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For several years CERN has been offering a centralised service for Elasticsearch, a popular
distributed system for search and analytics of user provided data. The service offered by
CERN IT is better described as a service of services, delivering centrally managed and
maintained Elasticsearch instances to CERN users who have a justified need for it. This
dynamic infrastructure currently consists of about 30 distinct and independent
Elasticsearch installations, in the following referred to as Elasticsearch clusters, some
of which are shared between different user communities. The service is used by several
hundred users mainly for logs and service analytics. Due to its size and complexity, the
installation produces a huge amount of internal monitoring data which can be difficult to
process in real time with limited available person power. Early on, an idea was therefore
born to process this data automatically, aiming to extract anomalies and possible issues
building up in real time, allowing the experts to address them before they start to cause an
issue for the users of the service. Both deep learning and traditional methods have been
applied to analyse the data in order to achieve this goal. This resulted in the current
deployment of an anomaly detection system based on a one layer multi dimensional LSTM
neural network, coupled with applying a simple moving average to the data to validate the
results. This paper will describe which methods were investigated and give an overview of
the current system, including data retrieval, data pre-processing and analysis. In addition,
reports on experiences gained when applying the system to actual data will be provided.
Finally, weaknesses of the current system will be briefly discussed, and ideas for future
system improvements will be sketched out.
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1 INTRODUCTION

Due to increased interest from its user community, CERN-IT decided to offer a new, managed and
centralised service for Elasticsearch1,2. As part of the initial service deployment, a detailed internal
monitoring scheme was implemented, allowing service managers to detect and debug issues early on.
Since one of the main customers from the start was the central monitoring infrastructure itself, a
dedicated Elasticsearch cluster was created for the monitoring of the service to avoid circular
dependencies. Over time, the internal monitoring scheme was enriched by detailed dashboards
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and visualisations for a variety of relevant metrics. This allows the
service managers to debug any issues with the service. The
historical record of the monitoring data can also be directly
used to train an anomaly detection system to detect issues in an
automated way.

An initial attempt to extrapolate the future state of the clusters
based on their history was made back in 2016 and completed in
2017 (Moya, 2018). Based on the experiences gained during this
exercise, as well as profiting of the increased monitoring data
accumulated over the years, the approach was reviewed in early
2019, and further developed during that year, resulting in the
current anomaly detection system used in production. In the
following sections, a brief description of the service and previous
attempts to implement an anomaly detection system to detect
issues in the Elasticsearch Service will be given. Data retrieval,
flow and pre-processing will be covered, along with an overview
of the neural network training process and an analysis of the final
performance. Finally, examples of performance on real
monitoring data are given. The paper will conclude with the
mention of known limitations and future work. It is important to
mention that the focus of this project has been less on the
optimisation of the analytics part but on the usability in practice.

2 CERN CENTRALISED ELASTICSEARCH
SERVICE

The Centralised Elasticsearch service provides a set of independent
Elasticsearch installations, also called clusters. The details about the
service can be found in (Saiz and Schwickerath, 2020). A
sophisticated access control system allows for sharing individual
clusters between different user communities, while ensuring
that they remain hidden from each other, see (Schwickerath
et al., 2019) for more details. In this way, each cluster has one or
more entry points that can be used by entirely different user
communities, thereby allowing for efficient sharing of the
available resources. All the client traffic goes through a web
proxy which gives additional information about access patterns,
timings and return codes.

3 ANOMALY DETECTION DEVELOPMENT

3.1 Auto-Encoder and Classifier
Afirst attempt to usemachine learningmethods to predict issues in the
Elasticsearch service was made in 2016 by a technical student (Moya,
2018). This was based on a two step approach aiming to extrapolate
cluster states into the future, consisting of an unsupervised deep auto-
encoder (Said Elsayed et al., 2020) architecture followed by a supervised
classifier predicting the future state per cluster in the next 5–10min.
The classification step was used on events pre-selected by the auto-
encoder, and tried to predict the future cluster health from the set of
metrics in use. It was trained using the Elasticsearch cluster health state
(“operational,” “affected” and “down”), as this step requires annotated
data. Due to the different use patterns of the different clusters, the
system was applied to each cluster independently.

The approach suffered from a number of issues:

• Lack of statistics for the classifier: while there was a lot of
available cluster data in fully healthy states, the number of
“affected” and “down” states of interest for service
managers, as reported by Elasticsearch, became rare while
the service maturity was improving, making it impossible to
re-train that part of the system due to lack of statistics.

