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Deep convolutional neural networks (CNNs) have been successful in many tasks in
machine vision, however, millions of weights in the form of thousands of convolutional
filters in CNNs make them difficult for human interpretation or understanding in science. In
this article, we introduce a greedy structural compression scheme to obtain smaller and
more interpretable CNNs, while achieving close to original accuracy. The compression is
based on pruning filters with the least contribution to the classification accuracy or the
lowest Classification Accuracy Reduction (CAR) importance index. We demonstrate the
interpretability of CAR-compressed CNNs by showing that our algorithm prunes filters with
visually redundant functionalities such as color filters. These compressed networks are
easier to interpret because they retain the filter diversity of uncompressed networks with an
order of magnitude fewer filters. Finally, a variant of CAR is introduced to quantify the
importance of each image category to each CNN filter. Specifically, the most and the least
important class labels are shown to be meaningful interpretations of each filter.
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1 INTRODUCTION

Deep convolutional neural networks (CNNs) achieve state-of-the-art performance for a wide variety
of tasks in computer vision, such as image classification and segmentation (Krizhevsky et al., 2012;
Long et al., 2015). The superior performance of CNNs for large training datasets has led to their
ubiquity in many industrial applications and to their emerging applications in science and medicine.
Thus, CNNs are widely employed in many data-driven platforms such as cellphones, smartwatches,
and robots. While the huge number of weights and convolutional filters in deep CNNs is a key factor
in their success, it makes them hard or impossible to interpret in general and especially for scientific
and medical applications (Montavon et al., 2017; Abbasi-Asl et al., 2018). Compressing CNNs or
reducing the number of weights, while keeping prediction performance, thus facilitates
interpretation, and understanding in science and medicine. Moreover, compression benefits the
use of CNNs in platforms with limited memory and computational power.

In this paper, interpretability is defined as the ability to explain or to present the decisions made by
the model in understandable terms to a human (Doshi-Velez and Kim, 2017; Murdoch et al., 2019;
Cui et al., 2020; Choi, 2020), say a biologist or a radiologist. Interpretability is typically studied from
one of two perspectives. The first is the algorithmic interpretability and transparency of the learning
mechanism. The other is post-hoc interpretability and explanation of the learned model using tools
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such as visualization. The first perspective attempts to answer the
question that how the model learns and works, while the second
perspective describes the predictions without explaining the
learning mechanism. From the perspective of post-hoc
interpretability, a CNN with fewer filters is easier to visualize
and explain to human users, because CNNs are often visualized
using the graphical explanation of their filters (Zeiler and Fergus,
2014). Thus to make more interpretable CNNs, a compression
scheme should reduce the number of filters while keeping the
model accurate (predictively). We call such schemes “structural
compression”. In this paper, we argue that structurally
compressed networks with fewer numbers of filters are easier
to be investigated or interpreted by humans for possible domain
knowledge gain.

The problem of compressing deep CNNs has been widely
studied in recent literature, even though interpretability is not a
motivating factor in the majority of these studies (Kamimura,
2019; Park et al., 2020; Kamimura, 2020; Kim et al., 2020; Guo
et al., 2020; Wen et al., 2020; Pietron et al., 2020). In the classical
approach to compression of CNNs, individual weights, and not
filters, are pruned and quantized (Han et al., 2015). We call these
classical compression schemes “weight compression”. Optimal
brain damage (LeCun et al., 1989), optimal brain surgeon
(Hassibi et al., 1993), Deep Compression (Han et al., 2015),
binary neural networks (Rastegari et al., 2016; Kim and Park,
1995; Courbariaux et al., 2015), and SquuezeNet (Iandola et al.,
2016) are some examples.

On the other hand, some studies have investigated pruning
filters instead of weights, however, the interpretability of pruned
networks has not been studied in detail (Alvarez and Salzmann,
2016; Wen et al., 2016; He et al., 2017; Liu et al., 2017; Luo et al.,
2017; Li et al., 2019; Liu et al., 2019; Peng et al., 2019; You et al.,
2019; Zhao et al., 2019). These studies are focused on high
compression rates and low memory usage. In this paper, our
goal is not to achieve state-of-the-art compression ratio or
memory usage rates, but we aim to investigate the
interpretability of a compressed network. However, to
compare our compression ratio and computational cost to a
baseline method, we chose the structural compression in He et al.
(2014), Li et al. (2016). He et al. (2014), Li et al. (2016) have
studied structural compression based on removing filters and
introduced importance indices based on the average of incoming
or outgoing weights to a filter.

