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In machine learning, we often face the situation where the event we are interested in has
very few data points buried in a massive amount of data. This is typical in network
monitoring, where data are streamed from sensing or measuring units continuously but
most data are not for events. With imbalanced datasets, the classifiers tend to be biased in
favor of the main class. Rare event detection has received much attention in machine
learning, and yet it is still a challenging problem. In this paper, we propose a remedy for the
standing problem. Weighting and sampling are two fundamental approaches to address
the problem.We focus on the weightingmethod in this paper. We first propose a boosting-
style algorithm to compute class weights, which is proved to have excellent theoretical
property. Then we propose an adaptive algorithm, which is suitable for real-time
applications. The adaptive nature of the two algorithms allows a controlled tradeoff
between true positive rate and false positive rate and avoids excessive weight on the
rare class, which leads to poor performance on the main class. Experiments on power grid
data and some public datasets show that the proposed algorithms outperform the existing
weighting and boosting methods, and that their superiority is more noticeable with
noisy data.
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1 INTRODUCTION

In this paper, we study the problem of learning with an imbalanced dataset. In classification, this is
also called rare events problem, in which there are thousands of times fewer yes cases than no cases.
The yes cases are called events. Usually the events are what we are interested in, which may have very
few occurrences while the nonevent cases are abundant. This is typical in network monitoring
applications, where data representing events are only a tiny portion of the entire dataset. For instance,
we may have a fault or anomaly observed in 1 month’s worth of data while all other observations are
nonevents. Using machine learning approach forevent detection and identification would require
training a machine learning algorithm with these data, but the scarce representation of events in the
dataset makes learning the rare event difficult.

It has been reported in the statistics literature that rare events are difficult to predict [see King and
Zeng (2001) and others]. In Weiss (2004), it is pointed out that with imbalanced datasets, the
learning algorithms are biased in favor of the class priors. The statistical procedure to predict the
event, such as Logistic Regression, often underestimates the probability of the rare events. Such
procedures will have a high overall prediction accuracy mainly due to the correct predictions on the
large number of nonevent cases, but the recall metrics, defined as the fraction of true positives that
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have been successfully predicted, is extremely low. Such
performance does not serve the purpose of event detection,
since what we are interested in is the event. For event
detection in a networked system, having a missed detection on
important events has more detrimental effect than having a false
alarm. Oftentimes we are willing to improve the detection rate
even if it will generate more false positives. However, using the
standard classifiers, the cost associated with misclassification on
either class has the same contribution in the cost function.

To address the problem, we need to give more importance to
the rare class in the cost function. This can be done either by
directly changing the number of examples in each class in the
training set, i.e., by sampling (Cahyana et al., 2019), or by
changing the weights of the classes, which also changes the
distribution of the classes. A review article (Li and Mao, 2014)
provided an in-depth study of data sampling strategies and
weight-modification strategies from the Bayesian classification
point of view. In addition, the number of classes is also not limited
to two classes. It can be extended to multiple-classes (Tanha et al.,
2020).

Sampling has the merit of simplicity but it also has limitations.
First, there are two forms of rarity as pointed out in Weiss (2004):
absolute rarity and relative rarity. While relative rarity can be
corrected by under-sampling the main class, absolute rarity can
only resort to oversampling the rare class. However there is an
issue with this approach—in case there are outliers in the data, the
oversampled outliers will ruin the prediction performance.
Moreover, under-sampling may also cause loss of information.
It is necessary to consider an alternative way to address the
rarity issue.

In this paper, we focus on weighting methods. Unlike the
previous weighting methods that use the population information
or the relative rarity in the sample to decide the weights, we
develop algorithms to compute the weights during the training
process. The weighting algorithms can work with any classifier. In
this paper, we use Logistic Regression, Random Forest, and
Support Vector Machine to demonstrate its effectiveness. The
proposed algorithms have the advantages of not relying on
unknown population information, and being able to improve
the prediction performance of the rare class with a controllable
tradeoff with the main class. Most importantly, this is the best
approach to deal with absolute rarity, which poses great
challenges to other methods.

In practice, a user does not have to choose between a weighting
method and a sampling method. An ensemble approach that
combines sampling techniques and weighting techniques can
achieve the best of the two worlds. For instance, (Guo and
Viktor, 2004) combines generating synthetic data and boosting
procedures to improve the predictive accuracies of both the
majority and minority classes. An improvement on the
weighing method also contributes to the ensemble techniques.