• With increased maturity of the service, users reported more
and more on issues which did not affect the cluster health at
all, making the classifier effectively irrelevant as these do not
affect shard allocations.

• The auto-encoder suffered from frequent convergence
problems, specifically for more complex clusters.

• It was not possible to apply the system to new clusters as this
required re-training of the particular cluster with enough
statistics.

• Cluster usage patterns changed over time due to changing
user activity, making frequent re-training necessary.

• Unpredictable user activity resulted in many false positive
alarms after the auto-encoder step.

Due to these issues, the classifier was dropped early on, leaving
only the data retrieval and the auto-encoder. The remaining
system was still useful to detect issues by directly checking the
anomaly scores defined by the auto-encoder. While moving to
newer versions of Elasticsearch, there was a need to retrain the
auto-encoder for new clusters, which turned out to be very time-
consuming and very unreliable due to the convergence issues.

3.2 Re-implementation Based on Long
Short Term Memory
In 2019 the whole system was reviewed, including the goal of the
anomaly detection system as such. Rather than trying to predict the
future cluster state, the focus turned to guiding service managers on
where to pay attention first, with the ultimate goal of providing a
single dashboard to look at several times per day to spot issues as
they appear, before users do. Rather than using a deep feed-forward
neural network architecture, it was decided to go for an unsupervised
model based on Long Short Term Memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997) to address the convergence
issues. LSTMs are powerful recurrent neural network architectures
capable of capturing long-term time dependencies, and have been
used successfully for time series anomaly detection in the past, see for
example (Said Elsayed et al., 2020). This could increase the possibility
of capturing service issues that build up over time. An overview of
the current status of this approach was written in mid-2019
(Andersson, 2019). In addition, a simple moving average
approach was introduced as a traditional method which does not
require any training and which has no free parameters (see Section
5.1). This was done with the objective of having a simple prediction
method to which the LSTM results could be compared.

3.3 Generalised Model
Finally, the model was extended to all clusters, allowing for less time
to accumulate training data, and opening up the possibility of
immediately applying the system to newly created clusters. This
was possible by a thorough review of all usedmetrics, replacing those
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which were cluster-dependent by similar metrics with the same
information content, but with the same range for all clusters. As an
example, the number of data nodes in a cluster was replaced by the
relative node count with respect to the previous sample, and the free
disk space was replaced by the percentage of free available space.

4 DESCRIPTION OF THE ANOMALY
DETECTION SYSTEM

The basic idea is the following. Every Δt � 5 min, each cluster
reports its state as a vector y (t0) of dimension n, where n is the
number of metrics used to detect anomalies. Ifm is the number of
time steps in the past to be used, then the samples y (t−m) to y (t−1)
are used to make a prediction Y (t0) for the current time t0.

The final anomaly score S (t0) is then defined as the mean
squared error of the prediction, Y (t0), and the ground truth
provided by the measurements, y (t0):

S(t0) � 1
n
∑
n

i�1
(yn(t0) − Yn(t0))2 (1)

where n is the number of metrics. Note that the normalisation
factor 1

n is actually of no importance for the anomaly detection
itself. In addition, in case this value is larger than expected, the

differences yi (t0) − Yi(t0) contain valuable information about the
potential origin of the issue.

The system will be described in the following section, starting
with an overview of the information flow, and then going into more
details. Figure 1 shows the processing pipeline. The data source can
be historical data or fresh data flowing in from the system. The
processing is ensured to be identical during training and evaluation
of fresh data. All data is first enriched in the sense that other, derived
values are added to the set, like derivatives of input variables. After
that, a subset of metrics from Elasticsearch internal state data, log-
files and machine monitoring, as indicated in Table 1, are selected
and preprocessed if needed. Before entering the analytics part, it has
to be normalised in a well-defined way.

4.1 Implementation of the Processing
Pipelines
The actual implementation of the processing pipeline is shown in
Figure 2. The internal monitoring system serves as data source,
where all metrics are directly accessible from the monitoring
dashboards. A subset of metrics is periodically extracted, joined
and enriched according to the previous description, and written
back to the monitoring system. The enriched data is dumped once
per day on a mass storage system, see for example (Bitzes et al.,
2020), for later use during the training. In this way, the training

FIGURE 1 | Processing pipeline: independently of the source, the data is processed by the same pipeline to ensure consistency.

