-linear) functions,
called activation functions (Ramachandran et al., 2017) in the
neural network fields. Like Monte Carlo and quasi-Monte Carlo
methods, PINNs integrate the governing equations using a
random or a low-discrepancy sequence, such as the Sobol
sequence (Soboĺ, 1990), for the collocation points used during
the evaluation the residual function.

The motivation of this work is twofold. First, we evaluate the
potential of deploying PINNs for solving linear systems, such as
the one arising from the Poisson equation. We focus on solving
the Poisson equation, a generalization of the Laplace equation,
and an omnipresent equation in scientific computing.
Traditionally, Poisson solvers are based on linear solvers, such
as the Conjugate Gradient (CG) or Fast Fourier Transform (FFT).
These approaches may require a large number of iterations before
convergence and are computationally expensive as the fastest
methods scale as O(Ng logNg), where Ng is the number of grid
points in the simulation domain. The second goal of this work is
to propose a new class of linear solvers combining new emerging
DL approaches with old traditional linear solvers, such as
multigrid and iterative solvers.

In this work, we show that the accuracy and the convergence of
PINN solvers can be tuned by setting up an appropriate
configuration of depth, layer size, activation functions and by
leveraging transfer learning. We find that fully-connected
surrogate/approximator networks with more than three layers
produce similar performance results in the first thousand training
epochs. The choice of activation function is critical for PINN
performance: depending on the smoothness of the source term,
different activation functions provide considerably different
accuracy and convergence. Transfer learning in PINNs allow
us to initialize the network with the results of another training
solving the same PDE with a different source term (Weiss et al.,

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 6690972

Markidis Can PINNs Replace Traditional Solvers?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

2016). The usage of transfer learning considerably speed-up the
training of the network. In terms of accuracy and computational
performance, a naive replacement of traditional numerical
approaches with the direct usage of PINNs is still not
competitive with traditional solvers and codes, such as CG
implementations in HPC packages (Balay et al., 2019).

To address the limitations of the direct usage of PINN, we
combine PINN linear solvers with traditional approaches such as
the multigrid and Gauss-Seidel methods (Trottenberg et al., 2000;
Quarteroni et al., 2010). The DL linear solver is used to solve the
linear system on a coarse grid and the solution refined on finer
grids using the multigrid V-cycle and Gauss-Seidel solver
iterations. This approach allows us to use the DL networking
of converging quickly on low-frequency components of the
problem solution and rely on Gauss-Seidel to solve accurately
high-frequency components of the solution. We show that the
integration of DL techniques in traditional linear solvers leads to
solvers that are on-par of high-performance solvers, such as
PETSc conjugate gradient linear solvers, both in terms of
performance and accuracy.

The paper is organized as follows. We first introduce the
governing equations, the background information about PINN
architecture and showcase the usage of PINN to solve the 2D
Poisson equation. Section 3 presents a characterization of PINN
linear solver performance when varying the network size,
activation functions, and data set distribution and we highlight
the critical importance of leveraging transfer learning.We present
the design of a Poisson solver combining new emerging DL
techniques into the V-cycle of the multigrid method and
analyze its error and computational performance in Section 5.
Finally, we summarize this study and outline challenges and next
step for the future work in Section 6.

2 THE NEW: PHYSICS-INFORMED LINEAR
SOLVERS

The PINNs goal is to approximate the solution of a system of one
or more differential, possibly non-linear equations, by encoding
explicitly the differential equation formulation in the neural
network. Without loss of generality, PINN solves the non-
linear equation:

u(x)t � N u(x) � 0, x ∈ Ω, t ∈ [0, T], (1)

where u is the solution of the system, ut is its derivative with
respect to time t in the period [0, T],N is a non-linear differential
operator, x is an independent, possibly multi-dimensional
variable, defined over the domain Ω. As a main reference
equation to solve, we consider the Poisson equation in a unit
square domain and Dirichlet boundary conditions throughout
this paper:

∇2u(x, y) � f(x, y), (x, y) ∈ [0, 1] × [0, 1]. (2)

While this problem is linear in nature and PINNs can handle
non-linear problems, we focus on the Poisson equation because it
is one of the most solved PDEs in scientific applications. The

Poisson equation, an example of elliptic PDE, arises in several
different fields from electrostatic problems in plasma and MD
codes, to potential flow and pressure solvers in Computational
Fluid Dynamics (CFD), to structural mechanics problems.
Elliptic problems are one of the Achilles’ heels for scientific
applications (Morton and Mayers, 2005). While relatively fast
and straightforward - albeit subject to numerical constraints -
computational methods exist for solving hyperbolic and parabolic
problems, e.g. explicit differentiation, traditionally the solution of
elliptic problems requires linear solvers, such as Krylov (CG or
GMREs) solvers or FFT. Typically, in scientific applications, the
simulation progresses through several time steps, where a Poisson
equation with same boundary conditions and different source
term f(x, y) (typically not considerably different from the source
term of the previous time step) is solved.

In its basic formulation, PINNs combine two networks
together: an approximator or surrogate network and a residual
network (see Figure 1) (Raissi et al., 2019). The approximator/
surrogate network undergoes training and after it provides a
solution ~u at a given input point (x, y), called collocation point, in
the simulation domain. The residual network encodes the
governing equations and it is the distinctive feature of PINNs.
The residual network is not trained and its only function is to
provide the approximator/surrogate network with the residual
(loss function in DL terminology):

r � ∇2~u(x, y) − f(x, y). (3)

Differently from traditional methods often relying on finite
difference approximation, the derivatives on the residual network
graph, e.g, ∇2~u(x, y) in Eq. (3), are calculated using the so-called
automatic differentiation, or autodiff, that leverages the chain rule
(Baydin et al., 2018) applied to the operations defined on the
network nodes. In the solution of the Poisson Equation, the
Laplacian operator is expressed as two successive first-oder
derivatives of ~u in the x and y directions and their summation
(see the blue network nodes in Figure 1).

In the inference/prediction phase, only the surrogate network
is used to calculate the solution to the problem (remember that
the residual network is only used in the training process to
calculate the residual).

The approximator/surrogate network is a feedforward neural
network (Goodfellow et al., 2016): it processes an input x via l
layer of units (called also neurons). The approximator/surrogate
network expresses affine-linear maps (Z) between units and scalar
non-linear activation functions (a) within the units:

~u(x) � Zl ° a °Zl−1 ° a . . . ° a °Z2 ° a °Z1(x). (4)

In DL, the most used activation functions are Rectified Linear
Unit (ReLU), tanh, swish, sine, and sigmoid functions. See Ref.
(Ramachandran et al., 2017). for an overview of the different
activation functions. As shown by Ref. (Mishra and Molinaro,
2020b), PINNs requires sufficiently smooth activation functions.
PINNs with ReLU and other non-smooth activation functions,
such as ELU and SELU (Exponential and Scaled Exponential
Linear Units) are not “consistent/convergent” methods: in the
limit of an infinite training dataset a well-trained PINN with

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 6690973

Markidis Can PINNs Replace Traditional Solvers?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

ReLU-like activation functions, the solution does not converge to
the exact solution (Mishra and Molinaro, 2020a). This theoretical
result is also confirmed by our experiments using ReLU-like
activation functions. For this reason, we do not use ReLU-like
activation functions in PINNs.