Pruning activations or feature-maps to achieve faster CNNs
has been also studied in Molchanov et al. (2017). Pruning
activations can be viewed as removing filters in specific
locations of the input, however, those filters almost always
remain in other locations. Thus it rarely results in any
compression of filters. On the other hand, pruning filters from
the structure is equal to removing them from all the possible
locations and avoiding storing them. Additionally, because of the
simplified structure, filter-pruned networks are more
interpretable compared to activation-pruned ones, therefore
more applicable in scientific and medical domains.

Pruning a fully-trained neural network has a number of
advantages over training the network from scratch with fewer
filters. A difficulty in training a network from scratch is not

knowing which architecture or how many filters to start with.
While several hyper-parameter optimization techniques (Snoek
et al., 2012; Fernando et al., 2017; Jaderberg et al., 2017; Li et al.,
2017) exist, the huge numbers of possible architectures and
filters would lead to a high computational cost in a
combinatorial manner as in other model selection problems
(Reed, 1993). Pruning provides a systematic approach to find
the minimum number of filters in each layer required for
accurate training. Furthermore, recent studies suggest that for
large-scale CNNs, the accuracy of the pruned network is slightly
higher compared to a network trained from scratch [(Li et al.,
2017) for the VGG-16 network (Simonyan and Zisserman,
2014) and ResNet (He et al., 2016), (Kim et al., 2016) for
AlexNet (Krizhevsky et al., 2012)]. For small-scale CNNs, it
is possible to train a network from scratch that achieves the
same accuracy as the pruned network even though the
aforementioned computational cost is not trivial in this case.
Additionally, in the majority of transfer learning applications
based on well-trained CNNs, pruning algorithms achieve higher
accuracies compared to training from scratch given the same
architecture and number of filters (Branson et al., 2014;
Molchanov et al., 2017). For example, Branson et al. (2014),
showed that a pruned AlexNet gains 47% more classification
accuracy in bird species categorization compared to training the
network from scratch.

Our main contributions in this paper are two folds. First, we
introduce a greedy structural compression scheme to prune
filters in CNNs. A filter importance index is defined to be the
classification accuracy reduction (CAR) (similarly RAR for
regression accuracy reduction) of the network after pruning
that filter. This is similar in spirit to the regression variable
importance measures in Breiman (2001), Lei et al. (2018). We
then iteratively prune filters in a greedy fashion based on the
CAR importance index. Although achieving a state-of-the-art
compression ratio is not the main goal in this paper, we show
that our CAR structural compression scheme achieves higher
classification accuracy in a hold-out test set compared to the
baseline structural compression methods. CAR compressed
AlexNet without retraining can achieve a compression ratio
of 1.17 (for layer 1) to 1.5 (for layer 5) while having a close-to-
original classification accuracy (54% top-1 classification
accuracy compared to original 57%). This is 21% (for layer
1) to 43% (for layer 5) higher than the compression ratio from
the benchmark method. If we fine-tune or retrain the CAR-
compressed network, the compression ratio can be as high as
1.79 (for layer 3) when maintaining the same 54% classification
accuracy. We take advantage of weight pruning, quantization,
and coding by combining our method with Deep Compression
(Han et al., 2015) and report a considerably improved
compression ratio. For AlexNet, we reduce the size of
individual convolutional layers by a factor of 8 (for layer 1)
to 21 (for layer 3), while achieving close to original classification
accuracy (or 54% compared to 57%) through retraining the
network.

Our second contribution is bridging the compression and
interpretation for CNNs. We demonstrate the ability of our
CAR algorithm to remove functionally redundant filters
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such as color filters making the compressed CNNs more
accessible to human interpreters without much classification
accuracy loss. Furthermore, we introduce a variant of our CAR
index that quantifies the importance of each image class to
each CNN filter. This variant of our CAR importance index
has been presented in Abbasi-Asl and Yu (2017) and is
included in Section 4 of this paper to establish the
usefulness of the CAR index. Through this metric, a
meaningful interpretation of each filter can be learned from
the most and the least important class labels. This new
interpretation of a filter is consistent with the visualized
pattern selectivity of that filter.

The rest of the paper is organized as follows. In Section 2, we
introduce our CAR compression algorithm. The performance of
the compression for the state-of-the-art CNNs in handwritten
digit image and naturalistic image classification tasks is
investigated in Section 3.1. In Section 3.2, we connect
compression to the interpretation of CNNs by visualizing the
functionality of pruned and kept filters in a CNN. In Section 4, a
class-based interpretation of CNN filters using a variant of our
CAR importance index is presented. The paper is concluded in
Section 5.

2 CAR-BASED STRUCTURAL
COMPRESSION

2.1 Notation
We first introduce notations. Let wL

i denote the ith convolutional
filter in layer L of the network and nL the number of filters in this
layer (i ∈ {1, ‥, nL}). Each convolutional filter is a 3-dimensional
tensor with the size of nL−1 × fL × fL where fL × fL is the size of
spatial receptive field of the filter.