TABLE 1 | Sources and classes of input metrics. During the enrichment steps, averages, maximum andminimum values as well as changes with respect to the previous time
step are calculated, and a subset of these are used in the final model.

Information source Metric groups

host monitoring metrics • CPU usage
• memory usage
• disk usage
• swap usage

Elasticsearch internal metrics • breakers related metrics
• thread pool related metrics, namely for search and write requests
• java virtual machine metrics
• garbage collectors
• index, shards and document counts
• index and shards field, replication, storage size and segment information
• query cache usage
• node counts

web server log files • bytes transferred
• response time
• exit codes, aggregated over ranges, e.g. number of 4xx codes

Elasticsearch log files • connection exceptions
• deprecated requests
• water mark warnings from Elasticsearch
• java errors
• node number change events (left, joined)
• warnings, e.g. for too large requests
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can be done entirely externally to the service itself. The training
procedure uses this historical daily enriched data and produces
both the model parameters and normalisation information,
which is needed to pre-process fresh data before feeding it
into the model for evaluation. It is possible to run several

models (e.g. one for production and another one for quality
assurance) in parallel. Evaluation of the model itself happens
every 5 min on fresh data from the monitoring system. Scores, as
well as the contributions of each input, are written back into the
monitoring system and visualised on a dedicated dashboard.

FIGURE 2 | Information flow for the anomaly detection system.

FIGURE 3 |Normalisation functions tested for the anomaly detection. The first one in blue corresponds to a Sigmoid function. Themodified sigmoid function (in red)
has the advantage of being more linear and flat around zero.
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4.2 Data Processing
The data retrieval is performed every Δt � 5 min. At this step the
goal is to retrieve as much information from the system as
possible and to keep it as generic as possible. The selection of
metrics is done in a later step in the pipeline, which is model
specific. The idea is to keep the system as flexible and open as
possible to the application of different analytics steps later on.
Since monitoring data is stored on Elasticsearch, this step implies
aggregation of data in the given time interval Δt, including the
calculation of sums, averages, minimum and maximum values or
counts. Input data comes from different sources. A rough
classification of metrics and their sources can be found in Table 1.

4.2.1 Logging Information
Log files typically contain human readable text with very valuable
information about the state of system, including warnings and
errors. While convenient for humans, the analytics part expects
metrics which are numbers. Therefore, log files require a special
treatment. Each log entry is parsed with regular expressions and
categorised. The number of entries in each category per time
interval is then used as a metric, each category corresponding to a
different metric. This very basic approach is good enough to catch
the most frequent failure modes. More sophisticated methods
could help, in particular for cases where log file entries change
between different versions of the software being monitored, or to
catch new entries. This, however, is not part of this paper, and is
on the road map for possible future improvements.

4.2.2 Data Enrichment
Data enrichment adds new metrics to the set of metrics by
deriving them from the input data. This implies:

• Calculation of derivatives, approximated by the difference
between the current and the previous sample. As an example,
the absolute number of accesses to a system on its own can
vary a lot for different use cases of a cluster, and may vary as
well over the lifetime of the cluster due to changed user
behaviour. Short-term changes of this number though are less
sensitive to the use case, cluster and slow changes in time.

• Conversion of absolute numbers into relative numbers. As
an example, the raw data contains the total and the used disk
space. Since different clusters have different size, they are
not comparable, while the relative usage of the disk in
percent is a metric which is comparable across all clusters.

4.2.3 Metric Selection
After enrichment, the data set contains about 400metrics. Out of the
enriched data set, only a subset is actually useful. For example,
absolute values which are cluster specific are not useful for further
analysis and should be dropped from the pipeline. This also reduces
the dimensionality of the problem to be solved in the analytics part
later on. Spearman’s rank correlation coefficients were calculated on
the set of input metrics of the original model to reduce
dimensionality. The current model contains 224 input metrics.
The identification and elimination of cluster dependent input
metrics is the key to obtaining a generalised model that works for
all clusters, including new clusters previously unseen by the system.

4.2.4 Chunking of Input Data
Chunking up of data is only required to prepare the historical data for
training. It takes place after the metric selection and before the data
pre-processing in Figure 1 when the training and validation sets are
defined. In this step, the whole training data set is chunked up into
smaller time sequences. The reason for chunking up the data in time is
that the behavior of the clusters evolve over some time. After users
have asked for a new cluster, it will initially be empty. Then users will
start to experiment with it, more users may join in over time, and the
load increases. Therefore, the samples for each cluster become a
function of time. By randomly picking different periods of time for
both training and validation, it is possible to at least partly compensate
for this effect. Samples in the validation set are neither used for the
determination of meta parameters for normalisation nor for the
training itself, but only for validation.

