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Fitting Cox models in a big data context -on a massive scale in terms of volume, intensity,
and complexity exceeding the capacity of usual analytic tools-is often challenging. If some
data are missing, it is even more difficult. We proposed algorithms that were able to fit Cox
models in high dimensional settings using extensions of partial least squares regression to
the Coxmodels. Some of themwere able to cope with missing data. Wewere recently able
to extend our most recent algorithms to big data, thus allowing to fit Cox model for big data
with missing values. When cross-validating standard or extended Cox models, the
commonly used criterion is the cross-validated partial loglikelihood using a naive or a
van Houwelingen scheme —to make efficient use of the death times of the left out data in
relation to the death times of all the data. Quite astonishingly, we will show, using a strong
simulation study involving three different data simulation algorithms, that these two cross-
validation methods fail with the extensions, either straightforward or more involved ones, of
partial least squares regression to the Cox model. This is quite an interesting result for at
least two reasons. Firstly, several nice features of PLS based models, including
regularization, interpretability of the components, missing data support, data
visualization thanks to biplots of individuals and variables —and even parsimony or
group parsimony for Sparse partial least squares or sparse group SPLS based
models, account for a common use of these extensions by statisticians who usually
select their hyperparameters using cross-validation. Secondly, they are almost always
featured in benchmarking studies to assess the performance of a new estimation
technique used in a high dimensional or big data context and often show poor
statistical properties. We carried out a vast simulation study to evaluate more than a
dozen of potential cross-validation criteria, either AUC or prediction error based. Several of
them lead to the selection of a reasonable number of components. Using these newly
found cross-validation criteria to fit extensions of partial least squares regression to the Cox
model, we performed a benchmark reanalysis that showed enhanced performances of
these techniques. In addition, we proposed sparse group extensions of our algorithms and
defined a new robust measure based on the Schmid score and the R coefficient of

Edited by:
Jinsung Yoon,

Google (United States), United States

Reviewed by:
Philippe Bastien,

Research And Innovation, L’Oreal,
France
Ang Li,

University of California, Los Angeles,
United States

*Correspondence:
Frédéric Bertrand

frederic.bertrand@utt.fr

Specialty section:
This article was submitted to

Data Mining and Management,
a section of the journal

Frontiers in Big Data

Received: 24 March 2021
Accepted: 07 October 2021

Published: 01 November 2021

Citation:
Bertrand F and Maumy-Bertrand M
(2021) Fitting and Cross-Validating
Cox Models to Censored Big Data

With Missing Values Using Extensions
of Partial Least Squares

Regression Models.
Front. Big Data 4:684794.

doi: 10.3389/fdata.2021.684794

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 6847941

ORIGINAL RESEARCH
published: 01 November 2021

doi: 10.3389/fdata.2021.684794

http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2021.684794&domain=pdf&date_stamp=2021-11-01
https://www.frontiersin.org/articles/10.3389/fdata.2021.684794/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.684794/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.684794/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.684794/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.684794/full
http://creativecommons.org/licenses/by/4.0/
mailto:frederic.bertrand@utt.fr
https://doi.org/10.3389/fdata.2021.684794
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2021.684794


determination for least absolute deviation: the integrated R Schmid Score weighted. The
R-package used in this article is available on the CRAN, http://cran.r-project.org/web/
packages/plsRcox/index.html. The R package bigPLS will soon be available on the CRAN
and, until then, is available on Github https://github.com/fbertran/bigPLS.

Keywords: big data and analytics, censored data, partial least squares, sparse partial least squares regression,
sparse partial least squares discriminant analysis, kernel techniques, cross validation, Cox models

1 INTRODUCTION

Standard PLS regression is an efficient tool to find the fundamental
relations between two matrices (X and Y) by applying a latent
variable approach to modelling the covariance structures in
these two spaces. A PLS regression model will try to find the
multidimensional direction iteratively in the X space that explains
the maximum multidimensional variance direction in the Y
space. A critical step in PLSR is to select the correct unknown
number of these latent variables (called components) to use. If the
predictors’ matrix has more variables than observations or feature
multicollinearity among the X matrix columns, then standard
—non regularized—regression will fail. On the contrary, PLS
regression can cope with those settings.

PLS has become an established tool in various experimental
settings such as chemometric, networks, or systems biology. This
modelling is primaliry used because it is often possible to explain
the underlying system’s extracted components and hence translate
“hard” modelling information from the soft model: chemical
components for NIR spectra, gene subnetwork for GRN or
biological function for systems biology. As a consequence,
choosing the right number of components is not only a major
aim to avoid under or overfitting and ensure a relevant modeling or
good predicting ability but also per se.

Relating personalized information from subjects such as omics
data and subject survival or time to cancer recurrence is the focus
of a vast literature from the last decade. The discovery of markers
from big data or high-dimensional data, such as transcriptomic or
SNP profiles, is a significant challenge in searching for more
precise diagnoses. The most commonly used model for the
analysis of survival data is the proportional hazard regression
model suggested by Cox, 1972. Such a model helps the
practitioner study in the presence of censoring the relationship
between the time to event and a set of covariates. It has similar
requirements as multivariate regression: more observations than
variables, complete data, and not strongly correlated variables. In
practice, when dealing with high-dimensional data, these
constraints are crippling.

Missing Completely At Random (MCAR), Missing At
Random (MAR), and Missing Not At Random (MNAR) are
the three categories of missing data that were defined by Little and
Rubin (2002). The data will be MCAR if the probability that the
data is known depends neither on the observed value nor on the
missing values. In the case of MAR, missingness depends only on
the values of the observed data. Lastly, if missingness depends on
the observed and missing data values, data are said to be MNAR.

Missing data imputation is a burning issue in statistics for any
data size: from small to big data. For several years, many methods

have been proposed to deal with missing values. There are
various imputation methods from single value imputation, e.g.,
the mean over the complete cases in the study sample—known as
mean imputation (Troyanskaya et al., 2001) to more complex
methods, that include imputation based on Non-linear Iterative
PArtial Least Squares (NIPALS) (Tenenhaus, 1998; Nengsih et al.,
2019).

In this article, we deal with several PLS regression-based
extensions of the Cox model that were first introduced in
(Bastien, 2008) and (Bastien et al., 2015) and extend them
twice: to group and sparse group models and to big data. These
extensions share features praised by practitioners, including
regularization, interpretability of the components, missing data
support, biplots of individuals and variables—and even parsimony
for SPLS based models—, and allow to deal with highly correlated
predictors or even rectangular datasets, which is especially relevant
for high dimensional datasets.