The activation or the feature map of filter i in layer L (i � 1, ‥,
nL) is:

αLi � f (wL
i *P) (1)

where f(·) is the nonlinear function in convolutional network
(e.g., sigmoid or ReLU) and P denotes a block of activations from
layer L−1 (i.e., the input to the neurons in layer L). The activation
for the first layer could be patches of input images to the
convolutional network.

Assuming network N is trained on classification task, top-1
classification accuracy of network N is defined as:

Acc(N ) � NCorrect

NCorrect + NIncorrect
(2)

where NCorrect and NIncorrect are the number of correct and
incorrect predicted classes, respectively.

In this paper, we use FLOPs to quantify the computational cost
in each convolutional layer of the neural network. FLOPs for each
layer of the network equal to the number of floating-point
operations required in that layer to classify one image. Let’s
assume A ∈ RnL−1×kL−1×kL−1 is the input feature map and
B ∈ RnL×kL×kL is the output feature map in layer L where kL × kL
is the spatial size. The FLOPs for this convolutional layer equals
k2LnLf

2
LnL−1. Additionally, the storage overhead for each

convolutional layer of the network equals 4f 2LnL−1nL bytes (Wu
et al., 2016).

2.2 Proposed Algorithm
In this section, we introduce our greedy algorithm to prune
filters in layers of a CNN and structurally compress it. Figure 1
shows the process of greedy filter pruning. In each iteration, a
candidate filter together with its connections to the next layer
gets removed from the network. The candidate filter should be
selected based on an importance index of that filter. Therefore,
defining an index of importance for a filter is necessary for any
structural compression algorithm. Previous works used
importance indices such as the average of incoming and
outgoing weights to and from a filter but with unfortunately
a considerable reduction of classification accuracy (e.g., 43% as
mentioned earlier if one prunes only the first layer) for the
compressed CNNs (He et al., 2014; Li et al., 2016). To overcome
this limitation, we define the importance measure for each filter
in each layer as the classification accuracy reduction (CAR)
when that filter is pruned from the network. This is similar in
spirit to the importance measures defined for single variables in
Random Forest (Breiman, 2001) and distribution-free
predictive inference (Lei et al., 2018). Formally, we define the
CAR importance index for filter i in layer L of a convolutional
neural network as:

CAR(i, L) � Acc(N ) − Acc(N (−i, L)) (3)

where network N (−i, L) is network N except that filter i from
layer L together with all of its connections to the next layer are
removed from the network. In our CAR structural (or filter
pruning) compression algorithm, the filter with the least effect
on the classification accuracy gets pruned in each iteration. The
network can be retrained in each iteration and after pruning a
filter. This process is regarded as fine tuning in this paper. We
present details of our fine-tuning procedure in the next section.
Algorithm 1 shows the pseudo-code of our CAR greedy
structural compression algorithm. Here, niter and riter are,
respectively, the number of remaining filters and compression
ratio in the current iteration.

One possible drawback of the algorithm is the expensive
computational cost of the early iterations. While this is a one-
time computational cost for a CNN, it is still possible to
significantly reduce this cost and increase the compression
speed. To accomplish this, we propose the following two
simple tweaks: 1). Pruning multiple filters in each iteration of
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the CAR algorithm. 2). Reducing the number of images for
evaluating the accuracy in each iteration (i.e., batch size). Our
experiments in Supplementary Material suggest that the accuracy
remains close to the original CAR compression when removing
multiple filters at each iteration with smaller batch size. While
these tweaks increase the compression speed, the performance of
the compressed network is slightly lower than in Algorithm 1.
The greedy process seems to allow for better data and network
adaptation and improves compression performance. That is,
when pruning one filter at each iteration, we only remove the
least important filter. In the next iteration, we update all the
importance indexes using the new structure. This allows the
algorithm to adapt to the new structure gradually and slightly
improves the classification accuracy.

The CAR compression is designed to compress each
individual layer separately. This is sufficient for the majority
of the transfer learning and interpretability applications because
each layer is interpreted individually. However, it is possible to
compress multiple layers together too (See Supplementary
Material).

3 RESULTS

3.1 Compression Rate and Classification
Accuracy of the CAR Compressed
Networks
To evaluate our proposed CAR structural compression algorithm,
we have compressed LeNet (LeCun et al., 1998) (with two
convolutional layers and 20 filters in the first layer), AlexNet
(Krizhevsky et al., 2012) (with five convolutional layers and 96
filters in the first layer) and ResNet-50 (He et al., 2016) (with 50
convolutional layers and 96 filters in the first layer). LeNet is a
commonly used CNN trained for classification task on MNIST
(LeCun et al., 1998) consisting of 60,000 handwritten digit
images. AlexNet and ResNet-50 are trained on the subset of
the ImageNet dataset used in the ILSVRC 2012 competition
(Russakovsky et al., 2015) consisting of more than 1 million
natural images in 1,000 classes.