The affine maps Z are characterized by the weights and biases
of the approximator/surrogate network:

Zlxl � Wlxl + bl, (5)

whereWl is a weightmatrix for the layer l and b is the bias vector.
In PINNs, the weight values are initialized using the Xavier (also
called Glorot when using the last name of the inventor instead)
procedure (Kumar, 2017).

Typically, the PINN approximator/surrogate networks are
fully connected networks consisting of 4-6 hidden layers(H)
and 50–100 units per layer, similarly to the network in
Figure 1. There are also successful experiments using
convolutional and recurrent layers (Nascimento and Viana,
2019; Gao et al., 2020) but the vast majority of existing PINNs
rely on fully-connected layers. In this work, we focus on studying
the performance of fully-connected PINN.

The residual network is responsible for encoding the equation
to solve and provide the loss function to the approximator
network for the optimization process. In PINNs, we minimize
the Mean Squared Error (MSE) of the residual (Eq. (3)):

MSEr � 1
Nxi,yi

∑ |r xi, yi()|2, (6)

where Nxi,yi is the number of collocation points. In PINNs, the
collocation points constitute the training dataset. Note thatMSEr
depends on the size of the training of the dataset (Nxi,yi), e.g., the
number of collocation points. In practice, a larger number of
collocation points leads to an increasedMSE value.MSEr depends
also on on the distribution of our collocation points. The three
most used dataset distributions are: uniform (the dataset is
uniformly spaced on the simulation domain as on a uniform
grid), pseudo-random (collocations points are sampled using
pseudo-random number generator) and Sobol (collocation
points are from the Sobol low-discrepancy sequence).
Typically, the default training distribution for PINNs is Sobol,
like in quasi-Montecarlo methods.

Recently, several PINN architectures have been proposed.
PINNs differentiate on how the residual network is defined.
For instance, fPINN (fractional PINN) is a PINN with a
residual network capable of calculating residuals of governing
equations including fractional calculus operators (Pang et al.,
2019). fPINN combines automatic differentiation with numerical
discretization for the fractional operators in the residual network.
fPINN extends PINN to solve integral and differential-integral
equations. Another important PINN is vPINN (variational
PINN): they include a residual network that uses the

FIGURE 1 | A PINN to solve a Poisson problem z2x u(x, y) + z2y u(x, y) � f(x, y) with associated Dirichlet boundary conditions. PINN consists of two basic
interconnected networks. The first network (red vertices) provides a surrogate or approximation of the problem solution u. The network takes as input a point in the
problem domain (x, y) and provides an approximate solution ~u. This network weights and biases are trainable. The second network (blue vertices) takes the approximate
solution from the first network and calculates the residual that is used as loss function to train the first network. The residual network includes the governing
equations, boundary conditions and initial conditions (not included in the plot as the Poisson problem does not require initial conditions).

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 6690974

Markidis Can PINNs Replace Traditional Solvers?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

variational form of the problem into the loss function (Kharazmi
et al., 2019) and an additional shallow network using trial
functions and polynomials and trigonometric functions as test
functions. A major advantage with respect to basic PINNs is that
in the analytical calculation by integrating by parts the integrand
in the variational form, we can the order of the differential
operators represented by the neural networks, speeding up the
training and increasing PINN accuracy. hp-VPINN is an
extension of vPINN that allows hp-refinement via domain
decomposition as h-refinement and projection onto space of
high order polynomials as p-refinement (Kharazmi et al.,
2020). In this work, we use the original residual network as
shown in Figure 1.

In the training phase, an optimization process targeting the
residual minimization determines the weights and biases of
the surrogate network. Typically, we use two optimizers in
succession: the Adam optimizer as first and then a Broyden-
Fletcher-Goldfarb-Shanno (BFGS) optimizer (Fletcher, 2013).
BFGS uses the Hessian matrix (curvature in highly
dimensional space) to calculate the optimization direction
and provides more accurate results. However, if used directly
without using the Adam optimizer can rapidly converge to a
local minimum (for the residual) without exiting. For this
reason, the Adam optimizer is used first to avoid local
minima, and then the solution is refined by BFGS. We note
that the typical BFGS used in PINNs is the L-BFGS-B: L-BFGS
is a limited-memory version of BFGS to handle problems with
many variables, such as DL problems; the BFGS-B is a variant
of BFGS for bound constrained optimization problems. In our
work, we tested several optimizers, including Newton and
Powell methods, and found that L-BFGS-B provides by far the
highest accuracy and faster convergence in all our test
problems. L-BFGS-B is currently the most critical
technology for PINNs.

An epoch comprises all the optimizer iterations to cover all the
datasets. In PINNs, typically, thousands of epochs are required to
achieve accurate results. By nature, PINNs are under-fitted: the
network is not complex enough to accurately capture
relationships between the collocation points and solution.
Therefore, an extensive dataset increase improves the PINN
performance; however, the computational cost increases
raising the data set size.

One crucial point related to PINNs is whether a neural
network can approximate simultaneously and uniformly the
solution function and its partial derivatives. Ref. (Lu et al.,
2019). shows that feed-forward neural nets with enough
neurons can achieve this task. A formal analysis of the errors
in PINNs is presented in Refs. (Lu et al., 2019; Mishra and
Molinaro, 2020b).

An important fact determining the convergence behavior of
the DL networks and PINN linear solvers is the Frequency-
principle (F-principle):DNNs often fit target functions from low to
high frequencies during the training process (Xu et al., 2019). The
F-principle implies that in PINNs, the low frequency/large scale
features of the solution emerge first, while it will take several
training epochs to recover high frequency/small-scale
features. This.

Despite the recent introduction of PINNs, several PINN
frameworks for PDE solutions exist. All the major PINN
frameworks are written in Python and rely either on
TensorFlow (Abadi et al., 2016) or PyTorch (Paszke et al.,
2019) to express the neural network architecture and exploit
auto-differentiation used in the residual network. Together with
TensorFlow, SciPy (Virtanen et al., 2020) is often used to use
high-order optimizers such as L-BFGS-B. Two valuable PINN
Domain-Specific Languages (DSL) are DeepXDE (Lu et al., 2019)
and sciANN (Haghighat and Juanes, 2020). DeepXDE is an
highly customizable framework with TensorFlow one and two
backend and it supports basic and fractional PINNs in complex
geometries. sciANN is a DSL based on and similar to Keras (Gulli
and Pal, 2017). In this work, we use the DeepXDE DSL.

2.1 An Example: Solving the 2D Poisson
Equation With PINN
To showcase how PINNs work and provide a baseline
performance in terms of accuracy and computational cost, we
solve a Poisson problem in the unit square domain with a source
term f(x, y) that is smooth, e.g., differentiable, and contains four
increasing frequencies:

f(x, y) � 1
4
∑4
k�1

(−1)k+12k sin(kπx)sin(kπy). (7)

We choose such a source term as it has a simple solution and to
show the F-principle’s impact on the convergence of PINN to the
numerical solution: we expect the lower frequency components,
e.g., k � 1, to convergence faster than the higher frequency
components present in the solution (k � 2, 3, 4).