4.2.5 Pre-Processing and Normalisation
The next step is pre-processing and normalisation of the incoming
data. Pre-processing involves detection and repair (if possible) of bad
or missing data samples, identification of clear outliers, determination
of the skewof the inputs, and taking the log of verymuch skewed input
metrics. In this step a Principal Component Analysis (PCA) has been
considered to speed up training and reduce the problem
dimensionality, which is relatively large. This step is ultimately
discarded in the pre-processing pipeline due to the risk of
information loss increasing the rate of false negatives. Most input
metrics are sensitive to rare failure modes only, and hence, the related
metrics will usually be constant. If these metrics change, however, this
is something the service managers will need to know about, and
therefore these metrics must not be removed from the inputs. The
training speed is less of an issue in this specific use case, since retraining
of the network is only required if the set of inputs has changed. This
typically correlates with significant changes in the monitored service
which occur rarely, at a rate of at most two to three times per year.

Next, the data is further processed and normalised. Centralisation
using the absolute maximum of each metric, as estimated from the
training data set, was found to be too sensitive to outliers which had to
be removed before proceeding. Standardisation generally provided
better results in this respect and avoided having to remove outliers
from the data set prior the training. The required mean values and
standard deviations are again retrieved from the training data set only.

The last step in the pre-processing chain is normalisation of the
input data. Standardisation (Géron, 2017) is used to normalise the
data such that it has a mean value of zero and unit variance. The
evaluation of the scores followingEq. 1 requires themodel output,Y,
to be on the same range as the input data, y. In many deep learning
models, the output layer of the network uses a sigmoid function
restricting the outputs to take on values between 0 and 1. Therefore,
the values from the system state must be normalised to match that
range, or the predicted values cannot be compared to them.

To achieve this, three different options using a non-linear
normalisation approach have been explored. These are shown in
Figure 3. Both the standard Sigmoid function and the tanh are
fairly steep around zero while the modified Sigmoid function y �

1
1+e−0.3x only maps extreme outliers close together to zero or one.
Using the modified Sigmoid function showed the best
performance in a parameter scan and was thus selected. The
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additional factor of 0.3 was chosen based on a visual inspection of
the input data. It is a free parameter which can be further tuned
through an extended parameter scan in a future study.

4.2.6 Training Set Preparation
Training uses data across all clusters except those which underwent
major changes or which had known larger anomalies during the phase
used for training. For the remaining clusters, already identified clear
outliers are removed to ensure that these are not considered as normal
operation for the neural network.

For the model presented in this paper, 140 days of recorded
data were used, sampled every 5 min from 29 selected clusters,
corresponding to a total of about 1.2 million data samples. Half of
these were used for training, the other half for validation.

5 MODELS

The analytical models which have been tested so far will be
described in the following sections.

5.1 Moving Average
A simple method which does not require any retraining and
adapts itself to the data is to calculate a moving average. The pre-
processing pipeline is identical to the one for the LSTM network.
The prediction for each cluster is then defined as the average

Y(t0) � 1
m

∑
−m

i�−1
y(ti) (2)

The anomaly score is then calculated as in Eq. 1. This very
simple approach already catches many of the anomalies in the
system. Since it comes with zero free parameters after fixing the
time window length to 1 day, it can be applied to each cluster
separately, and directly to the incoming data. A caveat of this
approach is that it automatically adapts to the current situation.
So, if a problem builds up and stays for some hours, it will soon no
longer be reported on. Moreover, when the issue goes away, the
method will complain again.

The moving average is not capable of catching any correlations
between the input variables and thus is less performant for
clusters with more complex usage patterns.

5.2 LSTM Networks
As mentioned in chapter 3.1, the auto-encoder network suffered
from convergence issues and was difficult to train. RNN networks
are better suited for time series, and specifically LSTM
(Hochreiter and Schmidhuber, 1997) networks address
convergence issues. Moreover, LSTMs are designed to capture
long-term dependencies, and are therefore well-suited for time
series prediction, which matches our use case. This is why this
architecture has been chosen.

For the latest model currently in production, about 5 months
of historical data has been used. A set of 224 metrics has been
selected from the raw data set. The training sample contains data
from all clusters, ensuring that data in the time sequences is not
mixed up between the different clusters.