The rest of the paper is organized as follows: in Section 2, we
cover the preliminaries for classification with imbalanced dataset;
in Section 3, we propose two weighting algorithms, DiffBoost,
and AdaClassWeight. They can address both forms of rarity by
adaptively adding weights and combining weighting with
boosting; and subsequently in Section 4, we explain how to

train a classifier under the computed weights; in Section 5, we
provide performance results for the proposed algorithm, along
with comparison with related methods; and in Section 6, we
conclude the paper with outlook for future work.

2 CLASSIFICATION WITH IMBALANCED
DATASETS

Among many others (Japkowicz et al., 1995; Liu et al., 2006;
Ertekin et al., 2007), using weights is a fundamental approach
to address the data imbalance problem in classification. We
focus on the use of class weights in this paper, in which we
add class weights to the loss function, making it more
expensive to have a classification error in the rare class.
This is done by assigning the rare class a larger weight and
the main class a smaller weight. Weighting is also considered
a type of cost-sensitive learning method (Pazzani et al., 1994).
In cost-sensitive learning, the cost associated with
misclassifying a rare class outweighs the cost of correctly
classifying the main class. In King and Zeng (2001), weights
are decided based on sample distribution in the population:
the rare class weight w+ � τ/�y and the main class weight
w− � (1 − τ)/(1 − �y), where τ is the fraction of the rare class in
the population, and �y is the fraction in the sample,
respectively. In some applications, population information
may be straightforward to know, such as in political activities
(King and Zeng, 2001). However, in most other applications,
we do not know the class distribution in the population. For
convenience, many resort to using the sample information,
i.e., in the training set if there are N+ examples in the rare
class, and N− examples in the main class, the weight would be
N−/N+ for the rare class and 1 for the main class. This method,
as we will see later in this paper, has the disadvantage of not
considering the absolute rarity, and also not having control
over the trade off between the false positive rate and the false
negative rate. In case we need to prioritize the rare class, we
cannot improve the performance on the rare class further
since the fixed weights only reflect the ratio of the examples in
the sample.

Similar to the class-weighted methods, there are previous work
that use individual weights in the classification algorithms. We
briefly review some existing work that are developed based on the
idea of introducing a cost for each individual example. The weight
update rule was first introduced in AdaBoost (Freund and
Schapire, 1995) to force the classifier to be biased towards the
minority class.

Given the number of iterations T, and training data
(xi, yi), i � 1, . . . , N{ }, the AdaBoost algorithm computes the
sample weight distribution Dt at the t-th iteration. ht is the
classifier trained under weight distribution Dt. The weight
update rule in AdaBoost is given by

Dt+1 i( ) � Dt i( )exp −αtht xi( )yi( )
Zt

, (1)

where αt is a weight update parameter that needs to be computed
in each iteration. Zt is normalization factor defined as
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Zt � ∑
i

Dt i( )exp −αtht xi( )yi( ). (2)

Based on the weight update rule of AdaBoost, later works
AdaC1, AdaC2, and AdaC3 from Sun et al. (2007), CSB1 and
CSB2 from Ting (2000), and Adacost from Fan et al. (1999)
were developed by associating a cost Ci ≥ 0 with individual
examples in Eq. 1. Examples from the minority class are
associated with larger costs than those from the majority
class.

• AdaC1 modifies Eq. 1 by introducing Ci inside the
exponent,

Dt+1 i( ) � Dt i( )exp −αtCiht xi( )yi( )
Zt

. (3)

• AdaC2 adds a cost Ci outside the exponent of Eq. 1,

Dt+1 i( ) � CiDt i( )exp −αtht xi( )yi( )
Zt

. (4)

• AdaC3 can be considered as a combination of AdaC1 and
AdaC2, in which Ci is included both inside and outside the
exponent,

Dt+1 i( ) � CiDt i( )exp −αtCiht xi( )yi( )
Zt

. (5)

• AdaCost also uses a cost inside the exponent of Eq. 1,
however, instead of directly using cost item Ci, it defines a
cost adjustment function Γ1(ht(xi),yi ) based on Ci,

Dt+1 i( ) �
Dt i( )exp −αtΓ1 ht xi( ),yi( )ht xi( )yi( )

Zt
, (6)

where Γ1(ht(xi),yi) can be set as Γ+ � − 0.5Ci + 0.5 if classified
correctly, and Γ− � 0.5Ci + 0.5 otherwise.