2 MODELS

2.1 Modeling Censored Data
2.1.1 The Cox Proportional Hazards Model
Let assume the hazard function for the occurrence of an event
—for instance, death or cancer relapse-at time t in the presence of
censoring:

λ(t) � λ0(t) exp(β′X), (1)

where λ0(t) is an unspecified baseline hazard function, β is the
vector of the coefficients and X the model matrix. Based on the
available data, Cox’s partial likelihood can be written as:

PL(β) � ∏
k∈D

exp(β′xk)∑j∈Rk
exp(β′xj), (2)

where D is the set of indices of the events and Rk denotes
the set of indices of the individuals at risk at time tk. This
log partial likelihood function is not uniquely maximized
if p > n. There may still be issues if p # n since
covariates could be highly correlated. As a consequence,
regularization may still be required in order to improve the
predictive performance and to reduce the variances of the
estimates.

2.1.2 Deviance Residuals
As for many other statistical models, the Cox models’ residuals
are of particular relevance yet more complicated than those
coming from linear models. There are several kinds of such
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residuals: for instance, martingale residuals or deviance residuals.
In this article, we will extend an idea from our previous work
Bastien et al. (2015) where we used deviance residuals as a mean
to apply PLS or SPLS to censored data.

Let define the event status δi for the ith subject with
observation time ti by δi � 0 if ti is a censored time, and δi �
1 otherwise is. The martingale residuals for the ith subject for the
Cox model with no time-dependent explanatory variables and at
most one event per patient is:

M̂i � δi − Êi � δi − Δ̂0(ti) exp(β̂′xi) (3)

with Δ̂0(ti) the estimated cumulative hazard function at time ti.
It is a common property that martingale residuals are highly

skewed. As a consequence, a normalized transform of those
residuals was defined and called deviance residuals. For the
Cox model, the deviance residuals (Collett, 1994) di is:

di � sign(M̂i) · 2 −M̂i − δi log
δi − M̂i

δi
( ){ }[ ]1/2

· (4)

More details on how to decipher that transform can be found in
Bastien et al. (2015). In a word, the deviance residual, as a
measure of excess of death, can be interpreted as a hazard
measure.

2.2 PLS Regression Models and Extensions
2.2.1 PLSR
PLS regression can be viewed as a regularization method based on
dimension reduction. It was developed as a chemometric tool to
find reliable predictive models with spectral data (Wold et al.,
1983; Tenenhaus, 1998). Nowadays, using huge matrices for
classification or prediction still raise similar issues. As a result,
PLS regression principles were put in use in this new context. It
aims to find linear combinations of the original variables—latent
variables— and use them as new descriptors in standard
regression analysis. This method uses the response variable in
constructing the latent components, unlike principal components
analysis (PCA). It can be viewed as a regularized approach giving
biased regression coefficients but with lower variance. The
NIPALS algorithm allows fitting PLS regression models on
datasets with missing data.

2.2.2 Sparse (Group) PLSR
A large number of predictors affect PLS regression’s
performance (Chun and Keles, 2010). Besides, in the linear
regression setting, coefficient estimates’ inconsistency often
occurs due to a high number of irrelevant variables. As a
consequence, filtering is a usually required preprocessing
step before PLS fit. Before Chun and Keles proposed “sparse
PLS regression”, commonly used filtering approaches were
all univariate. sPLS promotes variables selection as the PLS
dimension reduction is being applied and can include
variables that variable filtering would select in constructing the
first direction vector. Imposing L1 constraint on PLS direction
vector w defines a direct extension of PLS regression to sPLS
regression:

max
w

w′Mw subject tow′w � ‖w‖2 � 1, ‖w‖1#λ,

whereM � X′YY′X.

However, for Y � X, it is known that the problem is
equivalent to sPCA (Jolliffe et al., 2003), which is not
convex and that the solution is often not sparse enough.
Chun and Keles used the LARS algorithm to solve these
issues by extending the regression formulation of sPCA of
Zou et al., 2006:

min
w,c

−κw′Mw + (1 − κ)(c − w)′M(c − w) + λ1‖c‖1 + λ2‖c‖2
subject tow′w � 1,whereM � X′YY′X.

The use of a surrogate w of the direction vector c and both L1
and L2 penalties favour exact zero property and take care of
the potential singularity of M. For univariate PLS, y
regressed on X, Chun and Keles derived the first direction
vector by soft thresholding of the original PLS direction
vector:

|Z| − λ

2
( )

+
sign(Z), whereZ � X′y/‖X′y‖2. (5)

sPLS achieves fast convergence by using conjugate gradient.
The computational cost for computing coefficients at each step
of the sPLS algorithm is less than or equal to the computational
cost of computing step size in LARS since conjugate gradient
methods avoid matrix inversion.

PLS regression, sparse PLS regression and sparse group PLS
regression were recently extended to big data in a scalable way
(de Micheaux et al., 2019). We adapted the algorithms used by
these authors to cope with missing values.

2.3 Extensions of PLSRModels to Censored
Data
2.3.1 PLS-Cox
There are several algorithms to fit PLS regression models. A
succession of simple and multiple linear regressions may be
employed (Garthwaite, 1994). A NIPALS-like (Wold, 1966)
algorithm was derived by Tenenhaus (1999) to fit PLS
regression models coping with missing data. Bastien and
Tenenhaus (2001) used a similar idea to extend PLS regression
to any generalized linear regression model (PLS-GLR), the Cox
model (PLS-Cox) being a particular case. Using this equivalence
between Cox models and some GLR models, we were able to
adapt these algorithms and further developments from (Bastien
et al., 2005) to fit big data (Gentleman (1982), Miller (1992),
Gentleman, 1974, Gentleman (1982), Miller (1992); Miller, 1994).
More details on these extensions of PLS regression to Cox models
and their comparison to other extensions can be found in (Bastien
et al., 2015).

2.3.2 (DK) (S) (G)PLS(DR)
2.3.2.1 The PLSDR Algorithm
PLSDR is an alternative in high-dimensional settings using
deviance residuals based PLS regression, advantageous both by
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its simplicity and efficiency (Bastien, 2008): first compute null
deviance residuals using a simple Cox model without covariates,
then fit a standard PLS regression using them as an outcome. The
m retained PLSDR components are used to fit the final
Cox model.

This algorithm was implemented in the plsRcox R package
(Bertrand et al., 2014; Bastien et al., 2015; Bertrand and
Maumy-Bertrand, 2021) and is of particular interest with
big data since they turn fitting Cox models to the whole
dataset into computing the null deviance residuals and then
fitting to those residuals a regular PLS regression model for
which fast, scalable algorithms are known de Micheaux et al.
(2019).

Moreover, following the NIPALS algorithm’s principles,
weights, loadings, and PLS components are computed as
regression slopes. These slopes may be computed even when
there are missing data using pairwise OLS.

2.3.2.2 The (DK)sPLSDR Algorithm
In (Bastien et al., 2015), we proposed an original algorithm
named sPLSDR by using sparse PLS regression based on
deviance residuals. This algorithm can be used on a dataset
featuring missing values and was implemented in the plsRcox
R package (Bertrand et al., 2014; Bastien et al., 2015; Bertrand and
Maumy-Bertrand, 2021).