We used Caffe (Jia et al., 2014) to implement our compression
algorithm for CNNs and fine-tune them. The pre-trained LeNet
and AlexNet are obtained from the Caffe model zoo. All
computations were performed on an NVIDIA Tesla K80 GPU.
The CAR index is computed using half of the ImageNet test set. To

avoid overfitting, the final performance of the CAR compressed
network is evaluated on the other half of the ImageNet test set. The
running time of each pruning iteration depends on the number of
filters remaining in the layer. On average, each iteration of
CAR takes 45 min for the first layer of AlexNet. For 96 filters in
this layer, the total compression time is 72 h. However, in
Supplemental Materials, we show that it is possible to prune up
to five filters in one iteration without loss in accuracy. This
reduces the total running time of the compression to 14 h.
Note that this is a one-time computational cost and much less
than the time required to train AlexNet on our GPU which
could take weeks.

For the fine-tuning, the learning rate has been set to 0 for the
layer that is being compressed, 0.001 for the subsequent layer, and
0.0001 for all other layers. The subsequent layer is directly affected
by the compressed layer, therefore, requires a higher learning rate.
The network is retrained for 500 iterations. This is sufficient for the
classification accuracy to converge to the final value.

3.1.1 LeNet on MNIST Dataset
LeNet-5 is a four-layer CNN consisting of two convolutional
layers and two fully-connected layers. CAR-compression has
been performed on the convolutional layers and the
performance on a hold-out test set is reported in Figure 2.
We obtained classification accuracies (top-1) of the CAR-
compression results (purple curve) and those from retraining
or fine-tuning after CAR-compression on the same classification
task (blue curve).

To compare the performance of our compression algorithm
to benchmark filter pruning schemes, we have also
implemented the compression algorithm based on pruning
incoming and outgoing weights proposed in He et al. (2014)
and reported the classification accuracy curve in Figure 2.
Furthermore, classification accuracy for random pruning of
filters in LeNet has been shown in this figure. Candidate filters
to prune are selected uniformly at random in this case. The
error bar shows the standard deviation over 10 repeats of this
random selection.

We conclude that our CAR algorithm gives a similar
classification accuracy to He et al. (2014) for LeNet (using the
outgoing weights in the first layer, and either weights for the second
layer). Their accuracies are similar to the accuracy of the
uncompressed unless we keep very few filters for either layer.
Fine-tuning improves the classification accuracy but there is not a
considerable gap among performances (unless we keep very few

FIGURE 1 | Greedy compression of CNNs based on pruning filters.
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FIGURE 2 | Performance of compression for LeNet. The left panel shows the overall classification accuracy of LeNet when the first convolutional layer is
compressed. The right panel shows the classification accuracy when the second convolutional layer is compressed. The classification accuracy of the uncompressed
network is shown with a dashed red line. The purple curve shows the classification accuracy of our proposed CAR compression algorithm for various compression
ratios. The accuracy for the fine-tuned (retrained) CAR compression is shown in blue. The black and green curves show the accuracy for compressed network
based on outgoing and incoming weights, respectively. The red curve shows the accuracy when filters are pruned uniformly at random. The error bar is reported over 10
repeats of this random pruning process.

FIGURE 3 | Performance of compression for AlexNet. Each panel shows the classification accuracy of the AlexNet when an individual convolutional layer is
compressed. In each panel, the classification accuracy of the uncompressed network is shown with a dashed red line. The purple curve shows the classification
accuracy of our proposed CAR compression algorithm for various compression ratios. The accuracy for the fine-tuned (retrained) CAR compression is shown in blue.
The black and green curves show the accuracy for compressed network based on outgoing and incoming weights, respectively. The red curve shows the accuracy
when filters are pruned uniformly at random. The error bar is reported over 10 repeats of this random pruning process.
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filters, less than eight among 20 for the first layer or less than 10
among 50 for the second layer). Among the eight kept filters in the
first layer, four of them are shared between the CAR-algorithm and
that based on averaging outgoing weights in He et al. (2014), while
among the 10 kept filters in the second layer, six of them are shared.

3.1.2 AlexNet on ImageNet Dataset
AlexNet consists of five convolutional layers and three fully-
connected layers. Figure 3 shows the classification accuracy of
AlexNet on a hold-out test set after each individual convolutional
layer is compressed using our proposed CAR algorithms or
benchmark compression schemes.