All the aforementioned methods involve using a cost. A
common drawback of them is that one must manually
determine the “optimal” cost, which is predetermined.
Arbitrarily selected costs can result in poor classification
performance as shown in Section 5. However, there is no
better algorithm than exhaustive search to decide the costs.
This motivates an algorithm that computes the weights solely
from the data and does not depend on any hyper-parameter.

3 THE PROPOSED WEIGHTING METHODS

Throughout this paper, we assume the rare class is the positive class.
Let N+ be the number of examples in the rare class, and N− the
number of examples in the main class, and N+ ≪ N−. The class
weights are denoted asw+ for the rare class andw− for themain class.

Through numerous tests, it is observed that what makes it
difficult to learn from an imbalanced dataset is not the relative
ratio of the rare class to the main class, rather it is the small
number of examples in the rare class. In other words, the absolute

rarity matters much more than the relative rarity. This is
especially true for Logistic Regression, as the logistic model is
often estimated by using maximum likelihood estimation and
inherently has the “small-sample bias” issue (King and Zeng,
2001). The simple ratio-based algorithm that uses w+/w− �N−/N+

will only use the ratio information regardless of the sample size
and is deemed unable to find the optimal weights. For a dataset
with (N+,N−) � (200, 2000), a weight ratio ofw+/w− � 10 gives too
much weight to the rare class, leading to overfitting the rare class;
and for a dataset with (N+, N−) � (2, 10), using a weight ratio of
w+/w− � 5 is not enough.

We use two experiments on the Spam data to demonstrate the
effect of the absolute rarity. In the first experiment, the training
set has a total of 2,200 examples, with (N+, N−) � (200, 2000).
We compare results using a sequence of weights: w+/w− ∈ {2, 5,
7.5, 10}. Table 1 shows the results. It is noted that for the simple
ratio-based algorithm using w+/w− � 10, while the recall is the
highest, the precision is the lowest for both training and test, and
the sum of recall and precision is the lowest. Therefore, the results
support the claim that w+/w− � 10 leads to overfitting on the rare
class. On the other hand, the algorithm with w+/w− � 5 has
competitive performance, with a close-to-the-highest recall and
the highest sum of recall and precision, indicating that w+/w− � 5
is the best among the four options.

For the second experiment, the training set has a total of 12
examples, with (N+, N−) � (2, 10). We used a sequence of
weights: w+/w− ∈ {5, 7.5, 10, 12}, and the results are shown in
Table 2. It is noted that simply setting w+/w− � 5 according to the
ratio of the examples in the training set is not enough to have a
high recall. The algorithm with w+/w− � 12 has the highest recall,
and the algorithm with w+/w− � 10 has a close-to-the-highest
recall and the highest sum for recall and precision.

The experiments verified that it is the number of examples in
the rare class that determines the error. Therefore, it is necessary
to look beyond the ratio and develop an algorithm to find the class
weights. We present two algorithms, Differentiated Boosting
(DiffBoost) and Adaptive Class Weights (AdaClassWeight).

TABLE 1 | Spam Data. The number of examples in the training set is (N+ ,N−) �
(200,2000).

Training Test

Recall Precision Recall Precision

w+/w− � 2 0.819 0.804 0.776 0.752
w+/w− � 5 0.910 0.716 0.870 0.676
w+/w− � 7.5 0.92 0.668 0.887 0.627
w+/w− � 10 0.924 0.491 0.897 0.440

TABLE 2 | Spam Data. The number of examples in the training set is (N+ ,N−) �
(2,10).

Training Test

Recall Precision Recall Precision

w+/w− � 5 0.800 0.559 0.580 0.239
w+/w− � 7.5 0.950 0.388 0.620 0.223
w+/w− � 10 1.000 0.382 0.640 0.206
w+/w− � 12 1.000 0.382 0.660 0.183
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3.1 A Boosting Style Weighting Method:
DiffBoost
We define two index sets I+ � {i: yi � 1}, and I− � {i: yi � − 1}. We
use + to denote the rare class and − to denote the main class. In
the algorithm DiffBoost, we compute the weights iteratively
under an overarching boosting framework.

Algorithm 1. DiffBoost.