Kernel techniques allow working on a condensed matrix whose
size is considerably smaller than the original one. Similarly, linear
kernel PLS regression solves computational problems posed by
large to huge matrices (Lindgren et al., 1993; Rännar et al., 1994)
and non-linear kernel, in addition, find non-linear pattern in the
data In (Bastien et al., 2015), we proposed an another original
algorithm named DKsPLSDR by using the non-linear kernel
counterpart of sPLSDR.

2.3.2.3 Group and Sparse Group Extensions of (DK) (s)
PLSDR Algorithm
Any flavour of sparse PLS regression may be applied to
deviance residuals such as the two PLS extensions, called
group PLS (gPLS) and sparse gPLS (sgPLS), that were
proposed in (Liquet et al., 2015). As a consequence, we
propose in this article two new algorithms gPLSDR and
sgPLSDR, useful, for instance, to find biomarkers in
genomics or proteomics datasets.

It is straightforward to extend this algorithm to group or
sparse group PLS (Liquet et al., 2015), giving rise to DKgPLSDR
or DKsgPLSDR. However, non-linear kernel (sparse) (group) PLS
regression loses the explanation with the original descriptors
unlike linear kernel PLS regression, which could limit the
interpretation of the results.

In addition, we propose another extension of all the
deviance based algorithms (PLSDR, sPLSDR, gPLSDR,
sgPLRDR, and their kernel counterparts DKPLSDR,
DKsPLSDR, DKgPLSDR, DKsgPLDR) to big data. First fit
Cox models to the whole dataset to derive the null deviance
residuals. Then fit to those residuals a regular, sparse,
group or even sparse group PLS regression model for

which fast, scalable algorithms are known de Micheaux
et al. (2019).

3 SIMULATION STUDIES

3.1 Scheme of the Studies
Our two in silico studies aim twofold: evaluating the accuracy
of the cross-validation methods, see Section 4, and revisit
the performance of the component-based methods, see
Section 5.

We performed a simulation study (Algorithm 2) to
benchmark the methods. For all three different simulation
types [cluster by Bair et al. (2006), factorial by Kaiser and
Dickman (1962) and Fan et al. (2002) or eigengene by
Langfelder et al. (2013)], we simulated 100 datasets with
exponential survival distribution and 40% censored rate (100
observations × 1,000 genes). We applied either no link or a linear
one between the response and the predictors.

We wanted to abide by the 2:1 scheme of Bøvelstad et al.
(2007); van Wieringen et al. (2009); Lambert-Lacroix and Letué
(2011) and the 9:1 scheme of Li (2006). Hence, we divided each of
these 600 datasets into a training set of 7/10 (70) of the
observations used for estimation and a test set of 3/10 (30) of
the observations used to evaluate or test the prediction capability
of the estimated model.

We balanced, both according to the response value and censor
rate, the division between training and test sets using the caret R
package, Kuhn (2014).

3.2 Data Generation
3.2.1 Eigengene
Given module seeds and a desired size for the genes modules
around the seeds of nI genes, module genes expression profiles are
generated such that the kth rank correlated gene from module I
with its module seed seedI is:

cor(xk,I, seedI) � 1 − k/nI(1 − rmin) � rk,I (6)

that is, the first gene has correlation ri,I ≈ 1 with the seed while the
last (nI-th) gene has correlation rni,I ≈ rmin.

The required correlation (6) is achieved by calculating the kth
gene profile as the sum of the seed vector seedI and a noise
term akεk

xk,I � seedI + akεk where ak �



















var(seedI )
var(εk)

1
r2k,I

− 1( )√
(7)

Algorithm 1 | The (DK)(s)(g)PLSDR algorithm
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This technique produces modules consisting of genes distributed
symmetrically around the module seed; in this sense, the simulated
modules are spherical clusters whose centres coincide (on average)
with the module seed (Langfelder et al. 2013).

In the simulations the parameters have been let as follow I � 4,
rmin � 0.5, nI � 25 with seedI and εk ∼ N (0, 1).

Survival and censoring times, with 0.4 censoring probability,
are generated from exponential survival distributions. When
linked to survival (linear or quadratic case), only expressions
from genes from the first two modules (N � 50) are related to
survival time.

Each simulated data set consists of 1,000 genes and 100
samples. Only the first hundred genes are structured. The last
900 are random noise generated from N (0, 1).

3.2.2 Cluster
In Bair et al. (2006) the gene expression data is distributed as:

Xij �
3 + εij if i≤ 50, j≤ 50
4 + εij if i> 50, j≤ 50
3.5 + εij if j> 50.

⎧⎪⎨⎪⎩ (8)

Where the εij are drawn from a N (0, 1).
Each simulated data set consists of 1,000 genes and 100 samples.

Survival and censoring times, with 0.4 censoring probability, are
generated from exponential survival distributions. When linked to
survival (linear or quadratic case), only expressions from genes
from the first 50 genes are related to survival.

3.2.3 Factorial
Kaiser and Dickman (1962), Fan et al. (2002) have supposed that
gene expressions are related to 4 latent variables associated with a
specific biological function. Let for each group a specified
population inter-correlation pattern matrix R. By applying
principal component factorization (PCA) to the matrix R and
following Kaiser and Dickman, we can generate 4 multivariate
normally distributed sample data with a specific correlation

pattern. Z(k×N) � F(k×k)X(k×N), where k is the number of
descriptors (genes), N is the number of observations, X is a
matrix of uncorrelated random standard variables N (0, 1), F is
a matrix containing principal component factor pattern
coefficients obtained by applying Principal Components
Analysis (PCA) to the given population correlation matrix R
and Z is the resultant sample data matrix as if sampled from a
population with the given population correlation matrix R.

We have chosen a compound symmetry structure for the
correlation matrix R with the identical correlation (0.7) between
two descriptors of the same group, descriptors between different
groups being independent.

Moreover, the correlation coefficient choice allows specifying the
percentage of variance explained by the first factorial axes. Given
four groups with an inter-genes correlation coefficient of 0.7
corresponds to expend 70% of the inertia in 4 principal directions.

Survival and censoring times, with 0.4 censoring probability, are
generated from exponential survival distributions. When linked to
survival (linear or quadratic case), only expressions from genes
from the first two groups (N � 50) are related to survival time.

Each simulated data set consists of 1,000 genes and 100
samples. Only the first hundred genes are structured. The last
900 are random noise generated from N (0, 1).

3.3 Hyperparameters and Cross-Validation
First, create K folds of size Floor (n/K) by sampling without
replacement and then assign randomly to a different fold each of
the remaining n mod K data points. Those folds can be used to
perform standard K-fold cross-validation of a dataset of size n.