We use a fully-connected four-layer PINN with a tanh
activation function for the approximator/surrogate network for
demonstration purposes and without a loss of generality. The
input layer consists of two neurons (the x and y coordinates of
one collocation point), while each hidden and output layers
comprise 50 neurons and one neuron, respectively. The
weights of the network are initialized with the Xavier method.
As a reminder, the approximator/surrogate network’s output is
the approximate solution to our problem. The residual network is
a graph encoding the Poisson equation and source term and
provides the loss function (Eq. 6) to drive the approximator/
surrogate network’s optimization. At each, a collocation point
within the problem domain is drawn from the Sobol sequence.
The training data set consists of 128 × 128 collocation points on
the domain and additional 4,000 collocation points on the
boundary for a total of 20,384 points. We train the
approximator/surrogate network 10,000 of Adam optimizer
epochs with a learning rate λ equal to 0.001 (the magnitude of
the optimizer vector along the direction tominimize the residual),
followed by 13,000 epochs of L-BFGS-B optimizer. We use the
DeepXDE DSL for our PINN implementation.

Figure 2 shows the Poisson equation’s approximate solution
with the source term of Eq. (7) at different epochs, the training
error, and the error of the PINN solution after the training is
completed. Figure 2 top panels present the contour plot of the

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 6690975

Markidis Can PINNs Replace Traditional Solvers?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

approximator/surrogate solution on a 128 × 128 uniform grid after
500, 5,000 and 23,000 epochs. To determine the solution at each
epoch, we take the approximate/surrogate network and perform
inference/prediction using the points of the 128 × 128 uniform
grid. By analyzing the approximate solutions’ evolution (top panels
of Figure 2), it is clear that the PINN resolves the low-frequency
component present in the solution: a yellow band appears along the
diagonal of the plot while local peaks (small islands in the contour
plot) are not resolved. As the training progresses, localized peaks
associated with the source term’s high-frequencies appear and are
resolved. The bottom right panel of Figure 2 shows a contour plot
of the error after the training is completed. The maximum
pointwise error is approximately 5E-3. We note that a large
part of the error is located in the proximity of the boundaries.
This issue results from the vanishing-gradient problem (Wang S.
et al., 2020): unbalanced gradients back-propagate during the
model training. This issue is similar to the numerical stiffness
problem when using traditional numerical approaches. One of the
effective technique to mitigate the vanishing-gradient problem is to
employ locally (to the layers or the node) adaptive activation
functions (Jagtap et al., 2020). Additional techniques for
mitigating vanishing-gradient problem are the usage of ReLU
activations functions and batch normalization.

The bottom panel of Figure 2 shows the training error’s
evolution calculated with Eq. (6). In this case, the initial error
is approximately 1.08E2 and decreases up to 2.79E-5 at the end of

the training. The initial error mainly depends on the training data
set size: small input data sets reduce training error that does not
translate to higher accuracy in the solution of the problem.
However, the training is a reasonable metric when comparing
the PINN performance when using the same data set size.

By analyzing the evolution of the training error, it is clear that the
Adamoptimizer training error stabilizes approximately in the range of
5E-3 - 1E-2 after 2,000 epochs, and we do not observe any evident
improvement after 2,000 epochs of Adam optimization. The L-BFGS-
B optimizer leads the error from 5E-3 - 1E-2 to 2.79E-5 and is
responsible for the major decrease of the training error. However, we
remind that L-BFGS-B is not used at the beginning of the training as it
can converge quickly to a wrong solution (a local minimum in the
optimization problem).

To provide an idea of the PINN training’s overall computation
cost, we also report the total time for training the PINN in this basic
non-optimized configuration on a dual-core Intel i5 2.9 GHz CPU.
The total training execution time is 6,380 seconds, corresponding to
approximately 1.5 h. For comparison, the solution of the same
problem with a uniform grid size 128 × 128 on the same system
with the petsc4py CG solver (Dalcin et al., 2011; Balay et al., 2019)
requires 92.28 seconds to converge to double-precision machine
epsilon. Basic PINN’s direct usage to solve the Poisson problem is
limited for scientific application given the computational cost and the
relatively low accuracy. In the next sections, we investigate which
factors impact the PINN performance and its accuracy. We design a

FIGURE 2 | The top panels show the solution of the Poisson equation at different epochs using a PINN. The bottom panel shows the training error for an initial
training with Adam’s optimizer (10,000 epochs), followed by L-BFGS-B (13,000 epochs). The plot also includes the total time for training the PINN on a dual-core Intel i5
processor. The right bottom subplot presents the error of the final solution compared to the exact solution.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 6690976

Markidis Can PINNs Replace Traditional Solvers?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

PINN-based solver to have comparable performance to state-of-the-
art linear solvers such as petsc4py.

3 CHARACTERIZING PINNS AS LINEAR
SOLVERS

To characterize the PINNs performance for solving the Poisson
equation, we perform several parametric studies varying the
approximator/surrogate network size, activation functions, and
training data size and distribution. We also investigate the
performance enhancement achieved by using the transfer learning
technique to initialize with the network weights obtained solving the
Poisson equation with a different source term (Weiss et al., 2016).
During our experiments, we found that two relatively different
configurations of the network are required in the case of the
source term of the Poisson equation is smooth on non smooth,
e.g. non-differentiable. For this reason, we choose two main use cases
to showcase the impact of different parameters. For the smooth source
term case, we take the source term from Eq. (7) (the example we
showcased in the previous section). For the non-smooth source term
case, we take a source term that is zero everywhere except for the
points enclosed in the circle, centered in (0.5, 0.5) with radius 0.2:

f(x, y) � 1 for
������������������
(x − 0.5)2 + (y − 0.5)2

√
≤ 0.2. (8)

As baseline configuration, we adopt the same
configuration described in the previous section: a fully-
connected network with four hidden layers of 50 units,
and tanh activation function. The data set consists of

128 × 128 collocation points in the domain and 4,000
points on the boundary. Differently from the previous
configuration, we reduce the training epochs to 2,000 for
the Adam Optimizer (the training error do not decrease after
2,000 epochs) and 5,000 for the L-BFGS-B optimizer.

The first experiments we perform is to evaluate the impact of the
network size (depth and units per layer) on the training error. To
understand the impact of surrogate neural network depth, we perform
training with layers of 50 neurons with one (1H), two (2H), three
(3H), four (4H), five (5H) and six (6H) hidden layers (H stands for
hidden layer). We present the evolution of training error in Figure 3.
By analyzing this figure, it is clear that shallow networks consisting of
one or two hidden layers do not perform, and the PINN learning is
bound in learning after few thousand epochs. Even one layer with
large number of units, e.g., one hidden layer with 640 units (see the
magenta line in the right panel of Figure 3), do not lead to better
performance as demonstration that depth is more important than
breadth in PINN.Deeper networkswithmore than three layers lead to
lower final training errors and improved learning. However, we find
that the final training error saturates for PINNs with more than six
hidden layers (results not shown here) for the two test cases. An
important aspect for the deployment of PINN in scientific
applications is that the performance of PINNs with four and more
hidden layers have comparable performance in the first 500 epochs of
the Adam and L-BFGS-B optimizers. Taking in account that the
PINN computational cost for PINNs increases with the number layers
and realistically only fewhundred epochs are necessary for PINN to be
competitive withHPC solvers, PINNs with four hidden layers provide
the best trade-off in terms of accuracy and computational
performance.