The classifier ht maps an element in the feature space χ to a label.
Z+
t andZ

−
t are chosen such that ∑

i∈I+
Dt+1(i) � 1, and ∑

i∈I−
Dt+1(i) � 1,

and thereforeDt+1(i), i ∈ I+ will be a distribution, andDt+1(i), i ∈ I−will

be a distribution. This is the invariant of the algorithm, as it holds from
initialization until the algorithm terminates.

Although the algorithm seems to operate symmetrically on
both the rare class and the main class, it actually boosts the
performance of the rare class more than the main class. This is
due to the fact that N+ ≪ N−, and therefore Dt(i) takes larger
values for i ∈ I+ than for i ∈ I−. Initially, the main class is doing
well due to the large number of examples, so we have ϵ+ > ϵ− after
the first iteration, and then w+ becomes larger than w−. The
algorithm starts to behave in favor of the rare class.

This boosting algorithm has the property that as the iteration
number T increases, the training error for the rare class
monotonically decreases. We outline the proof in the following.
The training error of the rare class is given by 1

N+ ∑
i∈I+

1(H(xi)≠yi).

Theorem 1. 1
N+ ∑

i∈I+
1(H(xi)≠yi) asymptotically converges to zero as

T → ∞.
The proof of Theorem 1 is straightforward from Lemma 1 and

Lemma 2.

Lemma 1. The training error of the rare class has the following bound:

1
N+ ∑

i∈I+
1 H xi( )≠yi( )≤ ∏T

t�1
Z+

t .

Proof. Let f(x) � ∑T
t�1

αtht(x), i.e., the final prediction H(x) �
sign(f(x)). From the update rule of Dt+1(i), and using telescoping,
we have that ∀i ∈ I

+
,

DT+1 i( )

� DT i( ) · exp −αTyihT xi( )( )
Z+

T

� D1 i( ) · exp −α1yih1 xi( )( )
Z+

1

. . .
exp −αTyihT xi( )( )

Z+
T

� 1
N+ ·

exp −yi ∑T
t�1

αtht xi( )⎛⎝ ⎞⎠
∏T

t�1Z
+
t

� 1
N+ ·

exp −yif xi( )( )
∏T

t�1Z
+
t

Next, we show that the training error of the rare class is
bounded from above by ∏T

t�1Z
+
t .

Recall that H(xi) � sign(f(xi)).

• If yi and f(xi) have the same sign, then 1(H(xi)≠yi) � 0, and 0 <
exp(−yif(xi)) < 1, thus 1(H(xi)≠yi)≤ exp(−yif(xi)).

• If yi and f(xi) have different signs, 1(H(xi)≠yi) � 1, and
exp(−yif(xi)) > 1, thus 1(H(xi)≠yi)≤ exp(−yif(xi)) still holds.

Combining both cases, we have

1
N+ ∑

i∈I+
1 H xi( )≠yi( ) ≤

1
N+ ∑

i∈I+
exp −yif xi( )( )

�∑
i∈I+

DT+1 i( )∏T
t�1

Z+
t

�a( ) ∏T
t�1

Z+
t

(a) is due to that ∑
i∈I+

DT+1(i) � 1, which is the invariant of the
algorithm.

Lemma 2. ∏T
t�1Z

+
t decreases monotonically as the iteration

number T increases.

Proof.

Z+
t � ∑

i∈I+
Dt i( )exp −αtyiht xi( )( )

� ∑
i∈I+ ,ht xi( )�yi

Dt i( )exp −αtyiht xi( )( ) + ∑
i∈I+ ,ht xi( )≠yi

Dt i( )exp −αtyiht xi( )( )
� e−αt ∑

i∈I+ ,ht xi( )�yi
Dt i( ) + eαt ∑

i∈I+ ,ht xi( )≠yi
Dt i( )

� e−αt 1 − ϵ+t( ) + eαtϵ+t

Plugging in αt � max 0, 12 ln
1−ϵ+t
ϵ+t

{ }, we have the following,
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• When ϵ+t < 1
2, αt � 1

2 ln
1−ϵ+t
ϵ+t

,

Z+
t �

���
ϵ+t

1−ϵ+t

√
(1 − ϵ+t ) +

���
1−ϵ+t
ϵ+t

√
ϵ+t < 1.

• When ϵ+t ≥ 1
2, αt � 0 (i.e., this iteration has no contribution to

the final prediction), and Z+
t � 1.