Comparing the accuracies of compressed networks in
Figure 3, there are considerable gaps between our proposed
CAR-algorithm (purple curves) and the competing structural
compression schemes that prune filters (He et al., 2014) for all five
layers. Further considerable improvements are achieved by
retraining or fine-tuning the CAR-compressed networks (see
the blue curves in Figure 3).

Pruning half of the filters in either of the individual
convolutional layers in AlexNet, our CAR algorithm achieves
16% (for layer 5) to 25% (for layer 2) higher classification
accuracies compared to the best benchmark filter pruning
scheme (pruning based on average outgoing weights). If we

retrain the pruned network, it achieves 50–52% classification
accuracy (compared with 57% of the uncompressed AlexNet).
The superior performance of our algorithm for AlexNet is due to
the proposed importance index for the filters in CNN. This figure
demonstrates that our algorithm is able to successfully identify
the least important filters for the purpose of classification
accuracy. In Section 5.2, we discuss the ability of our
compression scheme to reduce functional redundancy in the
structure of CNNs.

To present a different but equivalent quantitative
comparison, we have reported the compression ratio and
feed-forward speed up in Table 1. Each individual
convolutional filter is pruned while the classification
accuracy dropped a relative 5% from the accuracy of the
uncompressed network (i.e., 54% compared to 57%). Results
for CAR compression with and without fine-tuning and
compression based on average incoming and outgoing
weights are presented in this table. The CAR algorithm
(without retraining) can achieve a compression ratio of 1.17
(for layer 1) to 1.50 (for layer 5), which is 21–43% higher than
those from the benchmark methods. If we fine-tune or retrain
the CAR-compressed network, the compression ratio can be as
high as 1.79 (for layer 3) when maintaining the same 54%
classification accuracy.

TABLE 1 |Comparison of compression performance between our greedy CAR compression algorithm and benchmark schemes on AlexNet. For the compressed networks,
the filters are pruned while the classification accuracy dropped a relative 5% from the accuracy of original network (i.e., 54% compared to 57%). FLOPs equals to the
number of floating-point operations required in each layer to classify one image.

Layer Compression method Number of
remaining filters

Bytes (M) FLOPs (M) Compression ratio
and feed-forward

speed up

Layer 1 Original 96 0.14 105.41 —

Incoming weights 90 0.13 98.82 1.07×
Outgoing weights 88 0.13 96.63 1.09×
CAR 82 0.12 90.04 1.17×

Layer 2 Original 256 1.23 223.95 —

Incoming weights 223 1.07 195.08 1.15×
Outgoing weights 217 1.04 189.83 1.18×
CAR 189 0.91 165.33 1.35×

Layer 3 Original 384 3.54 149.52 —

Incoming weights 342 3.15 133.17 1.12×
Outgoing weights 334 3.08 130.05 1.15×
CAR 287 2.64 111.75 1.34×

Layer 4 Original 384 2.65 112.14 —

Incoming weights 332 2.29 96.95 1.16×
Outgoing weights 346 2.40 101.04 1.11×
CAR 279 1.93 81.48 1.38×

Layer 5 Original 256 1.77 74.76 —

Incoming weights 220 1.52 64.25 1.16×
Outgoing weights 222 1.53 64.83 1.15×
CAR 171 1.18 49.94 1.50×

Layer 1 Fine-tuned CAR 58 0.08 63.69 1.66×
Layer 2 153 0.73 133.84 1.67×
Layer 3 214 1.97 83.33 1.79×
Layer 4 225 1.56 65.71 1.71×
Layer 5 176 1.22 51.40 1.45×
The values for the best-performing models are identified in bold.
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TABLE 2 | Compression performance of CAR-algorithm combined with Deep Compression.

Layer Weight pruning +
quantization (Han et al.,

2015), Acc = 0.57

Weight pruning +
quantization + Huffman

coding (Han et al.,
2015), Acc = 0.57

CAR + weight
pruning + quantization,

Acc = 0.54

CAR + weight
pruning + quantization
+ Huffman coding,

Acc = 0.54

Layer 1 3.07× 4.87× 5.13× 8.13×
Layer 2 6.90× 10.60× 11.52× 17.70×
Layer 3 7.63× 11.85× 13.66× 21.21×
Layer 4 7.09× 10.98× 12.13× 18.77×
Layer 5 7.14× 10.60× 10.36× 15.38×

The values for the best-performing models are identified in bold.