To perform stratified or balanced cross-validation (Breiman et al.,
1984, p. 246), we need first to order the data by the response value or
class and then bin those values into c classes, each containing K
points with many similar response values. Any extremal remaining
points are assigned to an additional bin, and a fold is obtained by
sampling once without replacement from each of the bins. This is the
only difference between balanced cross-validation and standard
cross-validation. In the simulation study, We used balanced
cross-validation with respect to the response value and censor
rate. The folds were design using the caret R package, Kuhn (2014).

In traditional cross-validation, i.e.,with a dataset without censored
events, each foldwould yield a test set and a value of a prediction error
measure (for instance, the log partial likelihood, the integrated area
under the curve, the integrated area under the prediction error curve).
When dealing with censored events and using the CV partial
likelihood (CVLL, Verweij and Van Houwelingen (1993))
criterion, it is possible to make more efficient use of risk sets: van
Houwelingen et al. (2006) recommended to derive the CV log partial
likelihood for the jth fold by subtraction; by subtracting the log partial
likelihood evaluated on the full dataset from that evaluated on the full
dataset minus the jth fold, called the (K − 1)/K dataset. Such a
derivation of the CV log partial likelihood yields the van
Houwelingen CV partial likelihood (vHCVLL).

Hyperparameters —the number of components for PLS models
and their extensions and both the number of components and the
thresholding parameter η for sparse PLS models—were tuned using
7-fold cross-validation on the training set. The number of folds was

Algorithm 2 | Summary of the procedure for evaluating the accuracy of the cross
validation methods and revisit the performance of the component based
methods.
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chosen following the recommendation ofWold et al. (2001), Breiman
and Spector (1992) and Kohavi (1995). As in, Bøvelstad et al. (2007),
van Wieringen et al. (2009) and Lambert-Lacroix and Letué (2011),
mean values were then used to summarize these cross-validation
criteria over the seven runs and the hyperparameters were chosen
according to the best values of these measures. A special case is the
autoPLS-Cox algorithm that stops adding components to the model
as soon as each predictor is no longer significant in the model.

4 HIGHLIGHTING RELEVANT CROSS
VALIDATION CRITERIA

4.1 The Failure of the Two Usual Criteria
The van Houwelingen CV partial likelihood (vHCVLL, see
Figure 1B) criterion behave poorly for all the PLS or sPLS based
methods by selecting zero components where, according to our
simulation types, the PLS-Cox, autoPLS-Cox, Cox-PLS, PLSDR,
sPLSDR, DKPLSDR and DKsPLSDR methods were expected to
select, for the factor or eigengene schemes, about two components
and slightly more for the cluster scheme. As with the classic CV
partial likelihood (CVLL), it almost always selects at most one
component and systematically underestimates the number of
components. Figure 1A displays the simulations results for
selecting the number of components using CVLL. We confirmed
this insufficient property by performing cross-validation on a
simpler simulation scheme designed by Simon et al. (2011).

4.2 Proposal of New Criteria
As a consequence, we had to search for other CV criteria
(CVC) for the models featuring components. Li (2006) used
the integrated area under the curves of time-dependent ROC
curves (iAUCsurvROC, Heagerty et al. (2000)) to carry out
cross-validations, implemented in the survcomp R package,
(Schröder et al., 2011). Apart from that criterion (Figure 2B)
we added five other integrated AUC measures: integrated
Chambless and Diao’s (2006) estimator (iAUCCD,
Figure 1C), integrated Hung and Chiang’s (2010) estimator
(iAUCHC, Figure 1D), integrated Song and Zhou’s (2008)
estimator (iAUCSH, Figure 1E), integrated Uno et al.’s
(2007) estimator (iAUCUno, Figure 1F) and integrated
Heagerty and Zheng’s (2005) estimator (iAUCHZ,
Figure 2A) of cumulative/dynamic AUC for right-censored
time-to-event data, implemented in the survAUC R package,
Potapov et al. (2012), and the risksetROC R package, Heagerty
and packaging by Paramita Saha-Chaudhuri (2012). We also
studied two versions of two prediction error criteria, the
integrated (un)weighted Brier Score (Graf et al. (1999), Gerds
and Schumacher (2006), iBS(un)w, integrated (un)weighted
squared deviation between predicted and observed (iAUCSH),
implemented in the survAUC package survival, Figures 2C,E)
and the integrated (un)weighted Schmid Score (Schmid et al.
(2011), iSS(un)w, integrated (un)weighted absolute deviation
between predicted and observed survival, Figures 2D,F), also
implemented in the survAUC R package, Potapov et al. (2012).
Additional plots of the results are available as Supplementary
Material S1-S12 in the supplemental data.

4.3 Analysis of the Results
The simulation results highlighted the integrated Song and
Zhou’s estimator of cumulative/dynamic AUC for right-
censored time-to-event data (iAUCSH), implemented in the
survAUC R package, Potapov et al. (2012), as the best CV
criterion for the PLS-Cox and the autoPLS-Cox methods even
though it behaves poorly in all the other cases.

As for the other models featuring components, the
iAUCsurvROC, iAUCUno criterion exhibited the best
performances. The two unweighted criteria iBSunw and
iSSunw uniformly fail for all the models. The iBSw criterion is
too conservative and wrongly selects null models in more than
half of the cases in the linear link scheme and in almost every
times in the quadratic scheme. The iSSw provides very poor
results for Cox-PLS, sPLSDR and DKsPLSDR methods
and average results for PLSDR and DKPLSDR methods.

The two models SPLSDR and DKSPLSDR use an additional
parameter: the thresholding parameter η. The same figures were
produced for all the criteria (SupplementaryMaterial S13-S36 in
the supplemental data): both iAUCUno criterion and iAUCsurvROC
criterion provided a reasonable spread for the η parameter.

4.4 Recommendation
In a word, this simulation campaign enables us to state the
following recommendations to firmly improve the selection of
the right number of components: use iAUCSH to cross-validate
PLS-Cox or autoPLS-Cox models and either iAUCUno or
iAUCsurvROC to cross-validate Cox-PLS, PLSDR, sPLSDR,
DKPLSDR and DKsPLSDR. We implemented these
recommendations (iAUCSH for PLS-Cox or autoPLS-Cox
models and iAUCsurvROC for Cox-PLS, PLSDR, sPLSDR,
DKPLSDR and DKsPLSDR) as the default cross validation
techniques in the plsRcox R package. We will apply them in
the remaining of the article to assess goodness of fit of the model.

5 REASSESSING PERFORMANCEOF (S)PLS
BASED MODELS

We will now provide evidence that the changes of the cross-
validation criteria recommended in Section 4.4 actually lead to
performance improvements for the fitted models.

5.1 Introduction to Performance Criteria
Analysis
We followed the methodological recommendations of van
Wieringen et al. (2009) to design a simulation plan that ensures
a good evaluation of the predictive performance of the models.