Therefore Z+
t ≤ 1,∀t. Thus, ∏T

t�1Z
+
t decreases monotonically

with T.
The following analysis shows that Z+

t � 1 is only a transient
state and the algorithm will quickly pass this state and enter into
an exponential decrease state.

• The applicable scenario for the weighting algorithm is when
data is extremely imbalanced and the rare class has very few
data points. Under this condition, it is reasonable to assume

that the initial weighted class error ϵ+t > ϵ−t . During the
iteration, ϵ+t will decrease, and we can stop the iteration
if ϵ+t < ϵ−t has been achieved in less than T iterations.

• When ϵ+ ≥ 1
2, αt � 0, Dt+1(i) � Dt(i) is unchanged, w+

t+1 and
w−

t+1 both increase, however w+
t+1 increases faster since

ϵ+t > ϵ−t . Therefore, in the next iterations ϵ+t+1 will be
decreasing. It continues to decrease until eventually ϵ+t
becomes less than 1

2, so that the upper bound starts to
decrease again.

• When ϵ+ < 1
2, Z

+
t � 2

���������
ϵ+t (1 − ϵ+t )

√
. Let ct � 1

2 − ϵ+t , we have

Z+
t � ������

1 − 4c2t
√

≤ e−2c2t , and∏tZ
+
t ≤ e

−2∑
t

c2t
. In this case, the

upper bound decreases exponentially.

Since the upper bound of 1
N+ ∑i∈I+ 1(H(xi)≠yi) decreases

monotonically with T, and Z+
t � 1 is a transient state and will

FIGURE 1 | The convergence of the DiffBoost algorithm. Training error of the rare class asymptotically converges to zero as its upper bound decreases
monotonically.
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eventually transform to Z+
t < 1, we conclude that the training

error of the rare class asymptotically converges to zero as T→∞.
Figure 1 shows the upper bound of the training error and the

actual training error vs the iteration number by using DiffBoost.
Three algorithms, Logistic Regression (LR), Random Forest (RF)
and Support Vector Machine (SVM) are tested on two datasets.
The Spam dataset is from UCI machine learning repository (Dua
and Graff, 2017). The simulated data are generated using a
function. We generate a total of 1,832 examples with three
predictors X1, X2 and X3. Each predictor variable follows a
Gaussian distribution, X1 ∼ N(0, 1), X2 ∼ N(1, 2) and X3 ∼
N(−2, 1.5). The target function is f(X1, X2, X3) � X1 +X2 +X3

−5(X2
1 +X2

2 +X2
3) +X3

1 +X3
2 +X3

3. The response variable Y �
f(X1, X2, X3) + e, with error term e ∼ N(0, 3). Binary labels are
assigned as yi � 1 if yi ≥ 0 and yi � − 1 otherwise.

The theory and simulation both show that DiffBoost has excellent
converging property. However, it still has one issue—ittakes as many
iterations to predict a new response as it takes to train the classifier.
This problem is inherent to the boosting style algorithms. AdaBoost
(Freund and Schapire, 1997) has the same issue. The parameters
learned from each iteration as well as αt must be saved, as the final
prediction H(x) � sign(∑T

t�1 αtht(x)) requires αt and all the
parameters used by ht(x) for t � 1, . . ., T. In the next section, we
propose an algorithm that takes only one shot to predict. Training
may take many iterations, and can take place off-line, but once we
have learned the class weights, prediction takes only one shot. This
algorithm will be suitable for real-time applications.

3.2 Adaptively Computing Class Weights

Algorithm 2. AdaClassWeight.

The algorithm, called AdaClassWeight, starts with an
unweighted classifier and adaptively increases the weight of the
rare class until a stopping criterion is met. Unlike the DiffBoost
algorithm, the AdaClassWeight algorithm only uses the parameters
of the classifier learned in the final iteration to make a new
prediction. DiffBoost would require all the learned parameters
in the past T iterations in order to make a new prediction.
AdaClassWeight also differs from DiffBoost in the way that the
class error rates ϵ+t and ϵ−t are updated. DiffBoost uses the weighted
class error rates while AdaClassWeight uses the unweighted class
error rates. If there is misclassification within a class, the
unweighted class error rate satisfies 0 < ϵt ≤ 1, so the class

weight will increase in the next iteration. However, the class
with a larger error rate will increase more, thus to get better
classification results in the next iteration.