FIGURE 4 | Performance of compression for ResNet-50. (A) Classification accuracy of the ResNet-50 for the compression of the first convolutional layer. The
classification accuracy of the uncompressed network is shown with a dashed red line. The purple curve shows the classification accuracy of our proposed CAR
compression algorithm for various compression ratios. The accuracy for the fine-tuned (retrained) CAR compression is shown in blue. The black and green curves show
the accuracy for the compressed network based on outgoing and incoming weights, respectively. The red curve shows the accuracy when filters are pruned
uniformly at random. The error bar is reported over 10 repeats of this random pruning process. (B)Classification accuracy for the compression of the first residual module
(with the first layer untouched). (C) Classification accuracy for the compression of each residual module in ResNet-50. (D) The architecture of first layers in ResNet-50.
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3.1.3 Combination With Deep Compression
One advantage of our CAR algorithm is that it is amenable to
combination with weight-based compression schemes to achieve
a substantial reduction in memory usage. Deep Compression
(Han et al., 2015) is a recent weight-based compression procedure
that uses weight pruning, quantization, and Huffman coding. We
have performed Deep Compression on top of our proposed
compression algorithm and reported the compression ratio for
AlexNet in Table 2. Again, the filters are pruned while the
classification accuracy is in the range of relative 5% from the
accuracy of the uncompressed network (54% compared to 57%).
An additional five fold (for layer 1) to 12 fold (for layer 3) increase
in compression ratio is achieved through joint CAR and Deep
Compression. That is, further weight compression boosts the
compression ratio by sparsifying weights of the kept filters,
although the number of filters is the same as the CAR
compression.

3.1.4 ResNet-50 on ImageNet Dataset
First introduced by He et al. (2016), deep residual networks take
advantage of a residual block in their architecture (Figure 4D) to
achieve higher classification accuracy compared to a simple
convolutional network. We have studied the performance of CAR
compression on ResNet-50 architecture (He et al., 2016) with 50
layers of convolutional weights. Figure 4A shows the classification
accuracy of ResNet-50 after pruning the first convolutional layer
using CAR algorithm or benchmark compression schemes.
Figure 4B shows the classification accuracy after pruning the first
convolutional layer in the first residual block (layerConv a - Branch 2
in Figure 4D). The performance for all other residual blocks is
illustrated in Figure 4C. CAR pruning of other convolutional layers
in each residual block yields to similar figures and is not shown here.
All of the accuracies are reported on the ILSVRC 2012 ImageNet
hold-out test set.

It is of great interest to compare at high compression ratio
regimes where we keep less than 30 filters out of 64. In this
situation and pruning layer Conv 1, the CAR algorithm (purple
curve in Figure 4) outperforms the competitors based on
incoming and outgoing weights. The higher the compression
ratio, the higher the improvements by the CAR algorithm. For
low compression ratio regimes, the performances are similar.
Compared to AlexNet, the gap between CAR and benchmark
compressions is smaller for the first layer. This might be evidence
that ResNet has fewer redundant filters. Retraining (fine-tuning)
the CAR-compressed network achieves further improvement in
classification accuracy (blue curve in Figure 4). In fact, our CAR
algorithm achieves 72% classification accuracy (compared with
the 75% for the uncompressed ResNet-50) when pruning half of
the filters in the first layer of ResNet-50. This accuracy is 15%
higher than that of filter pruning based on average outgoing or
incoming weights.

For the residual block, we have pruned layer Conv a - Branch
2 and reported the classification accuracy in Figure 4. The
accuracy of the CAR algorithm is almost similar to the
compression based on incoming and outgoing weights.
Interestingly, the accuracy drops less than 15% if we fully
prune the filters in this layer i.e., remove branch 2 from the

residual block. The drop in the accuracy is less than 5% for the
fine-tuned network. The main reason for this is the existence of
shortcuts in the residual module. The uncompressed branch 1 is
a parallel channel with the pruned filter that allows the
information to transfer through the residual layer. As a result
of these parallel channels in the residual blocks, deep residual
networks are more robust to pruning filters compared to simple
convolutional networks.

3.2 CAR-Compression Algorithm Prunes
Visually Redundant Filters
To study the ability of CAR compression in identifying redundant
filters in CNNs, we take a closer look at the visualization of
pruned filters. Filters in the first layer of a CNN can be visualized
directly using their weights (weights in the first layer filters
correspond to RGB channels of the input image). Figure 5
shows the visualized filters in the first layer of AlexNet,
ordered by their CAR importance index. Filters with a higher
CAR index tend to form a set of diverse patterns, spanning
different orientations and spatial frequencies. Additionally, most
of the filters with color selectivity tend to have a lower CAR index.
In fact, out of the top 20 pruned filters, 15 of them in the first layer
and 14 of them in the second layer corresponding to the color
filters, respectively. This finding points to the fact that shape is
often first-order important for object recognition.