The full historical data was chunked up into a total of 20
subsets, and randomly assigned to equally sized training and
validation data sets. In previous studies multiple possible network
layouts have been evaluated. Using several layers did not improve
the performance significantly, but came at the cost of significantly
increasing the number of free parameters. Other network
architectures investigated included a feed-forward layer as
input or output layer, or both. While increasing the number of
free parameters, the gain in performance on the validation set was
not significant. Using other RNN variants like Gated Recurrent
Units (GRU) (Chung et al., 2014) was outside the scope of the
current study but is on the roadmap for possible further
improvements.

In the final model, a single LSTM layer with 288 time steps is
used, corresponding to a full day of historical data. There are
roughly 400,000 trainable parameters in the model.

The Keras/Tensorflow3 implementation of LSTMs is used. In
order to speed up the training process and make use of GPUs, the
CuDNNLSTM implementation is used, with Adam (Kingma
et al., 2015) as optimizer with a learning rate of 0.001 and a
decay rate of zero. The mean squared error is used as loss
function.

After the model has been learned, it is converted back into a
regular Tensorflow LSTM such that the evaluation can be done
on any CPU only based node.

Figure 4 shows the loss during the training as a function of the
epoch. The validation loss follows the training loss well. The
validation error drops rapidly already after a few epochs and then
continues to slowly decrease. The training was interrupted
statically after 100 epochs. It should be noted that the error
converges to a value above zero. This behaviour is not unexpected
since the training sample still contains unpredictable data caused
by random user activity.

Training time using a NVIDIA GeForce RTX 2080 with 12 GB
RAM takes about 19 h. This could possibly be reduced by tuning

FIGURE 4 | Loss as a function of the number of epochs.

3see https://www.tensorflow.org/.
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the model parameters. This is, however, not considered worth the
effort, as re-training is usually only required if the input metrics
have changed which recently only happened every few months.
Apart from Adam, other optimizers, namely SGD (Murphy,
2022) and RMSprop,4 have been investigated. Using Adam
with the chosen learning rate showed the best convergence
behaviour for this specific use case.

6 RESULTS

The LSTM based model solves the convergence issues observed in
Section 3.1. Convergence and generalisation is generally good to
excellent. The fact that the training error stays above zero is
expected due to the partially unpredictable data.

In practice, the single generalised model is applied to each
cluster individually every 5 min, and the scores are written back to
the monitoring system for use by the service managers.

Figure 5 shows some examples of the resulting anomaly scores
on real data. Random user activity as in 1) turns up as sharp,

FIGURE 5 | Screenshots of the raw anomaly scores as estimated by the LSTM network. Each line corresponds to a different Elasticsearch cluster. Lower values are
better, meaning that the prediction matches the actual value better. Clusters with scores sticking out above the others over longer times of periods or with increasing
scores over time need attention. Figure 5A normal conditions with some noise and one cluster with an issue building up, and Figure 5B a typical full day showing several
issues to be checked.

4see: https://www.cs.toronto.edu/∼tijmen/csc321/slides/lecture_slides_lec6.pdf.
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usually small spikes, which occur more often during working
hours and recover immediately. Increased activity during the
night can be explained by the creation of new indices or analysis
of the data collected during the day by the users. Unless these
spikes become very frequent and high, no special attention is
required. In some cases users have to be contacted to optimize
their usage of the system though. If the score for a specific cluster
builds up slowly over time as can be seen in Figure 5A, or if it
jumps up and stays at a high level, the cluster in question deserves
expert attention. Figure 5B shows the anomaly score evolution
during the course of a full day for all clusters, indicating several
issues requiring expert attention.

While looking at the raw anomaly scores, which are very fine-
grained with samples every 5 min, it is sometimes better to
aggregate them over a longer period of time. Doing that has
the advantage of smoothing out peaks caused by random and
unpredictable cluster activity, instead focusing attention on
longer ongoing issues which need expert attention.

Figure 6 shows the aggregated scores per cluster in a 4 h interval,
in decreasing order by cluster. This view is updated every 5 min,
showing the status for the last 4 h at any given time, and can thus
guide experts in deciding where to focus their attention.

Finally, Figure 7 shows a screenshot of how the service
managers will see this. Note that the screen shot has been
taken at a different time than the data represented in
Figure 6. Scores from both the LSTM and the moving average
are given, as they are complementary since the LSTM predictions
are based on reference period (used for training) for all clusters,
while the moving average is cluster specific, and adapts rapidly to
ongoing issues such that they will completely vanish from the
picture if they have been going on for 24 h or more already.