Remark. For the implementation of AdaClassWeight and
DiffBoost, we can inject a stopping criterion during the
iteration to avoid unnecessary large number of iterations. We
can stop whenever the desired error rate for the rare class has
been achieved, i.e., we can stop when ϵ+t < ϵ−t , or when an absolute
error threshold has reached, e.g., ϵ+t < 0.001.

4 INCORPORATING CLASS WEIGHTS INTO
CLASSIFICATION ALGORITHMS

We show how the class weights w+ and w− computed from
DiffBoost and AdaClassWeight are used with Logistic
Regression, Random Forest, and Support Vector Machine.

4.1 Weighted Logistic Regression
Logistic Regression models are usually fit by the maximum
likelihood method (Cox, 1958; Hastie et al., 2009). The log-
likelihood for N observations is given by:

L β( ) � ∑
i∈I+

log pi( ) + ∑
i∈I−

log 1 − pi( ), (7)

where L is the log-likelihood function, β is the vector of parameters,
which is estimated by maximizing the log likelihood, and pi is the
probability of the i-th example being in the rare class. To assign a
class weight to each class, we modify L(β) as follows:

L β( ) � w+ ∑
i∈I+

log pi( ) + w− ∑
i∈I−

log 1 − pi( ), (8)

where w+ and w− are class weights assigned to the positive class
and the negative class, respectively.

4.2 Weighted Random Forest
Random Forest uses decision trees as building blocks (Breiman,
2001). At each split, a predictor xj and its corresponding cut point
are chosen to minimize the misclassification error, which in
practice is replaced by the Gini index (Hastie et al., 2009).

Gini index � 1 −∑2
i�1

ni

∑2
j�1

nj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

, (9)

where ni is the number of training observations of class i in the
node under consideration.

To incorporate class weights into Random Forest, the
weighted Gini index is given as follows:

Weighted Gini index � 1 −∑2
i�1

wini

∑
j�1

2 wjnj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

, (10)

where wi is the weight for class i, and i ∈ {1, 2}.
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4.3 Weighted Support Vector Machine
Support vector classifier is a maximum-margin classifier. The
classification problem can be expressed as the following
optimization problem (Hastie et al., 2009):

min
β0 ,β

w∑N
i�1

1 − yif xi( )( ) + 1
2
‖ β‖2⎧⎨⎩ ⎫⎬⎭, (11)

where yi is the i-th observation, and f(xi) is the classification result
for the i-th data point xi. The classifier f() is a function of
parameters β and β0. Let ϕ(xi) be the transformed feature
vector for xi, then f(xi) � βTϕ(xi) + β0. Function ϕ() can be
the identity function for linear classification problems. The
parameters β and β0 are estimated by solving the optimization
problem in (11). Since both yi and f(xi) take values in {−1, +1},
yif(xi) � − 1 only when there is a classification error. Classification
error is penalized by using the same weight w on both the positive
class and the negative class. To incorporate class weights into
SVM, we assign different weights to different classes as follows
(Veropoulos et al., 1999; Batuwita et al., 2013):

min
β0 ,β

w+ ∑
i∈I+

1 − yif xi( )( ) + w− ∑
i∈I−

1 − yif xi( )( ) + 1
2
‖ β‖2⎧⎨⎩ ⎫⎬⎭,

(12)

where w+ and w− are weights applied to the positive class and the
negative class, respectively. Chang and Lin (2011) used a different

formulation for the optimization problem, but the two
formulations are equivalent. The equivalence of the two
formulations can be found in Hastie et al. (2009).

5 EXPERIMENTS

Through experiments on real datasets, we show the excellent
performance of the proposed algorithms, and compare them with
other algorithms: AdaBoost (Freund and Schapire, 1997), a
simple weighting method that uses the ratio of positive cases
and negative cases in the sample to compute weights, i.e., w

+
w− � N−

N+,
and the unweighted method. We compare the algorithms in three
aspects: 1) testing error, 2) the Receiver Operating Characteristic
(ROC) curve, and 3) sensitivity to noise. All classifiers are given

FIGURE 2 | Testing error of the rare class decreases along with training error. In the top row, IEEE 39-bus power system data is used; In the bottom row, Spam data
is used.

TABLE 3 | Testing error ϵ+test for the 39-bus power system data.