FIGURE 3 | Training error for different fully-connected PINN depth: one (1H), two (2H), three (3H), four (4H), five (5H) and six (6H) hidden layers with 50 neurons
each. We also consider the training error for PINNs with six hidden layers and 10-20-40-80-160-320 and 320-160-80-40-20–10 units per hidden layer, respectively.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 6690977

Markidis Can PINNs Replace Traditional Solvers?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

For the six hidden layers case, we also check the importance of
having a large/small number of units at the beginning/end of the
network: we consider the performance of PINNwith six hidden layers
and 10-20-40-80-160-320 and 320-160-80-40-20–10 units per hidden
layer, respectively. We find that to have a large number of units at the
beginning of the network and small number of units at the end of the
network is detrimental to the PINN performance (a six hidden layer
network in this configuration has the same performance of a five
hidden layer PINN). Instead, to have a small number of units at the
beginning of the network and a large number of units at the end of the
network is beneficial to the PINN. This observation hints that initial
hidden layers might responsible for encoding the low-frequencies
components (fewer points are needed to represent low-frequency
signals) and the following hidden layers are responsible for
representing higher-frequency components (several points are
needed to represent high-frequency signals). However, more
experiments are needed to confirm this hypothesis.

The most impactful parameter for achieving a low training
error is the activation function. This fact is expected as activation
functions are nothing else than non-linear interpolation
functions (similarly to nodal functions in FEM): some
interpolation function might be a better fit to represent the
different source terms. For instance, sigmoid functions are a
good fit to represent non-differentiable source terms exhibiting
discontinuities. On the contrary, a smooth tanh activation
function can closely represent smooth functions.

We investigate the impact of different activation functions and
show the evolution of the training errors in Figure 4. Together
with traditional activation function, we also consider the Locally
Adaptive Activation Functions (LAAF): with this technique, a
scalable parameter is introduced in each layer separately, and

then optimized with a variant of stochastic gradient descent
algorithm (Jagtap et al., 2020). The LAAF are provided in the
DeepXDE DSL. We investigate LAAF with factor of 5 (LAAF-5)
and 10 (LAAF-10) for the tanh, swish and sigmoid cases. The
LAAF usage is critical to mitigate the vanishing-gradient problem.

The activation function’s different impact for the two test cases
(smooth and non-smooth source terms) is clear when analyzing the
results presented in Figure 4. In the smooth source term case, the best
activation function is the locally (to the layer) adaptive tanh activation
function with factor 5 (LAAF5 - tanh). In the case of the non-smooth
source term, the sigmoid activation function outperforms all the other
activation functions. In particular, in this case, the best activation
function is the locally (to the layer) adaptive sigmoid activation
function with factor 10 (LAAF10 - sigmoid).

As we mentioned in Section 2.1, the data size impacts the training
errors. Large data sets increase the PINN accuracy but have larger
training errors than the training with small data set because of the
error definition (see Eq. (6)). For this reason, the training error should
be compared only for training using the same training data set size.
We investigate the impact of three different input data size (1–1,200
points in the domain and 200 on the boundary, 2–64×64 points in the
domain and 2,000 on the boundary, 3–128× 128 points in the domain
and 4,000 on the boundary) with three collocation point distributions
(uniform, pseudo-random, and Sobol sequence) for the non-smooth
source term. We show the results in Figure 5.

In general, we find that the collocation point distribution
does not have a considerable impact on the training error for
large data sets: the Sobol and pseudo-random distributions
have a slightly better performance than the uniform
distribution. For small data sets, pseudo-random
distribution result in lower training errors.

FIGURE 4 | Training error for different activation functions. The two test cases show rather different performance: the best activation function for smooth source
term case is tanh, while it is sigmoid for the non-smooth source term case. Local (to the layer) adaptive activation functions provide a reduction of the training error.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 6690978

Markidis Can PINNs Replace Traditional Solvers?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

We also study the impact of having a restart procedure: we
train first the PINN with a small data set 1,200 points in the
domain and 200 on the boundary) for 4,500 epochs (and then re-
train the same network with a large data set (128 × 128 points in
the domain and 4,000 on the boundary) for 2,500 cycles (see the
magenta lines and the grey box in Figure 5). Such a restart
capability would lead to a large computational saving. However,
the results show that to retrain with a large data set does not lead
to a decreased error and result in the highest training error.

4 THE IMPORTANCE OF TRANSFER
LEARNING

In this study, we found that the usage transfer learning technique is
critical for training PINNs with a reduced number of epochs and
computational cost. The transfer learning technique consists of
training a network solving the Poisson equation with a different
source term. We can then initialize the PINN network we intend to
solve with the first fully trained network weights and biases. In this
way, the first PINN transfers the learned information about encoding
to the second PINN. To show the advantage of transfer learning in
PINN, we solve two additional test cases with smooth and non-
smooth source terms. For the test case with the smooth source term,
we solve the Poisson equation with source term f(x, y) � 10(x(x − 1) +
y(y − 1)) − 2 sin(πx) sin(πy) + 5(2πx) sin(2πy).

We initialize the network with the results obtained during the
training with Eq. (7) as a source term. One of themajor advantages of
transfer-learning is that we can start the L-BFGS-B optimizer after
very few Adam solvers epochs (empirically,we found that 10 Adam
epochs ensure that L-BFGS-Bwill avoid localminima). L-BFGS-B has

faster convergence than the Adam optimizer and therefore the
training is quicker. When not using transfer-learning, we train the
PINNwith 2,000 epochs ofAdamoptimizer, followed by 5,000 epochs
of L-BFGS-B.When using L-BFGS-B, we perform 10 epochs of Adam
optimizer, followed by 6,955 L-BFGS-B epochs.

The black lines inFigure 6 show a comparison of the training error
for a network initialized with Xavier weight initialization, e.g., without
transfer learning (−. black line) and with transfer learning (−+ black
line). In this case, transfer learning usage allows gaining two orders of
improvement in the training error in less than 1,000 epochs.

For the test case with non-smooth source term, we introduce
and additional test case solving the Poisson equation with a
source term that is everywhere zero except in a circle with radius
0.1 and centered in the x and y coordinates (0.7,0.7).

f(x, y) � −10 for
������������������
(x − 0.7)2 + (y − 0.7)2

√
≤ 0.1. (9)

For transfer learning, we use the PINN weights obtained
training the network to solve the Poisson equation with source
term of Eq. (9). The blue lines in Figure 6 are the training error
without transfer learning. As in the case of smooth-source term,
the usage of transfer learning rapidly decreases the training error.

We note that usage of the transfer learning leads to an initial
(less than 200 L-BFGS-B epochs) super-convergence to a relatively
low training error. For this reason, transfer-learning is a necessary
operation to make PINN competitive with other solvers used in
scientific computing.

The major challenge for using transfer-learning is to determine
which pre-trained PINN to use. In simulation codes, solving the same
equation with different source term at each time step, an obvious
choice is a PINN that solves the governing equations with a source

FIGURE 5 | Training error for different data set (1,200 points in the domain and 200 on the boundary, 64 × 64 points in the domain and 2,000 on the boundary,
128 × 128 points in the domain and 4,000 on the boundary) and different distribution (uniform, pseudo-random and Sobol).

