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Optimization algorithms/techniques such as genetic algorithm, particle swarm
optimization, and Gaussian process have been widely used in the accelerator field to
tackle complex design/online optimization problems. However, connecting the algorithm
with the optimization problem can be difficult, as the algorithms and the problems may be
implemented in different languages, or they may require specific resources. We introduce
an optimization platform named Teeport that is developed to address the above issues.
This real-time communication-based platform is designed to minimize the effort of
integrating the algorithms and problems. Once integrated, the users are granted a rich
feature set, such as monitoring, controlling, and benchmarking. Some real-life applications
of the platform are also discussed.
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1 INTRODUCTION

As accelerators push the performance limit, for example, in terms of beam emittance or brightness,
the controls become more complex. Realizing the design performance in spite of the many inevitable
imperfections in the real machines is very challenging. In recent years, it has become a trend for
accelerator physicists to resort to online optimization, i.e., directly optimizing the control parameters
of the machines with computer algorithms during operation, to bring out the best machine
performance and reduce tuning time (Huang et al., 2013; Pang and Rybarcyk, 2014; Tian et al.,
2014; Huang, 2016; Olsson, 2018; Bergan et al., 2019; Duris et al., 2020).

In a typical online optimization scenario, the evaluation script that controls the machine
parameters and reads or calculates the objective to be optimized usually lives in the accelerator
control room (ACR), while the codes of optimization algorithms are copied to the same computer in
the ACR and adapted to the evaluation script and perform the optimization task there. There are a
few problems posed by this simple and straightforward method. If the optimization algorithm was
tested in a simulation setup and then copied to the ACR, some re-configuration may be needed, such
as adapting the API to the experimental evaluation script and setting up the algorithm run-time
environment. These seemingly trivial tasks may be complicated, time-consuming, and error-prone.
This work may need to be done each time a new algorithm is used or a new experimental problem is
optimized. Furthermore, it could be a daunting task to connect the algorithm and the evaluation
scripts if they are written in different languages. Sometimes for security considerations, an externally
developed algorithm run-time environment is not allowed to be deployed in the ACR.

In this study, we developed an online optimization platform, Teeport, to addresses the
aforementioned communication difficulties between the optimization algorithms and application
problems. It is task-based, extensible, embeddable, and can be used for optimization and real-time
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testing. With Teeport, the algorithms and problems can be
effortlessly integrated into a real-time messaging service, which
gives the ability for the two sides to talk to each other freely. In
addition, once integrated, the users are automatically granted a
rich optimization-related feature set, including optimization
process controlling, monitoring, comparing, and
benchmarking. Teeport has been applied to solve real-life
remote optimization tasks in several national laboratories in
the US, including SLAC National Accelerator Laboratory
(SLAC) and Argonne National Laboratory (ANL).

This paper is organized as follows. Section 2 introduces
important concepts and philosophy in Teeport; Section 3
describes the key designs of Teeport, as well as discusses some
implementation details to illustrate the way Teeport works;
Section 4 highlights a few features that distinguish Teeport
from the other optimization platforms; Section 5 shows
several applications of Teeport to demonstrate what Teeport
could do and how to apply Teeport to solve real-life
optimization related problems; Section 6 concludes the paper
and points out the future work on Teeport.

2 PHILOSOPHY

Several commonly used terms like optimization algorithms,
optimization problems, and optimization process, could look
and work very differently in different situations. The way to
apply an algorithm to optimize a problem in application could
also differ as a function of time which brings confusion and
frustration. To make the various algorithms and problems work
together consistently, Teeport introduces a few concepts to
abstract the optimization-related objects. We’ll analyze the
following real-life online optimization case and discuss the
important concepts in Teeport along the way.

2.1 Evaluator
Assume that we have a Matlab script that reads and writes the
process variables (PVs) through EPICS (Dalesio et al., 1991).
When the optimization algorithm evaluates a solution (a point in
the parameter space), the script writes the PVs with the values
given by the algorithm, then reads and returns the PV value of the
objective. There could be some configurable parameters during
the evaluation, such as the waiting time between the PV writing
and reading. Therefore, the whole evaluation process can be
abstracted as a function:

Y � evaluate(X, configs) (1)

Here X and Y are 2D arrays, have a shape of (n, v) and (n, o)
respectively, where n denotes the number of the points to be
evaluated, v the number of the variables, and o the number of the
objectives. The n points that are passed into the evaluate function
through the X array are called a generation. The concept of
generation in Teeport is different from its usual definition in
evolutionary algorithms–here one generation means a batch of
data points that could be evaluated simultaneously, there is no
order requirement when evaluating them. A generation in

Teeport could contain only one data point1, while a generation
with only one individual generally does not make sense in an
evolutionary algorithm like NSGA-II. Any evaluation process,
including simulations running on a laptop, parallel evaluation
tasks running on a cluster, and experiments on a real machine,
could be abstracted as the evaluate function as shown in Eq. 1. In
Teeport, we call the evaluation process that has been
implemented in the form shown in Eq. 1 an evaluator.