Methods Testing error

LR RF SVM

AdaBoost 0.186 — —

w+
w− � N−

N+ 0.097 0.2 0.139
w+
w− � 1 0.132 0.289 0.674

DiffBoost 0.067 0.089 0.025
AdaClassWeight 0.09 0.133 0.118

Frontiers in Big Data | www.frontiersin.org December 2021 | Volume 4 | Article 7153207

He and Cheng Weighting Methods for Imbalanced Datasets

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


the same input. Finally, we compare the rare class performance of
our algorithms with the group of algorithms that were developed
from AdaBoost.

5.1 Testing Error
Training classifiers under differentiated weights significantly
reduces the training error of the rare class. Will this also
translate to a reduced error on the testing data? In this
experiment we test if reducing training error on the rare class
leads to overfitting, which means we will get an increased testing
error. Figure 2 shows an overall trend of decreasing for both testing
error and training error, so the improvement on training error on
the rare class is also an improvement on the testing error. The
algorithms start with an unweighted algorithm (w+ � w− � 1 at
initialization), and then through iterations as the training error
decreases, the testing error also decreases. Results in Figure 2 are
obtained from running Logistic Regression on the IEEE 39-bus
dataset and the Spam dataset. Other classifiers show similar results.

Comparison with other methods on testing error are shown in
Table 3. We consider three classifiers: LR, RF, and SVM. When

we train a weak classifier under weights, LR can take both
individual weights and class weights, but RF and SVM can
only take class weights. Since AdaBoost produces one weight
per example and does not give class weights, we can only obtain
results for AdaBoost when using LR as the weak classifier. This
experiment demonstrates that DiffBoost and AdaClassWeight
both outperform existing methods in improving the rare class
performance. The improvement for SVM is the most significant
as the error rate is improved from 0.674 to 0.025.

5.2 Receiver Operating Characteristic
It is reasonable to expect that the weighting algorithm will
improve the prediction accuracy of the rare class at the
expense of the main class. In this experiment, we will find out
how much tradeoff exists between the rare class and the main
class. We evaluate the performance of DiffBoost and
AdaClassWeight in terms of the true positive rate and the
false positive rate, and we compare them with 1) the simple
weighting algorithm that uses the ratio to decide weight,
i.e., w+

w− � N−
N+, 2) the classical boosting algorithm AdaBoost, and

FIGURE 3 | ROC on training data and testing data. Tests are done on the IEEE 39-bus power system data. DiffBoost and AdaClass Weight both have a larger area
under the curve than other algorithms.
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3) the unweighted algorithm (labeled as 1:1 in figures). AdaBoost
is not designed to address the data imbalance problem, but it does
use boosting to improve prediction performance without
distinction of classes. We would like to see how differentiated
boosting performs in terms of ROC compared to AdaBoost and
others.

The ROC curve is the plot of true positive rate versus false
positive rate for different cut-off points of a parameter. If
increased true positive rate is at the cost of the increased
false positive rate, the curve would go along the 45° line (the
gray line in Figure 3). Otherwise, if the false positive rate does
not go up proportionally, it would stay above the 45° line. On the
ROC plot, the area under the curve is used to compare
algorithms. The one with the largest area under the curve is
considered the best.

Results from using IEEE 39-bus system data (Figure 3) show
that the areas under the curves for the two proposed algorithms
are the two largest compared to all other algorithms. This means
the false positive rate did not go up proportionally. This is because
there are a large number of examples in the main class, and
adding appropriate weight on the rare class does not affect the
performance of the main class too much.

5.3 Sensitivity to Noise
We care about sensitivity to noise because added weight will also
amplify noise if noise happens to be on the rare class. In this section
we test if the weighting algorithms DiffBoost and AdaClassWeight
are sensitive to noise. We test the algorithms on the IEEE 39-bus

dataset and present the results from using Logistic Regression.
Results from using the other two classifiers are similar.

Noise is added into data as class noise, i.e., we flip a certain
percentage of labels in each class. We define the percentage of
flipped labels as the noise level, which takes values in (0, 1, 2, 5, 10,
15%). The results show that DiffBoost and AdaClassWeight can
perform better than the ratio-based weighting algorithm, better
than the AdaBoost algorithm, and much better than the
unweighted algorithm (see Figure 4). The superiority of the two
proposed algorithms is more evidenced as the noise level increases.
Although the performance of DiffBoost and AdaClassWeight is
also impacted by noise, the impact is smaller than other algorithms
since the performance drop is not very steep.