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 6690979

Markidis Can PINNs Replace Traditional Solvers?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

term at one of the time step. For other cases, we found that PINNs
solving problems with source terms containing high-frequency
components (possibly more than one component) are suitable for
transfer-learning in general situations. We also found that PINNs
solving problem with only one low frequency component as source
term are not beneficial for transfer learning: their performance is
equivalent to the case without transfer learning.

5 THE OLD AND THE NEW: INTEGRATING
PINNS INTO TRADITIONAL LINEAR
SOLVERS
In Section 2.1, we observed that direct usage of PINN to solve
the Poisson equation is still limited by the large number of
epochs required to achieve an acceptable precision. One
possibility to improve the performance of PINN is to
combine PINN with traditional iterative solvers such as
the Jacobi, Gauss-Seidel and multigrid solvers (Quarteroni
et al., 2010).

PINN solvers’ advantage is the quick convergence to the
solution’s low frequencies components. However, the
convergence to high-frequency features is slow and
requires an increasing number of training iteration/epochs.
This fact is a result of the F-principle. Because of this, PINNs
are of limited usage when the application requires highly
accurate solutions. As suggested by Ref. (Xu et al., 2019), in
such cases, the most viable option is to combine PINN solvers
with traditional solvers that can converge rapidly to the
solution’s high-frequency components (but have low
convergence for the low-frequency components). Such
methods introduce a computational grid and we compute
the differential operators with a finite difference scheme. In
this work, we choose the Gauss-Seidel method as it exhibits
higher convergence rate than the Jacobi method. Each Gauss-

Seidel solver iteration for solving the Poisson equation (Eq.
(2)) is:

un+1
i,j � 1/4 un

i+1,j + un+1
i−1,j + un

i,j+1 + un+1
i,j−1 − ΔxΔyfi,j(), (10)

where i and j are the cell index, Δx and Δy are the grid cell size in
the x and y direction, and n is the iteration number. Usually, the
Gauss-Seidel method stops iterating when ‖un+1 − un‖2 ≤ δ, where
‖. . . ‖ is the Euclidean norm and δ is a so-called tolerance and it is
chosen as an arbitrarily small value.

Both the Jacobi and Gauss-Seidel methods show fast
convergence for small-scale features: this is because the update
of unknown values involves only the values of the neighbor points
(stencil defined by the discretization of a differential operator).
Between two different iterations, the information can only
propagate to neighbor cells.

In this work, we combine traditional approaches with new
emerging DL methods as shown in Figure 7. Overall, the new

FIGURE 6 | Training error with and without transfer learning for the smooth and non-smooth source test cases.

FIGURE 7 | The hybrid solvers relies on the DL linear solver to determine
the solution on a coarse grid that is refined through a multigrid V-cycle
performing Gauss-Seidel iterations on finer grids.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 66909710

Markidis Can PINNs Replace Traditional Solvers?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

solver consists of three phases. We use first the DL PINN solver to
calculate the solution on a coarse grid. As second phase, we refine the
solution with Gauss-Seidel iterations on the coarse grid until a
stopping criteria is satisfied. The third phase is a multigrid V-cycle:
we linearly interpolate (or prolongate in the multigrid terminology) to
finer grids and perform a Gauss-Seidel iteration for each finer grid. In
fact, several multigrid strategies with different level of sophistications
can be sought. However, in this work we focus on a very simple
multigrid approach, based on the Gauss-Seidel method and linear
interpolation across different grids. The crucial point is that we train a
PINN to calculate the solution of the problem on the coarse grid,
replacing themultigrid restriction (or injection) steps in just one phase.

Figure 8 shows a more detailed diagram of a hybrid multigrid
solver combining a DL solver to calculate the solution on a coarse
grid with a Gauss-Seidel solver to refine the solution and
interpolate to finer grid. Because the DL solver convergences
quickly to the low-frequency coarse-grained components of the
solution while high-frequency small-scale components of the
solutions are not accurately solved, we perform the training in
single-precision floating-point. This would speed-up the training
on GPUs (not used in this work) where the number of single-
precision floating-point units (FPUs) is higher than CPU.

The hybrid DL solver comprises six basic steps, represented in
Figure 8:

1) Initialize the network weights and biases - We load from the
disk the network structure and initialize the network. To
accelerate the convergence, we rely on transfer-learning: we
train a network to solve a similar problem and initialize the
network. It is important that the same governing equations,
boundary conditions and architecture are used. The weights
and biases are in single floating-point precision. The time for

completing this step is negligible with respect to the total time
of the hybrid solver.

2) Train with Adam Optimizer (10 Epochs) - We run the Adam
optimizer just for a short number of epochs to avoid the
consequent L-BFGS-B optimizer converging quickly to the
wrong solution (local minimum). By running several tests, we
found empirically that only 10 Adams epochs are needed to
avoid L-BFGS-B optimizer to converge to the wrong solution.
The time for completing this step is typically negligible.

3) Train with L-BFGS-B Optimizer - We run the training with
the L-BFGS-B optimizer. The stopping criterium is
determined by the ftol parameter: the training stops when
(rk − rk+1)/max(|rk|, |rk+1|, 1) ≤ ftol, where k is the iteration of
the optimizer and r is the value of the function to be optimized
(in our case the residual function). Typically, the time for
completing the L-BFGS-B dominates is a large part of the
execution time of the hybrid solver. To compete with
traditional approaches for solving Poisson equation, we set
a maximum number of epochs to 1,000.

4) DL solver is obtained at the end of the training process - The solver
can inference the solution at given collocation points or save it for
future transfer-learning tasks, e.g., a simulation repeats the
computation of the Poisson equation at different time steps.

5) The Approximator/Surrogate Network is used to calculate the
solution on the coarse grid of the multigrid solver - We
calculate the solution of our problem on the coarse grid of
a multigrid solver. This operation is carried with single-
precision floating point numbers since high-accuracy is not
needed in this step. The result is then cast to double precision
for the successive Gauss-Seidel solver. This inference
computational time is typically negligible when compared
to the total execution time.

FIGURE 8 | Structure of the hybrid multigrid solver combining the DL and Gauss-Seidel solvers. Pre-trained networks are pre-computed and used to initialize the
DL network. Two main parameters ftol, δ determine the accuracy and the performance of the hybrid solver.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 66909711

Markidis Can PINNs Replace Traditional Solvers?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

6) Refine the solution with the Gauss-Seidel Method on the
coarse grid and interpolate on fine grids - We perform first
Gauss-Seidel iterations to refine the solution on the coarse
grid. This solution refinement is critical to remove the
vanishing-gradient problem at the boundary. The Gauss-
Seidel iteration on the coarse grid stops when ‖un+1 − un‖2
≤ δ where n is the iteration number. After the Gauss-Seidel
method stops on the coarse grid, linear interpolation to finer
grids and a Gauss-Seidel iteration per grid are computed. As
example, to solve the problem on a 512 × 512 grid, we perform
the following steps:

1) use the DL solver to calculate the solution on 64 × 64 grid;
2) refine the solution with the Gauss-Seidel method on the 64 ×

64 grid until convergence is reached;
3) carry out a linear interpolation to the 128x128 grid;
4) perform a Gauss-Seidel iteration on the 128 × 128 grid;
5) carry out a linear interpolation to 256 × 256 grid,
6) perform a Gauss-Seidel iteration on the 256 × 256 grid,
7) carry out linear interpolation to 512 × 512 grid,
8) perform a final Gauss-Seidel iteration on the 512 × 512 grid.