Comparing LSTM results and moving average predictions it
can be noted that in particular for simple and frequent cases the

moving average does fairly well. Not surprisingly, anomaly scores
for different clusters differ between the methods. Long standing
issues (for example, during weekends) are no longer detected by
the moving average after 24 h or more, and turn back into false
positive anomalies when the actual issue has been fixed.
Nevertheless, the moving average results are kept on the
service managers dashboards, as they are complementary to
the LSTM estimations.

7 EXPERIENCES IN DAILY OPERATIONS

The described system has been in production for about a year and
a half. Since January 2020, the system has been retrained seven
times, due to model improvements and to address false negatives
which turned up during daily operations and which required
additional metrics to be added to the model.

In daily operations, the anomaly detection system is a useful
extension of the already existing and maintained detailed service
monitoring. Its strength is that it only takes a few seconds between
flagging an anomaly for a particular cluster and identifying possible
reasons for the anomaly. A follow-up is then needed by visiting
related detailed dashboards in the standard monitoring system to
get to the bottom of the issue, while filtering for the specific cluster
for which the anomaly has been seen. Quantifying the amount of
time this spares service managers in their daily work is difficult but
the current system significantly reduces the workload and
streamlines the working process.

The bulk of the detected cases, in the order of 80%, are related
to user errors, for example wrong credentials, bad clients, or
simply users filling up the available storage space. Even if these do
not cause a problem for the service itself, they are easy to overlook
in the standard monitoring and have frequently been missed out

FIGURE 6 | Aggregated score for the same day as in Figure 5, from 8am to 12pm, in decreasing order.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 7188798

Andersson et al. Elasticsearch Service Anomaly Detection

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


in the past. They can cause data loss for the users though, and
users appreciate being notified of these cases.

Feedback on the anomaly detection system from users and
other service managers who make use of it is very positive in the
sense that it makes their daily operations easier.

8 LIMITATIONS AND FUTURE WORK

The optimisation of the current system has been done mainly by
hands-on experience while using it to detect service issues. A
currently still missing feature is the possibility to annotate

FIGURE 7 | Screenshot of the anomalies overview page for servicemanagers, showing the LSTM (left) and themoving average (right) results for the last 4 hours of
operations. The upper row shows the accumulated anomaly score, giving an indication of what to look first. The second row shows the last scores in 5 min steps, color
encoded. Non-green bands indicate ongoing issues. The third row shows all anomaly scores by time which exceed a specific threshold, and the fourth row shows input
metrics with the largest deviation from the predicted value, thus giving an indication of what may be wrong.
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detected anomalies, which would allow for quantitative estimation
of the performance of the system by service experts confirming or
disproving detected anomalies. Additional information about the
anomaly type would be beneficial in that step, as this would allow
for grouping the detected anomalies into larger categories, enabling
further prioritisation of actions to be taken by the servicemanagers.
Examples of such categories would be: user errors, disk space
issues, system I/O issues, etc. Note that his is different from the
original approach which used a classification network based on the
Elasticsearch internal cluster status. Depending on the anomaly
type, it may also be possible to trigger automatic corrective actions
where possible.

An ever ongoing iterative process is the selection of the input
variables.While using the system in production, a few false-negative
events have been identified, for example by users complaining about
performance issues which were not seen by the anomaly detection
system. These cases could be traced down to missing sensitivity in
the input data, and they have been resolved by adding metrics with
sensitivity to those events and retraining afterward. Similarly, the
number of false positives has recently been significantly reduced by
removing three noisy input variables from the model, among them
the current cluster state reported by Elasticsearch. The latter can
change quickly if there is heavy indexing activity, as it indicates if all
data has been written to disk or not.

On the other hand, the dimensionality of the input space, O
(200), is still very high, and it is likely that the performance of the
system can be further improved by reviewing the feature
extraction process and eliminating input features that have not
been observed to contribute to any anomalous events in the past,
accepting the increased risk for false negatives on rare anomalous
events sensitive to those particular input features.

9 CONCLUSION

Using both traditional methods and machine learning techniques,
a robust and fully self-supervised anomaly detection system has
been implemented for the Centralised Elasticsearch service at
CERN. The initial goal of aiding the service experts in
identifying issues rapidly and in a timely manner before users
do has been achieved, and successful early identification of
anomalous events has been demonstrated in many cases and on
a daily basis since the system has been set up.
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