“The true evaluation of a predictor’s performance is to
be done on independent data. In the absence of
independent data (the situation considered here) the
predictive accuracy can be estimated as follows Dupuy
and Simon (2007). The samples are split into mutually
exclusive training and test sets. The gene expression and
survival data of the samples in the training set are used
to build the predictor. No data from the test set are used
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in predictor construction (including variable selection)
by any of the methods compared. This predictor is
considered to be representative of the predictor built
on all samples (of which the training set is a subset).
The test set is used to evaluate the performance of the
predictor built from the training set: for each sample in
the test set, survival is predicted from gene expression
data. The predicted survival is then compared to the
observed survival and summarized into an evaluation
measure. To avoid dependency on the choice of
training and test set, this procedure is repeated for
multiple splits. The average of the evaluation measures
resulting from each split is our estimate of the
performance of the predictor built using the data
from all samples.”

As to the performance criteria themselves, Schmid et al. (2011)
made several points that we will take into account to carry out our
performance comparison analysis.

“Evaluating the prognostic performance of prediction
rules for continuous survival outcomes is an important
topic of recent methodological discussion in survival
analysis. The derivation of measures of prediction
accuracy for survival data is not straightforward in the
presence of censored observations [Kent and O’Quigley
(1988); Schemper and Stare (1996); Rosthøj and Keiding
(2004)]. This is mainly due to the fact that traditional
performance measures for continuous outcomes [such as
the mean squared error or the R2 fraction of explained
variation) lead to biased predictions if applied to censored
data (Schemper and Stare (1996)].

FIGURE 1 | Number of components. panel (A): LL criterion. panel (B): vHLL criterion. panel (C): iAUCCD criterion. panel (D): iAUCHC criterion. panel (E): iAUCSH
criterion. panel (F): iAUCUno criterion.
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To overcome this problem, a variety of new approaches has
been suggested in the literature. These developments can be
classified into three groups: “likelihood-based approaches”
[Nagelkerke (1991); Xu and O’Quigley (1999); O’Quigley et al.
(2005)], “ROC-based approaches” [Heagerty et al. (2000);
Heagerty and Zheng (2005); Cai et al. (2006); Uno et al.
(2007); Pepe et al. (2008)], and “distance-based approaches”
(Korn and Simon (1990); Graf et al. (1999); Schemper and
Henderson (2000); Gerds and Schumacher (2006), 2007;
Schoop et al. (2008)).

When using likelihood-based approaches, the log likelihood
of a prediction model is related to the corresponding log
likelihood obtained from a “null model” with no covariate
information. ROC-based approaches use the idea that survival
outcomes can be considered as time-dependent binary

variables with levels —event— and —no event— so that
time-dependent misclassification rates and ROC curves can
be computed for each threshold of a predictor variable of
interest. If distance-based approaches are applied, a measure of
prediction error is given by the distance between predicted and
observed survival functions of the observations in a sample.
None of these approaches has been adopted as a standard for
evaluating survival predictions so far.”

To assess the goodness of fit and prediction accuracy of all the
methods, we found 23 performance measures (PM) that are
commonly used LRT, VarM, R2Nag, R2XO, R2OXS,
iR2BSunw, iR2BSw, iRSSunw, iRSSw, iAUCCD, iAUCHC,
iAUCSH, iAUCUno, IAUCHZ, iAUCSurvROC, C, UnoC,
GHCI, SchemperV, iBSunw, iBSw, iSSunw, iSSw. We chose,
on statistical grounds, 14 among them LRT, R2XO, iR2BSw,

FIGURE 2 |Number of components. panel (A): iAUCHZ criterion. panel (B): iAUCSurvROC criterion. panel (C): iBSunw criterion. panel (D): iSSunw criterion. panel
(E): iBSw criterion. panel (F): iSSw criterion.
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iRSSw, iAUCCD, iAUCHC, iAUCSH, iAUCUno, IAUCHZ,
iAUCSurvROC, GHCI, SchemperV, iBSw, iSSw, and reported
the results of six indices of several kind: two R2-like measures a
likelihood-based approach (LBA), R2XO, and a distance-based
approach (DBA), iRSSw, a C index (GHCI), two iAUC ROC-
based approaches (ROCBA), iAUCCD and iAUCSurvROC, and
an integrated robust prediction error (distance-based approach,
iSSw), see Table 1. The results for the remaining eight indices are
similar to those shown. We now explain our process of selection
of the performance criteria.

5.2 Selection of Performance Criteria
The likelihood ratio test (LRT, Lehmann and Romano (2005))
evaluates the null hypothesis H0 : β � 0. Such a hypothesis
means the predictors do not affect survival. The likelihood
ratio test statistic is LLR(β̂) � −2(l(0) − l(β̂)), with l (.)
denoting the value of the log-likelihood function. The
distribution of this test statistic can be derived under the
null hypothesis: it is a χ2 distribution used to calculate the
p-value, which summarizes the evidence against H0: the lower
the p-value, the more probable that H0 is not valid. Moreover,
many others Bair and Tibshirani (2004); Bøvelstad et al.
(2007); Park et al. (2002); Segal (2006) used the p-value of
the likelihood ratio test as an evaluation measure for the
predictive performance of gene expression-based predictors
of survival.

In the Cox model, the variance of the martingale residuals may
be used as an alternative measure of predictive performance
(VarM, cf. section 2.1.2). In the considered setting, our
findings confirmed those of van Wieringen et al. (2009): this
measure cannot discriminate very well between good and poor
predictors. It is therefore omitted here.

A predictor with good predictive performance should
explain a high proportion of variability in the test set’s
survival data. Conversely, poor predictor should explain
little variability in the test set. Consequently, it would be
meaningful to use the coefficient of determination
(henceforth called R2) to quantify the proportion of
variability in survival data of the test set that the predictor
can explain. However, the traditional definition of R2 cannot
be applied to censored data. Modified criteria have been
proposed in the past: three types of likelihood-based R2

coefficients for right-censored time-to-event data are were
put forward (R2NAG, R2XO and R2OXS).

• The coefficient (R2Nag) proposed by Nagelkerke (1991):

R2
Nag � 1 − exp −2

n
(l(β̂) − l(0))( ) (9)

where l (.) denotes the log-likelihood function.
• The coefficient (R2XO) proposed by Xu and O’Quigley (1999)
that is restricted to proportional hazards regression models,
because here the means of squared residuals MSE in the R2

adj
measure for linear regression are replaced by the (weighted) sums
of squared Schoenfeld residuals, denoted by J(β):

R2
XO � 1 − J(β̂)

J(0)· (10)

• The coefficient (R2OXS) proposed by O’Quigley et al. (2005)
who replaced the number of observations n by the number of
events e:

R2
OXS(β̂) � 1 − exp −2

e
(l(β̂) − l(0))( ) � 1 − L(β̂)

L(0)( )−2/e
· (11)

All three were implemented in the survAUC R package,
Potapov et al. (2012). Others have also used these modified R2

statistics to assess predictive performance of gene expression based
predictors on survival Bair and Tibshirani (2004); Segal (2006).