The interpolation and Gauss-Seidel iterations corresponds to
the V-cycle in the multigrid method as shown in Figure 7.

We test the hybrid modified solver against the same problem
shown in Section 2.1: we solve the Poisson equation with source term
of Eq. (7). Leveraging the knowledge gained in the characterization
study of Section 3, we use a four hidden layer fully-connected neural
network with 50 neurons per hidden layer. To optimize the
convergence for solving the Poisson equation with a smooth
source term, we rely on LAAF-5 tanh activation functions: these
activations functions provided the best performance in our
characterization study. For the transfer learning, we pre-train a
network for 2,000 Adam optimizer epochs and 5,000 L-BFGS-B
optimizer epochs to solve a Poisson equation with a source term
equal to −2 sin(πx) sin(πy) − 72 sin(6πx) sin(6πy). We use an input
data set consisting of 100 × 100 points in the integration domain and
2,000 points on the boundaries for the DL solver. We use the Sobol
sequence as training data set distribution. The network weights and
biases for transfer learning are saved as checkpoint/restart files in
TensorFlow.

For the first test, we employ a 512 × 512 grid with a 64 × 64 coarse
grid, ftol equal to 1E-4 and δ equal to 1E-6. We then test the hybrid
multigrid solver on a 1,024 × 1,024 grid with a 128 × 128 coarse grid,
ftol equal to 1E-4 and two values for δ: 1E-5 and 1E-4. Figure 9 shows
a contour plot the error (u − ~u) for these three configurations. The
error norm in the three configurations is 0.11, 0.19, and 0.86,
respectively. The maximum error for the hybrid multigrid solver is
of the 1E-4 order and less than the error we obtained after extensive
training of a basic PINN (approximately 1E-3, see the bottom right
panel of Figure 2). For comparison, the error norm for the PETSc CG
using a 1024x1024 with rtol (the relative to the initial residual norm
convergence tolerance) equal to 1E-2 and 1E-3 is 5.7E-5 and 5.5E-6,
respectively.

Once we showed that the hybrid multigrid solver provides more
accurate results than the direct PINN usage, we focus on studying the
computational performance. The performance tests are carried out on
a 2.9 GHz Dual-Core Intel Core i5, 16 GB 2133MHz LPDDR3 using

macOS Catalina 10.15.7. We use Python 3.7.9, TensorFlow 2.4.0,
SciPy 1.5.4 and the DeepXDE DSL. The Gauss-Seidel iteration is
implemented in Cython (Gorelick and Ozsvald, 2020) to improve the
performance and avoid time-consuming loops in Python. For
comparison, we also solve the problem using only the Gauss-Seidel
method to solve the problemon the coarse grid and using the petsc4py
CG solver. The PETSc version is 3.14.2. We repeat the tests five times,
and report the arithmetic average of the execution times. We do not
report error bars as the standard deviation is less than 5% of the
average value. Figure 10 shows the execution time together with
number of epochs and iterations for the three different configurations.

The most important result is that by using an optimized
configuration, transfer learning, and integrating DL technologies
into traditional approaches, we can now solve the Poisson
equation with an acceptable precision with a reduced number of
training iterations. This reduction of number of training epochs
translates to complete the problem, presented in Section 2.1, in
less than few minutes instead of hours (see Figure 2) on the Intel
i5 system. While the execution depends on the specific hardware
platform and implementation, the number of training epochs and GS
iterations on the coarse grid (reported on the top of the histogrambars
in Figure 10) are not. Overall, we found that 133 epochs are needed
for the L-BFGS-B optimizer to reach an ftol equal to 1E-4.

Figure 10 histograms also show the breakdown between the time
spent in the DL and Gauss-Seidel solvers used in the multigrid
V-cycle. Note that the execution time for the DL solver is
approximately the same for calculating the values on the two
coarse grids: 64 × 64 and 128 × 128. This is because of PINN are
gridless methods: only the negligible inference computational cost is
different. For comparison, we show the performance of the Gauss-
Seidel solver for the coarse grid (orange bars) and py4petsc CG solver
petsc4py (yellow bars) with different rtol values.When the coarse grid
is small, e.g., 64 × 64, the cost for training the DL solver is higher than
using a basic method such Gauss-Seidel: using the Gauss-Seidel
method for the coarse grid is faster than using the DL solver for
the coarse grid. However, for larger coarser grids, e.g., 128 × 128, the
hybrid multigrid solver is fastest. For comparison, we present the
results obtained running the petsc4py CG with different rtol values.
Overall, the performance of the hybrid solver is competitivewith state-
of-the-art linear solvers. We note that none of the methods and codes
have been optimized nor compared at same accuracy (the stopping
criteria are defined differently for different solvers), so the
performance results provide an indication of potential of the
hybrid solver without providing absolute performance values.

6 DISCUSSION AND CONCLUSION

This paper presented a study to evaluate the potential of emerging
new DL technologies to replace or accelerate old traditional
approaches when solving the Poisson equation. We show that
directly replacing traditional methods with PINNs results in
limited accuracy and a long training period. Setting up an
appropriate configuration of depth, activation functions, input
data set distribution, and leveraging transfer-learning could
effectively optimize the PINNs solver. However, PINNs are
still far from competing with HPC solvers, such as PETSc CG.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 66909712

Markidis Can PINNs Replace Traditional Solvers?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

In summary, PINNs in the current state cannot yet replace
traditional approaches.

However, while the direct usage of PINN in scientific applications
is still far from meeting computational performance and accuracy
requirements, hybrid strategies integrating PINNs with traditional
approaches, such asmultigrid andGauss-Seidelmethods, are themost
promising option for developing a new class of solvers in scientific
applications. We showed the first performance results of such hybrid
approaches on the par with other state-of-the-art solver
implementations, such as PETSc. While we applied PINNs to
solve linear problems resulting from discretizing the Poisson
equation, a very promising research area is PINN exploiting non-
linear activation functions to solve non-linear systems.

When considering the potential for PINNs of using new emerging
heterogeneous hardware, PINNs could benefit from the usage of GPUs
that are workforce for DL workloads. It is likely that with the usage of
GPUs, the performance of hybrid solvers can outperform state-of-the-
art HPC solvers. However, PINN DSL frameworks currently rely on
SciPy CPU implementation of the key PINN optimizer, L-BFGS-B,
and its GPU implementation is not available in SciPy. The new
TensorFlow two Probability framework1 provides a BFGS optimizer
that can be used on GPUs. We note that Nvidia introduced the new
SimNet framework for the PINN training inference on Nvidia GPUs

FIGURE 9 | Hybrid multigrid solver final error (u − ~u) using three different setups: 1–512 × 512 grid with a 64 × 64 coarse grid, ftol equal to 1E-4 and delta equal to
1E-6; two and 3–1,024 × 1,024 grid with a 128 × 128 coarse grid, ftol equal to 1E-4 and δ equal to 1E-5 and 1E-4.