5.4 Comparison With the Boosting
Algorithms
The boosting algorithms AdaC1, AdaC2, AdaC3, and Adacost
mentioned in Section 2 are developed from AdaBoost and all
have similar ROC curves as AdaBoost (see Figure 3). Next we
show another aspect of these algorithms: all methods require a
preset cost Ci, ∀i, and the classification performance is extremely
sensitive to this hyper-parameter. We use the Spam data to
demonstrate. The Spam data has a total of 4,597 examples
with 2,785 non-spam emails and 1,812 spam emails. We
randomly select 1,506 examples from the original dataset. The
ratio between non-spam examples and spam examples is 12 : 1,
and 50–50% split is used for training and test within each class.

FIGURE 4 | Sensitivity to noise for both training data and testing data. Test is done on the IEEE 39-bus power system data. While all algorithms are impacted by
noise, the proposed algorithms perform better.

TABLE 4 | Spam data. From left to right: the recall on test data under various cost ratios, the precision corresponding to the highest recall, training time, and test time.

Recall with different cost ratios C+: C− Precision Training Time(s) Test Time(s)

1:1 1.5:1 2:1 2.5:1 5:1 7.5 10:1

Adacost 0.633 0.669 0.698 0.878 0.698 0.92 0.775 0.1 1.41 0.004
AdaC1 0.633 0.824 0.885 0.896 0.917 0.99 0.99 0.076 3.51 0.004
AdaC2 0.633 0.9 0.92 0.96 0.98 0.99 0.99 0.076 2.73 0.005
AdaC3 0.594 0.881 0.94 0.824 0.824 0.775 0.91 0.33 2.1 0.004
DiffBoost 0.931 0.931 0.931 0.931 0.931 0.931 0.931 0.392 1.35 0.003
AdaClassWeight 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.403 0.74 0.003
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To see the effects of different cost settings on classifiers, we compare
the results of Adacost, AdaC1, AdaC2, and AdaC3 based on different
cost ratios C+: C−, and report the results on the test data (see Table 4).
First of all, the highest recalls of the four algorithms occur at very
different locations even for the same dataset. This indicates it is not a
simple task to assign cost ratios. In Table 4 the highest recall is
highlighted for each algorithm and the precision under the same cost
ratio is also reported. Although these recalls are very impressive, the
precisions are extremely low. If an algorithm simply predicts all cases as
the rare class, it can achieve recall 1.0, but the precision is close to zero.
This is observed with these boosting algorithms. In comparison,
AdaClassWeight has the highest precision while achieving a high
recall. It is also observed that the sum of recall and precision is the
highest by the two proposed algorithms.

The proposed algorithms also outperform the boosting
algorithms in algorithm complexity. For the boosting
algorithms, the cost ratio is a hyper-parameter. The optimal
value for the hyper-parameter is obtained by a grid search. In
the experiment, we performed a grid search for the cost ratio C+/C−

∈ (Pazzani et al., 1994; King and Zeng, 2001) with step size 0.5. The
training time would be much longer had we used a finer grid. In
comparison, the proposed algorithms adaptively find the weights
without a preset hyper-parameter. DiffBoost and AdaClassWeight
terminate after T iterations, or before T iterations if a desired
tradeoff between the positive class and the negative class have been
found, so the algorithms are bounded to T iterations. The proposed
algorithms have lower complexity as shown in Table 4.

6 CONCLUSION AND OUTLOOK

We have studied the problem of classifying rare events in imbalanced
datasets, in which the rare class examples are significantly fewer than
the main class examples. We focused on designing weighting
algorithms to compute class weights during the training phase.
DiffBoost and AdaClassWeight are general weighting algorithms
and can be used in junction with any classifier. It has been tested
with Logistic Regression, Random Forest, and Support Vector

Machine, and has been applied to several datasets. The
experimental results show that they improve the prediction
accuracy of the rare class with a controlled tradeoff in the main
class. The ROC curves of the proposed algorithms have larger “area
under the curve” than the simple ratio-based algorithm, the original
unweighted algorithm, and the AdaBoost algorithm as well as other
boosting algorithms based on AdaBoost. It also has the advantage of
being able to focus on the rare class, giving it a much higher accuracy
in case we need to prioritize the rare class, with a controllable tradeoff.
Multiclass classification for more than two classes using differential
class weights is an easy extension from this work, which will be
addressed in the future work.
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