Hielscher et al. (2010) carried out a comparison of the
properties of these three coefficients. In a word, R2Nag is
strongly influenced by censoring (negative correlation with
censoring); R2OXS is less influenced by censoring and exhibits
a positive correlation with censoring. From those three R2XO is
the less influenced by censoring. As a consequence, we selected
the R2XO as the R2-like measure to compare the models.

The weighted Brier score BSw(t) (Brier (1950); Hothorn et al.
(2004); Radespiel-Tröger et al. (2003)) is a distance-based
measure of prediction error that is based on the squared
deviation between survival functions. It is defined as a
function of time t > 0 by

BSw(t) � 1
n
∑n
i�1

Ŝ(t | Xi)2I(ti#t∧ δi � 1)
Ĝ(ti)

+ (1 − Ŝ(t | Xi))2I(ti > t)
Ĝ(ti)

[ ] (12)

where Ĝ(.) denotes the Kaplan-Meier estimate of the censoring
distribution, that is the Kaplan–Meier estimate based on the
observations (ti, 1 − δi) and I stands for the indicator function.
The expected Brier score of a prediction model which ignores all
predictor variables corresponds to the KM estimate. To derive the
unweighted Brier score, BSunw(t), clear the Ĝ(ti) value of the
denominators.

The Schmid score SS(t) [Schmid et al. (2011)] is a distance-
based measure of prediction error that is based on the absolute
deviation between survival functions, instead of the squared one
for the Brier-Score. It is a robust improvement over the following
empirical measure of absolute deviation between survival
functions that was suggested by Schemper and Henderson
(2000) as a function of time t > 0 by:

SH(t) � 1
n
∑n
i�1

Ŝ(t | Xi)I(ti#t∧δi � 1)
Ĝ(ti)

+ (1 − Ŝ(t | Xi))I(ti > t)
Ĝ(ti)

[ ]
(13)

where Ĝ(.) denotes the Kaplan-Meier estimate of the censoring
distribution which is based on the observations (ti, 1 − δi) and I
stands for the indicator function. With the same notations, the
Schmid score is defined as a function of time t > 0 by:

SS(t) � 1
n
∑n
i�1

|I(ti > t) − Ŝ(t | Xi)| I(ti#t∧δi � 1)
Ĝ(t−i )

+ I(ti > t)
Ĝ(ti)

[ ]
(14)

where t−i is a survival time that is marginally smaller than ti. To
derive the unweighted Schmid score, SSunw(t), clear the Ĝ(t−i )
and Ĝ(ti) values of the denominators.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 6847949

Bertrand and Maumy-Bertrand Censored Big Data With Missing Values

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


FIGURE 3 | Panel by performancemeasure (row) andmodels (columns) displaying the deltas between the performance achieved for any CV crit − the performance
achieved for vHCVLL. Top: Δ of UnoC. panel (A): PLS−Cox. panel (B): sPLSDR. Row 2: Δ of iBSW. panel (C): PLSDR. panel (D): DKsPLSDR. Row 3: Δ of iRSSW. panel
(E): autoPLS−Cox. panel (F): PLSDR. Bottom: Δ of iAUCSurvROC. panel (G): PLSDR. panel (H): sPLSDR.
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Brier-Score lie between 0 and 1. At time t, good predictions
result in small Brier-Scores. The squared predicted probability
that individual i survives until time t if he actually died
(uncensored) before t, or zero otherwise, is the numerator of
the first summand. This probability decrease as the survival
function is better estimated. The squared probability that
individual i dies before time t if he was observed at least until
t, or zero otherwise, is the numerator of the second summand. A
zero weight is affected to any censored observations with survival
times smaller than t. The Brier-score, as defined in Eq. 12,
depends on t. Hence, it makes sense to use the integrated
Brier-Score (IBS) given by

IBS � 1
max(ti)∫max(ti)

0
BS(t)dt. (15)

as a measure to evaluate the goodness of the predicted survival
functions of all observations at every time t between 0 and
max(ti), i � 1, . . . , N.

More general than the R2 and the p-value criteria associated
with the log-likelihood test, as well as also appropriate for
prediction methods that do not involve Cox regression
models, the IBS has become a standard evaluation measure for
survival prediction methods (Hothorn et al. (2006); Schumacher
et al. (2007)).

Denoting by BS0, the Kaplan-Meier estimator based on the ti,
δi, which corresponds to a prediction without covariates, we first
define R2

BS for all t > 0:

R2
BS(t) � 1 − BS(t)

BS0(t)· (16)

FIGURE 4 | Panel by performance measure for models when fitted with vHCVLL cross validation panel (A): R2XO measure. panel (B): GHCI measure. panel (C):
iAUCCD measure. panel (D): iAUCSurvROC measure, panel (E): iRSSw measure. panel (F): iSSw measure.
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Then the integrated iR2BSw, Graf et al. (1999), is defined by:

iR2BSw � 1
max(ti)∫max(ti)

0
R2
BS(t)dt. (17)

This criterion has already been used in Bøvelstad et al. (2007)
and Lambert-Lacroix and Letué (2011). The integrated iR2BSw
is slightly influenced by censoring, Hielscher et al. (2010), and,
as a measure based on the quadratic norm, not robust.

As a consequence, we propose and use a similar measure based
on the Schmid score, the integrated R Schmid Score weighted
(iRSSw), by turning the traditional R2, derived from the quadratic
norm, into the R coefficient of determination for least absolute
deviation, introduced by McKean and Sievers (1987). Denoting
by SS0 the Schmid score which corresponds to a prediction
without covariates, we first define RSS for all t > 0:

RSS(t) � 1 − SS(t)
SS0(t)· (18)

Then the integrated iRSSw, is defined by:

iRSSw � 1
max(ti)∫max(ti)

0
RSS(t)dt. (19)

The most widely used measure of predictive accuracy for
censored data regression models is the C-index. It provides a
global assessment of a fitted survival model for the continuous
event time rather than focuses on the prediction of t-year survival
for a fixed time. The C-index is a rank-correlation measure that
aims to quantify the correlation between the ranked predicted
and observed survival times by estimating the probability of
concordance between predicted and observed responses.
Consequently, a value of 0.5 indicates no predictive

FIGURE 5 | Δ(iAUCUno CV−vHCVLL), panel by measure. panel (A): R2XO measure. panel (B): GHCI measure. panel (C): iAUCCD measure. panel (D):
iAUCSurvROC measure. panel (E): iRSSw measure. panel (F): iSSw measure.
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discrimination, whereas a value of 1.0 indicates a perfect
separation of patients with different outcomes.