FIGURE 10 | Execution time, number of epochs and iterations for the hybrid multigrid DL-GS solver and comparison with the performance of a multigrid using only
GS and petsc4py CG varying the resolution, and solver stopping criteria. The hybrid multigrid DL-GS solver is faster for problems using larger coarse grids, e.g. 128 ×
128 coarse grids, than the other approaches.

1https://www.tensorflow.org/probability.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 66909713

Markidis Can PINNs Replace Traditional Solvers?

https://www.tensorflow.org/probability
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

(Hennigh et al., 2021). Another interesting research direction is
investigating the role and impact of the low and mixed-precision
calculations to train the approximator network. The usage of low-
precision formats would allow us to use tensorial computational units,
such as tensor cores inNvidia GPUs (Markidis et al., 2018) andGoogle
TPUs (Jouppi et al., 2017), boosting the DL training performance.

From the algorithmic point of view, a line of research we
would like to pursue is a better and more elegant integration of
the DL approaches into traditional solvers. One possibility is to
extend the seminal work on discrete PINNs (Raissi et al., 2019)
combining Runge-Kutta solvers and PINN for ODE solutions: a
similar approach could be sought to encode information about
discretization points into PINN. However, currently, this
approach is supervised and requires the availability of
simulation data. In addition, the development of specific
network architectures for solving specific PDEs is a promising
area of research. A limitation of this work is that we considered
only fully-connected networks as surrogate network
architectures. For solving the Poisson equation and elliptic
problems in general, the usage of convolutional networks with
large and dilated kernels is likely to provide better performance of
fully-connected DL networks to learn non-local relationships a
signature of elliptic problems (Luna and Blaschke, 2020).

The major challenge is integrating these new classes of
hybrid DL and traditional approaches, developed in Python,
into large scientific codes and libraries, often written in
Fortran and C/C++. One possibility is to bypass the Python

interface of major DL frameworks and use their C++ runtime
directly. However, this task is complex. An easier path for the
software integration of DL solvers into legacy HPC
applications is highly needed.

Despite all these challenges and difficulties ahead, this paper
shows that the integration of new PINNs DL approaches into old
traditional HPC approaches for scientific applications will play an
essential role in the development of next-generation solvers for
linear systems arising from differential equations.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

FUNDING

Funding for the work is received from the European Commission
H2020 program, Grant Agreement No. 801039 (EPiGRAM-HS).

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016). “Tensorflow: A
System for Large-Scale Machine Learning,” in 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16) (IEEE), 265–283.

Aguilar, X., and Markidis, S. (2021). “A Deep Learning-Based Particle-in-Cell
Method for Plasma Simulations,” in 2021 IEEE International Conference on
Cluster Computing (CLUSTER). Portland, OR: IEEE, 692–697.

Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., et al.
(2019). Petsc Users Manual. Argonne, IL: Argonne National Laboratory.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. (2018). Automatic
Differentiation in Machine Learning: a Survey. J. machine Learn. Res. 18, 1.

Dalcin, L. D., Paz, R. R., Kler, P. A., and Cosimo, A. (2011). Parallel Distributed
Computing Using python. Adv. Water Resour. 34, 1124–1139. doi:10.1016/
j.advwatres.2011.04.013

Eivazi, H., Tahani, M., Schlatter, P., and Vinuesa, R. (2021). Physics-informed
Neural Networks for Solving reynolds-averaged Navier-Stokes Equations. New
York City, NY: arXiv preprint arXiv:2107.10711.

Esmaeilzadeh, S., Azizzadenesheli, K., Kashinath, K., Mustafa,M., Tchelepi, H. A.,Marcus,
P., et al. (2020). “Meshfreeflownet: A Physics-Constrained Deep Continuous Space-
Time Super-resolution Framework,” in SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis (IEEE), 1–15.

Fletcher, R. (2013). Practical Methods of Optimization. John Wiley & Sons.
Gao, H., Sun, L., and Wang, J.-X. (2020). Phygeonet: Physics-Informed

Geometry-Adaptive Convolutional Neural Networks for Solving
Parametric Pdes on Irregular Domain. New York City, NY: arXiv
preprint arXiv:2004.13145.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep Learning,
Vol. 1. MIT press Cambridge.

Gorelick, M., and Ozsvald, I. (2020). High Performance Python: Practical
Performant Programming for Humans. Sebastopol, CA: O’Reilly Media.

Gulli, A., and Pal, S. (2017). Deep Learning with Keras. Birmingham, UK: Packt
Publishing Ltd.

Haghighat, E., and Juanes, R. (2020). Sciann: A Keras Wrapper for Scientific
Computations and Physics-Informed Deep Learning Using Artificial Neural
Networks. New York City, NY: arXiv preprint arXiv:2005.08803.

Hennigh, O., Narasimhan, S., Nabian, M. A., Subramaniam, A., Tangsali, K., Fang,
Z., et al. (2021). “Nvidia Simnet: An Ai-Accelerated Multi-Physics Simulation
Framework,” in International Conference on Computational Science
(Springer), 447–461. doi:10.1007/978-3-030-77977-1_36

Jagtap, A. D., Kawaguchi, K., and Em Karniadakis, G. (2020). Locally Adaptive
Activation Functions with Slope Recovery for Deep and Physics-Informed
Neural Networks. Proc. R. Soc. A. 476, 20200334. doi:10.1098/rspa.2020.0334

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., et al.
(2017). “In-datacenter Performance Analysis of a Tensor Processing Unit,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture (IEEE), 1–12.

Kelley, C. T. (1995). Iterative Methods for Linear and Nonlinear Equations. New
York City, NY: SIAM.

Kharazmi, E., Zhang, Z., and Karniadakis, G. E. (2020). Hp-Vpinns: Variational
Physics-Informed Neural Networks with Domain Decomposition. New York
City, NY: arXiv preprint arXiv:2003.05385.

Kharazmi, E., Zhang, Z., and Karniadakis, G. E. (2019). Variational Physics-
Informed Neural Networks for Solving Partial Differential Equations. New
York City, NY: arXiv preprint arXiv:1912.00873.

Kumar, S. K. (2017). OnWeight Initialization in Deep Neural Networks. New York
City, NY: arXiv preprint arXiv:1704.08863.

Lagaris, I. E., Likas, A., and Fotiadis, D. I. (1998). Artificial Neural Networks for
Solving Ordinary and Partial Differential Equations. IEEE Trans. Neural Netw.
9, 987–1000. doi:10.1109/72.712178

Lu, L., Meng, X., Mao, Z., and Karniadakis, G. E. (2019). Deepxde: A Deep Learning
Library for Solving Differential Equations. New York City, NY: arXiv preprint
arXiv:1907.04502.

Luna, K., and Blaschke, J. (2020). Accelerating Gmres with Deep Learning in Real-
Time. New York City, NY: Supercomputing Posters.