FIGURE 5 | Visualization of filters in the first layer of AlexNet, ordered by
their CAR importance index.
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Unlike the first layer, visualization of filters in higher
convolutional layers is not trivial. To visualize the pattern
selectivity of filters in these higher layers, we have fed one
million image patches to the network and showed the top
nine image patches that activate each filter. This approach has
been previously used to study the functionality of filters in deep
CNNs (Zeiler and Fergus, 2014). There are 256 filters in layer 2 of
AlexNet which makes it challenging to visualize all of these filters.
Therefore, we manually grouped filters into subsets with visually
similar pattern selectivity in Figure 6. To investigate the ability of
CAR compression in removing visually redundant filters in this
layer, we continued to iterate the CAR algorithm while the
classification accuracy is 54% or within a relative 5% from the
accuracy of the uncompressed network. This led to pruning 103
filters out of 256 filters in the second layer. A subset of the
removed and remaining filters are visualized in Figure 6. The
filters shown in red boxes are pruned in the CAR process. Our
algorithm tends to keep at least one filter from each group,
suggesting that our greedy filter pruning process is able to
identify redundant filters. This indicates that pruned filters
based on the CAR importance index have in fact redundant

functionality in the network. For some of the groups, the CAR
algorithm does not select any filter to prune. For example, none of
the eight filters selective for diagonal patterns or six filters
selective for anti-diagonal patterns are pruned from the
network. Furthermore, out of nine filters selective for
curvature patterns, only one filter has been pruned. These
observations suggest the importance of coding diagonal, anti-
diagonal, and curvature patterns in layer 2 of the AlexNet.

The visualization of filters pruned from layer 3 of AlexNet is
shown in Figure 7. Again, we performed the CAR algorithm
while the classification accuracy was 54% or within a relative 5%
from the accuracy of the uncompressed network. For layer 3, this
resulted in pruning 170 out of 384 filters in this layer. Similar to
layer 2, diagonal and anti-diagonal patterns mostly remained in
the network after the pruning procedure (none of the anti-
diagonal filters and 2 out of 7 diagonal filters were removed).
On the other hand, 4 out of 8 filters selective to dog heads and 4
out of 8 filters selective to blobs were removed from the network
which suggests the redundancy in these categories. Similar figures
for layers 4 and 5 are shown in the Supplementary Material.
Similar to layers 2 and 3, the CAR algorithm tends to keep at least

FIGURE 6 | CAR compression removes filters with visually redundant
functionality from the second layer of AlexNet. To visualize each filter, we have
fed one million image patches to the network and visualized each filter by nine
image patches with the top response for that filter. We have manually
clustered 256 filters in the second layer of AlexNet into 20 clusters (11 of them
visualized here) based on their pattern selectivity. We apply the CAR-based
compression algorithm while the classification accuracy is in the relative range
of 5% from the accuracy of the uncompressed network. This leads to pruning
103 out of 256 filters in this layer. From the 11 clusters shown in this plot, 21
filters are pruned which are identified with a red box.

FIGURE 7 | CAR compression removes filters with visually redundant
functionality from the third layer of AlexNet. To visualize each filter, we have fed
one million image patches to the network and visualized each filter by nine
image patches with the top response for that filter. We have manually
clustered filters in the third layer of AlexNet based on their pattern selectivity.
nine clusters are shown in this figure with labels identifying the type of patterns.
We apply the CAR-based compression while the classification accuracy is in
the relative range of 5% from the accuracy of the uncompressed network. This
leads to pruning 170 out of 384 filters in this layer. From the nine clusters
shown in this plot, 19 filters are pruned which are identified with a red box.
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one filter from each filter group guaranteeing the diversity of
patterns encoded in each layer.

To further investigate the effect of compression of each of
the convolutional layers, we have shown the scatter plots of
the classification accuracy for each of the 1,000 classes in
ImageNet in Figure 8. Although the total classification

accuracy is about a relative 5% lower for each compressed
network, the accuracies for many of the categories are
comparable between compressed and uncompressed
networks. In fact, 37% (for layer 5) to 49% (for layer 2) of
the categories have accuracies no larger than 3% below those
for the uncompressed network.

FIGURE 8 | Classification accuracy for each class of image in AlexNet after the first (left panel) or second layer (right panel) is compressed compared to the
uncompressed network. Each point in plots corresponds to one of the 1,000 categories of images in test set.