A popular nonparametric C-statistic for estimating was
proposed by Harrell et al. (1996). It is computed by
forming all pairs {(yi, xi, δi) (yj, xj, δj)} of the observed data,
where the smaller follow-up time is a failure time and
defined as:

c � ∑1#i<j#nI(yi <yj)I(β̂′Xi > β̂′Xj)I(δi � 1) + I(yj <yi)I(β̂′Xj > β̂′Xi)I(δj � 1)∑1#i<j#nI(yi <yj)I(δi � 1) + I(yj <yi)I(δj � 1) (20)

We used the improved version (GHCI) by Gönen and Heller
(2005) for the Cox proportional hazards models as a
performance comparison criterion. Their estimator Kn(β̂)
only uses the regression parameters, and the covariate
distribution discarding the observed event and censoring

times. For this reason, unlike Harrell’s C-index based on
informative pairs, it is asymptotically unbiased. The GHCI
helps to view the concordance probability as a measure of
discriminatory power within the Cox model framework. This
formulation provides an easy to compute and stable estimator
of predictive accuracy:

Kn(β̂) � 2
n(n − 1) ∑

1#i<j#n

I(β̂′(Xj − Xi)< 0)
1 + exp(β̂′(Xj − Xi))

+ I(β̂′(Xi − Xj)< 0)
1 + exp(β̂′(Xi − Xj))

⎧⎨⎩ ⎫⎬⎭·

(21)

The partial likelihood estimator β̂ mediates the effect of the
observed times on Kn(β̂), which is not the case for Harrell’s
C-index. Besides, since the effect of censoring on the bias of β̂ is
negligible, the measure is robust to censoring. The coefficient
features an additional property of invariance: Kn(β̂) remains

FIGURE 6 | Deltas (iAUCSurvROC CV−vHCVLL), panel by measure. panel (A): R2XO measure. panel (B): GHCI measure. panel (C): iAUCCD. panel (D):
iAUCSurvROC. panel (E): iRSSw measure. panel (F): iSSw measure.
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invariant under monotone transformations of the
survival times.

5.3 Ranking the Performance of the CV
Criteria
We stated several recommendations, in Section 4 based of the
accuracy of the selection of the number of components. Selecting
the right number of components is a goal per se.

Moreover, these recommendations are also relevant from a
performance criteria point of view (see Section 5.1) as the
following analysis showed.

1. For all the models and simulation types, we carried out the
cross-validation according to all of the 12 criteria and, for each

of these criteria, we derived the value of all the 14 performance
measures.

2. In order to lay the stress on the improvements of performance
made when switching from the classic and the van
Houwelingen log likelihood cross validation techniques to
the recommended ones, we computed, for every datasets
and models, all the paired differences between CVLL or
vHCVLL and the eleven other CV techniques.

• Paired comparison with CVLL. For every simulated dataset we
evaluated: Delta � Performance Measure (with any CV criteria ≠
CVLL) − Performance Measure (with CVLL).
• Paired comparison with vHCVLL. For every simulated dataset
we evaluated: Delta � PerformanceMeasure (with any CV criteria
≠ vHCVLL) − Performance Measure (with vHCVLL).

FIGURE 7 | Model selected by AUCUno CV, panel by performance measure. panel (A): R2XO measure. panel (B): GHCI measure. panel (C): iAUCCD measure.
panel (D): iAUCSurvROC measure. panel (E): iRSSw measure. panel (F): iSSw measure.
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An analysis of these results showed a steady advantage of the
recommended criteria versus either CVLL or vHCVLL especially
in the linear and quadratic cases.

In the case of paired comparison with vHCVLL and for some
couples of the type (performance measure, model), namely (UnoC,
PLS−Cox) (UnoC, sPLSDR) (iBSW, PLSDR) (iBSW, DKsPLSDR)
(iRSSW, autoPLS−Cox) (iRSSW, PLSDR) (iAUCSurvROC, PLSDR)
and (iAUCSurvROC, sPLSDR), those deltas are plotted on Figures
3A-H. Additional results are available as raw results for criteria are
displayed on SupplementaryMaterial S37-S56 and deltas for paired
comparisons on Supplementary Material S57-S76.

5.4 Performance Comparison Revisited
5.4.1 Selection of Competing Benchmark Methods
Simon et al. (2011), introduced the coxnet procedure, which is
an elastic net-type procedure for the Cox model, in a similar but

not equivalent way than two competing ones: coxpath (glmpath
R package, Park and Hastie, 2007) and penalized (penalized R
package, Goeman, 2010). In Section 3 of the same article, these
authors extensively compared coxnet to coxpath and to
penalized for the lasso penalty that is the only one relevant
for these comparisons since the three procedures use different
elastic net penalties. Their results show tremendous timing
advantage for coxnet over the two other procedures. The
coxnet procedure was integrated in the glmnet R package
(Friedman et al., 2010) and is called in the R language by
applying the glmnet function with the option family � cox:
coxnet is glmnet for the Cox model. The timing results of Simon
et al. (2011) on both simulated and real datasets show some
advantage to coxpath over penalized.

As to pure lasso-type penalty algorithms, we selected two of them:
“Univariate Shrinkage in the CoxModel forHighDimensional data”

FIGURE 8 | Model selected by iAUCsurvROC CV, panel by performance measure. panel (A): R2XO measure. panel (B): GHCI measure. panel (C): iAUCCD
measure. panel (D): iAUCSurvROC measure. panel (E): iRSSw measure. panel (F): iSSw measure.
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(uniCox, Tibshirani, 2009) and “Gradient Lasso for Cox
Proportional Hazards Model” (glcoxph, Sohn et al., 2009).

The uniCox R package implements “Univariate Shrinkage in
the Cox Model for High Dimensional data” (Tibshirani, 2009).
Being “essentially univariate”, it differs from applying a classical
lasso penalty when fitting the Cox model and hence from both
coxnet/glmnet and coxpath/glmpath. It can be used on highly
correlated and even rectangular datatsets.

In their article, Sohn et al. (2009), show that the glcoxph R
package is very competitive compared with popular existing
methods coxpath by Park and Hastie (2007) and penalized by
Goeman (2010) in its computational time, prediction and
selectivity. As a very competitive procedure to coxpath, that
we included in our benchmarks, and since no comparisons
were carried out with coxnet, we selected glcoxph as well.

Cross validation criteria were recommended for several of our
benchmark methods by their authors. We followed these
recommendations —classic CV partial likelihood for coxpath,
glcoxph and uniCox; van Houwelingen CV partial likelihood for
coxnet with both the λmin, the value of λ that gives minimum of the
mean cross-validated error, or λ1se, the largest value of λ such that the
cross-validated error is within 1 standard error of the minimum of
the mean cross-validated error, criteria— and used the same 7 folds
fo the training set as those described in Section 3.3 for the other
models.

It seemed unfair to compare the methods using a performance
measure that is recommended as a cross-validation criterion for
some, but not all, of them. Hence, we decided not to use any of
the three recommended cross-validation criteria iAUCSH,
iAUCUno or iAUCsurvROC —even if it has already been
used by Li (2006)- as a performance measure, in order to
strive to perform fair comparisons with the methods that are
recommended to be cross validated using partial likelihood
with either the classic or van Houwelingen technique.