Markidis, S., Der Chien, S. W., Laure, E., Peng, I. B., and Vetter, J. S. (2018). “Nvidia
Tensor Core Programmability, Performance & Precision,” in 2018 IEEE

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 66909714

Markidis Can PINNs Replace Traditional Solvers?

https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1007/978-3-030-77977-1_36
https://doi.org/10.1098/rspa.2020.0334
https://doi.org/10.1109/72.712178
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

International Parallel and Distributed Processing Symposium Workshops
(IPDPSW) (IEEE), 522–531. doi:10.1109/ipdpsw.2018.00091

Markidis, S., Lapenta, G., and Uddin, R. (2010). Multi-scale Simulations of Plasma
with Ipic3d. Mathematics Comput. Simulation 80, 1509–1519. doi:10.1016/
j.matcom.2009.08.038

Markidis, S., Peng, I., Podobas, A., Jongsuebchoke, I., Bengtsson, G., and Herman,
P. (2020). “Automatic Particle Trajectory Classification in Plasma Simulations,”
in 2020 IEEE/ACM Workshop on Machine Learning in High Performance
Computing Environments (MLHPC) and Workshop on Artificial Intelligence
and Machine Learning for Scientific Applications (AI4S) (IEEE), 64–71.
doi:10.1109/mlhpcai4s51975.2020.00014

Mishra, S., and Molinaro, R. (2020a). Estimates on the Generalization Error of
Physics Informed Neural Networks (PINNs) for Approximating PDEs. New York
City, NY: arXiv e-prints, arXiv:2006.16144.

Mishra, S., and Molinaro, R. (2020b). Estimates on the Generalization Error of
Physics Informed Neural Networks (PINNs) for Approximating PDEs Ii: A Class
of Inverse Problems. New York City, NY: arXiv preprint arXiv:2007.01138.

Morton, K. W., and Mayers, D. F. (2005).Numerical Solution of Partial Differential
Equations: An Introduction. Cambridge University Press.

Nascimento, R. G., and Viana, F. A. (2019). Fleet Prognosis with Physics-Informed
Recurrent Neural Networks. New York City, NY: arXiv preprint arXiv:
1901.05512.

Offermans, N., Marin, O., Schanen, M., Gong, J., Fischer, P., Schlatter, P., et al.
(2016). “On the strong Scaling of the Spectral Element Solver Nek5000 on
Petascale Systems,” in Proceedings of the Exascale Applications and Software
Conference (IEEE), 1–10. doi:10.1145/2938615.2938617

Pang, G., Lu, L., and Karniadakis, G. E. (2019). Fpinns: Fractional Physics-Informed
Neural Networks. SIAM J. Sci. Comput. 41, A2603–A2626. doi:10.1137/18m1229845

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
Pytorch: An Imperative Style, High-Performance Deep Learning Library. New
York City, NY: arXiv preprint arXiv:1912.01703.

Paul F. Fischer, J. W. L., and Kerkemeier, S. G. (2008). nek5000 Web page.
Available at: http://nek5000.mcs.anl.gov

Psichogios, D. C., and Ungar, L. H. (1992). A Hybrid Neural Network-First Principles
Approach to Process Modeling. Aiche J. 38, 1499–1511. doi:10.1002/aic.690381003

Quarteroni, A., Sacco, R., and Saleri, F. (2010). Numerical Mathematics, Vol. 37.
Springer Science & Business Media.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2017a). Physics Informed Deep
Learning (Part I): Data-Driven Solutions of Nonlinear Partial Differential
Equations. New York City, NY: arXiv preprint arXiv:1711.10561.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2017b). Physics Informed Deep
Learning (Part Ii): Data-Driven Discovery of Nonlinear Partial Differential
Equations. New York City, NY: arXiv preprint arXiv:1711.10566.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed Neural
Networks: A Deep Learning Framework for Solving Forward and Inverse
Problems Involving Nonlinear Partial Differential Equations. J. Comput.
Phys. 378, 686–707. doi:10.1016/j.jcp.2018.10.045

Raissi, M., Yazdani, A., and Karniadakis, G. E. (2020). Hidden Fluid Mechanics:
Learning Velocity and Pressure fields from Flow Visualizations. Science 367,
1026–1030. doi:10.1126/science.aaw4741

Ramachandran, P., Zoph, B., and Le, Q. V. (2017). Searching for Activation
Functions. New York City, NY: arXiv preprint arXiv:1710.05941.

Rao, S. S. (2017). The Finite Element Method in Engineering. Butterworth-heinemann.
Rubinstein, R. Y., and Kroese, D. P. (2016). Simulation and the Monte Carlo

Method, Vol. 10. John Wiley & Sons.
Soboĺ, I. (1990). Quasi-monte Carlo Methods. Prog. Nucl. Energ. 24, 55–61.
Trottenberg, U., Oosterlee, C. W., and Schuller, A. (2000). Multigrid. Elsevier.
Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., and Berendsen,

H. J. C. (2005). Gromacs: Fast, Flexible, and Free. J. Comput. Chem. 26,
1701–1718. doi:10.1002/jcc.20291

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., et al. (2020). Scipy 1.0: Fundamental Algorithms for Scientific Computing in
python. Nat. Methods 17, 261–272. doi:10.1038/s41592-019-0686-2

Wang, C., Bentivegna, E., Zhou, W., Klein, L., and Elmegreen, B. (2020a). Physics-
informed Neural Network Super Resolution for Advection-Diffusion Models.
New York City, NY: arXiv preprint arXiv:2011.02519.

Wang, S., Teng, Y., and Perdikaris, P. (2020b). Understanding and Mitigating
Gradient Pathologies in Physics-Informed Neural Networks. New York City, NY:
arXiv preprint arXiv:2001.04536.

Weiss, K., Khoshgoftaar, T. M., and Wang, D. (2016). A Survey of Transfer
Learning. J. Big Data 3, 1–40. doi:10.1186/s40537-016-0043-6

Xu, Z.-Q. J., Zhang, Y., Luo, T., Xiao, Y., and Ma, Z. (2019). Frequency Principle:
Fourier Analysis Sheds Light on Deep Neural Networks. New York City, NY:
arXiv preprint arXiv:1901.06523.

Zhu, K., and Müller, E. A. (2020). Generating a Machine-Learned Equation of State
for Fluid Properties. J. Phys. Chem. B 124, 8628–8639. doi:10.1021/
acs.jpcb.0c05806

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Markidis . This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 66909715

Markidis Can PINNs Replace Traditional Solvers?

https://doi.org/10.1109/ipdpsw.2018.00091
https://doi.org/10.1016/j.matcom.2009.08.038
https://doi.org/10.1016/j.matcom.2009.08.038
https://doi.org/10.1109/mlhpcai4s51975.2020.00014
https://doi.org/10.1145/2938615.2938617
https://doi.org/10.1137/18m1229845
http://nek5000.mcs.anl.gov
https://doi.org/10.1002/aic.690381003
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1002/jcc.20291
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1021/acs.jpcb.0c05806
https://doi.org/10.1021/acs.jpcb.0c05806
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?
	1 Introduction
	2 The New: Physics-Informed Linear Solvers
	2.1 An Example: Solving the 2D Poisson Equation With PINN

	3 Characterizing PINNs as Linear Solvers
	4 The Importance of Transfer Learning
	5 The Old and the New: Integrating PINNs Into Traditional Linear Solvers
	6 Discussion and Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