FIGURE 9 | The interpretation based on CARc is consistent with the visualized pattern selectivity of each filter in layer 5 of AlexNet. Panel (A) shows The top nine
image patches that activate each filter (Zeiler and Fergus, 2014). Panel (B, C) show the top and bottom five classes with the highest and lowest CARc, respectively.
Besides the class label, one sample image from that class is also visualized. Panel (D) shows the scatter plot of classification accuracy for each of the 1,000 classes in
ImageNet. Three of the top and bottom classes with the highest and lowestCARc are pointed out with green arrows. Each row corresponds to one filter in layer 5 of
AlexNet.
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3.3 Class-Based Interpretation of Filters
With a slight modification in the definition for the CAR importance
index, we build a new index to interpret the filters via image class
labels. This index has been introduced in Abbasi-Asl and Yu (2017)
and also included in this section to demonstrate the merit of the
CAR index. We define CARc(i, L) to be classification accuracy
reduction in class c of images when filter i in layer L is pruned.
CARc quantifies the importance of each filter in predicting a class
label. Therefore, for each filter, we can use CARc to identify classes
that are highly dependent on that filter (classification accuracy for
these classes depends on the existence of that filter). These classes are
the ones with the highest CARc among all other classes. Similarly, for
each filter, the performance in classes with the lowest CARc has less
dependency on that filter.

The labels of the two sets of classes with the highest and lowest
CARc present a verbal interpretation of each filter in the network.
This is particularly important in the application of CNNs in scientific
domains such as medicine, where it is necessary to provide a verbal
explanation of the filters for the user. CARc-based interpretation is a
better fit for the higher layers in the CNN because filters in these
layers are more semantic and therefore more explainable by the class
labels. For these layers, the interpretation of filters based on CARc is
consistent with the visualization of pattern selectivity for that filter.
Figure 9 illustrates this consistency for layer 5 of AlexNet. We focus
on three filters in layer 5 that are among themost important filters in
this layer based on our original CAR pruning. Similar to Figure 8,
the pattern selectivity of each filter is visualized in panel A using top
nine image patches activating that filter. Panels B andC show the top
and bottom five classes with the highest and lowest CARc,
respectively. Besides the class label, one sample image from that
class is also visualized. Some of these classes are pointed out with
green arrows in the scatter plot of classification accuracy for 1,000
classes in ImageNet (panel D). Note that both CAR and CARc

indexes could be negative numbers, that is the pruned network has
higher classification accuracy compared to the original network.

InFigure 9, the classeswith the highestCARc share similar patterns
with the top nine patches activating each filter. For filter 1, the smooth
elliptic curvature that consistently appears in the classes such as steep
arch bridge or soup bowel is visible in the top activating patches (Panel
A). On the other hand, less elliptic curvature patterns are expected in
classes such as mailbag or altar. Filter 2 has higher CARc for classes
that contain patterns such as insect or bird’s head. Filter 3 is mostly
selected by the classes that contain images of a single long tool,
particularly musical instruments such as oboe or banjo.

4 DISCUSSION AND FUTURE WORK

Structural compression (or filter pruning) of CNNs has the dual
purposes of saving memory cost and computational cost on small
devices, and of resulted CNNs being more humanly interpretable
in general and for scientific and medical applications in particular.
In this paper, we proposed a greedy filter pruning based on the
importance index of classification accuracy reduction (CAR). We
have shown with AlexNet that the huge gain (8 to 21 folds) in the
compression ratio of CAR + Deep Compression schemes, without
a serious loss of classification accuracy. Furthermore, we saw that

the pruned filters have redundant functionality for the AlexNet. In
particular, for many categories in ImageNet, we found that the
redundant filters are color-based instead of shape-based. This
suggests the first-order importance of shape for such categories.

However, a greedy algorithm is likely to be sub-optimal in
identifying the best candidate filters to drop. The optimal
solution may be to search through all possible subsets of filters
to prune, but this can be computationally expensive andmay lead to
over-pruning. Procedures for subset selection, including genetic
algorithms and particle swarm optimization, could be helpful in the
compression of CNNs and will be investigated in future work. Even
though the CAR compression of ResNet achieves state-of-the-art
classification accuracy among other structural compressions by
pruning the identity branch and identifying the redundant
connections. ResNet compression merits further investigation
because of the identity branches in the residual blocks.

We also proposed a variant of the CAR index to compare
classification accuracies of original and pruned CNNs for each
image class. In general, we can compare any two convolutional
neural networks that are trained on a similar dataset through this
index. The comparison could be done by looking into a set of
classes that are important for each filter in a layer of each network.
A similar class-based comparison for any two networks through
our importance index is possible. This practical application of our
proposed method facilitates detailed comparison of any two layers
in any two networks. In fact, this is a fruitful direction to pursue,
particularly given the recent wave of various CNNs with different
structures. Finally, we expect that our CAR structural compression
algorithm for CNNs and related interpretations can be adapted to
fully-connected networks with modifications.
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