As a consequence and in order to still provide results for a
ROC-based performance measure on a fair basis, we selected the
Chambless and Diao’s (2006) estimator of cumulative/dynamic
AUC for right-censored time-to-event data in a form restricted to
Cox regression. The integral of AUC on [0,max (times)],
weighted by the estimated probability density of the time-to-
event outcome, defines the iAUCCD summary measure.

5.4.2 Results
For coxnet, coxlars or ridgecox with both the λmin or λ1se CV
criteria, the λmin criterion yield similar yet superior results than the
λ1se one whose main default is to select too often no explanatory
variable (a null model) for the linear or quadratic links. As a
consequence, we only reported results for the former one.

We plotted some of the performance measures when the
cross-validation is done according to the vHCVLL criterion on

TABLE 1 | Criteria and their use in the cross validation step or as a performance measures for assessing the quality of the model.

Criterion Type As a cross validation criterion As a performance measure

Criterion Type Tested Results Recom. For Is a Selected on Results

PM ? statistical
grounds

CVLL LBA Yes Yes No No No
vHCVLL LBA Yes Yes No No No
LRT p-value LBA No No Yes Yes No
VarM LBA No No Yes No No
R2Nag LBA No No Yes No No
R2XO LBA No No Yes Yes Yes
R2OXS LBA No No Yes No No
iR2BSunw DBA No No Yes No No
iR2BSw DBA No No Yes Yes No
iRSSunw DBA No No New No No
iRSSw DBA No No New Yes Yes
iAUCCD ROCBA Yes Yes Yes Yes Yes
iAUCHC ROCBA Yes Yes Yes Yes No
iAUCSH ROCBA Yes Yes PLS−Cox Yes Yes No

autoPLS−Cox
iAUCUno ROCBA Yes Yes (DK) (s)PLSDR Yes Yes No

Cox−PLS
iAUCHZ ROCBA Yes Yes Yes Yes No
iAUCSurvROC ROCBA Yes Yes (DK) (s)PLSDR Yes Yes Yes

Cox−PLS
C ROCBA No No Yes No No
UnoC ROCBA No No Yes No Sup. Info
GHCI ROCBA No No Yes Yes Yes
SchemperV DBA No No Yes Yes No
iBSunw DBA Yes Yes Yes No No
iBSw DBA Yes Yes Yes Yes Sup. Info
iSSunw DBA Yes Yes Yes No No
iSSw DBA Yes Yes Yes Yes Yes

Total Number 25 12 12 23 14 6 (+2 SI)
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Figures 4A-F. The results are terrible for all the (s)PLS−like
models apart from PLS−Cox and autoPLS−Cox.

We then provide, for each of the (s)PLS−like method, the
increases in terms of performance measures when switching from
the vHCVLL as a cross validation criterion to the recommended
one in Section 4.4. Virtually, for PLS-Cox and autoPLS-Cox we
switch to the iAUCSH cross-validation criterion and for other (s)
PLS based models to either iAUCUno or iAUCSurvROC.

For iAUCUno, these results are plotted on Figures 5A-F and
whereas for iAUCSurvROC they are displayed on Figures 6A-F.
These figures show a firm increase for the six criteria (R2XO,
GHCI, iAUCCD, iAUCSurvROC, IRSSW, iSSW).

As can be seen for iAUCUno on Figures 7A-F and
iAUCSurvROC on Figures 8A-F, the improvement of the
performances due to switch to the recommended CV criteria is
high enough to even have some (S)PLS based models, for instance
SPLSDR, show some advantage over the other benchmark methods.

6 CONCLUSION

We extended our previous algorithms from Bastien et al. (2015)
to enable practitioners to apply new extensions of PLS models to
censored data: group and sparse group PLS regression as well as
their kernel counterparts. In addition, we showed how to fit
regular, sparse, group or sparse group PLS regression models and
their kernel counterparts to big data. Since an interesting feature
of those PLS-based extensions of Cox models is their inborn
capability to cope with missing values, the partitioners can now fit
survival models on censored big data with missing values.

Finding the number of components of suchmodels is a key step
in PLS models fitting. As a result we carried out a comprehensive
study of cross validation criteria for those models, which lead us to
an interesting result. When cross-validating standard or extended
Cox models, the commonly used criterion is the cross-validated
partial loglikelihood using a naive or a van Houwelingen scheme.
Quite astonishingly, these two cross-validation methods fail with
all the seven extensions of partial least squares regression to the
Cox model, namely PLS-Cox, autoPLS-Cox, Cox-PLS, PLSDR,
sPLSDR, DKPLSDR and DKsPLSDR, that we studied in Bastien
et al. (2015).

In our simulation study, we introduced 12 cross validation
criteria based on three different kind of model quality assessment:

• Likelihood (2): Verweij and Van Houwelingen
(classic CVLL, 1993), van Houwelingen et al.
(vHCVLL, 2006).

• Integrated AUC measures (6): Chambless and Diao’s
(iAUCCD, 2006), Hung and Chiang’s (iAUCHC, 2010),
Song and Zhou’s (iAUCSH, 2008), Uno et al.‘s
(iAUCUno, 2007), Heagerty and Zheng’s (iAUCHZ,
2005), Heagerty et al.‘s (iAUCsurvROC, 2000).

• Prediction error criteria (4): integrated (un)weighted
Brier Score [iBS(un)w, Gerds and Schumacher (2006)]
or Schmid Score [iSS(un)w, Schmid et al. (2011)]

Our simulation study was successful in finding good CV
criterion for PLS or sPLS based extensions of the Cox model:

• iAUCsh for PLS-Cox and autoPLS-Cox.
• iAUCSurvROC and iAUCUno ones for Cox-PLS (DK)
PLSDR and (DK)sPLSDR.

In the presence of censored observations, the derivation of
measures of prediction accuracy for survival data is not
straightforward. A variety of new approaches has been
suggested in the literature to overcome this problem. We
spotted 23 performance measures that can be classified into
three groups:

• Likelihood-based approaches (llrt, varresmart, three R2-type).
• ROC-based approaches such as integrated AUC (iAUCCD,
iAUCHC, iAUCSH, iAUCUno, iAUCHZ, iAUCsurvROC),
three C-index (Harrell, GHCI, UnoC).

• Distance-based approaches such as the V of Schemper and
Henderson (2000) or derived from Brier or Schmid Scores
(iBS(un)w, iSS(un)w and four derived R2-type measures).

Using the newly found cross-validation, and these measures of
prediction accuracy, we performed a benchmark reanalysis that
showed enhanced performances of these techniques and a much
better behaviour even against other well known competitors such
as coxnet, coxpath, uniCox and glcoxph.

Hence the recommended criteria not only improve the
accuracy of the choice of the number of components but also
strongly raise the performances of the models, which enables
some of them to overperform the other benchmark methods.

We combined these results with the extensions to big data of
our PLS based algorithms to set the cross-validation defaults in
our packages.
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