2.2 Optimizer
On the other hand, assume the optimization algorithm is a
Python script that imports several optimization-related
packages, that accept an evaluate function and tries to
optimize it. The algorithm usually takes in parameters such as
the dimension of the problem to be optimized, the number of the
objectives, and parameters related to the termination conditions.
The optimization algorithm can be abstracted like this:

Xopt,Yopt, . . . ,[ ] � optimize(evaluate, configs) (2)

Where [Xopt, Yopt, . . ., ] are optional return arguments. Any
optimization process, including multi-objective genetic
algorithms (MOGA), Gaussian process (GP) optimizer, and
even a human operator who decides which data points to be
evaluated in the next step, could be abstracted as such an optimize
function as shown in Eq. 2. In Teeport, we call the optimization
process implemented in the form shown in Eq. 2 an optimizer.

2.3 Adapter
As discussed above, the evaluator and the optimizer may be
implemented in different languages. To enable them to talk to
each other, Teeport provides an adapter, or client, for each
language, and a messaging engine as a middleware between
the evaluator and the optimizer. With the corresponding
adapter, the data flowing in and out of the optimizer and the
evaluator will be normalized to 2D real number arrays2 encoded

FIGURE 1 | Schematic plot of an optimization loop in Teeport. With the
help of the adapters provided by Teeport, the optimizer and the evaluator can
exchange data in a normalized format.

1Usually happens when the algorithm that calls the evaluate function is not an
evolutionary algorithm.
2For the scenarios that require complex number arrays, the real part and imaginary
part of the complex number array will be stored in two real number arrays and
combined into a complex number array again when the data reach the target.
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in a JSON string and subsequently forwarded by the messaging
engine to complete the optimization loop. The process is as
illustrated in Figure 1.

2.4 Monitor/Controller
The optimization data flow through the Teeport messaging
middleware. One can add the control and monitor layers to
the middleware, to make the online optimization more
controllable and visible. A visualization of the optimization
process based on the data flow is called a monitor and is
provided by the Teeport GUI through a browser. Examples of
monitors provided by Teeport are shown in Figure 2. Similarly,
The set of functionalities that controls the optimization data flow
is called a controller. The toolbar in Figure 2 that contains a row
of buttons (“Resume,” “Stop,” etc) is the controller for that task.

2.5 Processor
There are usually two participants in an optimization loop: the
evaluator and the optimizer, as we have discussed above.
However, sometimes it is useful to have a helper function that
does not participate directly in the optimization loop. Let’s
imagine the following situation. We are developing a new
optimization algorithm in Matlab, which involves a modeling
step. The best modeling package is, unfortunately, available only
in Python. It would be ideal if we could use the Python modeling
package to complete the modeling step, and perform all the rest
steps in Matlab. The function that is written in Python and does
the modeling job, is called a processor in the Teeport framework.

Processor could be treated as an extension of the evaluator
concept, the process function has a similar signature compared to
the evaluate function, as shown below:

results � process(data, configs) (3)

The only difference is that for the process function, the input
argument data and the returned value results are not limited to 2d
arrays, they could be any serializable data, such as a dictionary, a
list, a JSON object, etc. With a processor that is implemented in
the form of Eq. 3, the aforementioned issue could be easily
resolved by integrating the processor into Teeport, and
remotely calling it within the optimization algorithm. It’s
worth noting though, one of the main differences between
processors and evaluators is that the processors are
transparent to the optimization tasks. The data flowing
through a processor is not related to any optimization tasks,
and thus would not be cached and/or stored by Teeport. A
processor can be used directly without initializing an
optimization task–while an evaluator is always running within
an optimization task. This flexibility of a processor makes it easy
to fit into either side of the optimization task: The process
function can be called in an evaluator, or in an optimizer, or
even in another processor. An optimization task could have
multiple processors to help with the computations, but only
one evaluator is allowed in the task.

2.6 Design Principles
With the concepts introduced in the previous sections, we can
now describe the Teeport design principles. The core philosophy
of Teeport is to completely decouple the optimization algorithm
and the problem to be optimized. By doing so, the algorithm
developer does not need to care about the details of the
optimization configuration (say, how to set up the problem to
be compatible with the algorithm, where to put the algorithm

FIGURE 2 | Left: the history data of an online optimization experiment that was performed through Teeport; Right: comparison among the performance of three
optimization algorithms against the SPEAR3 beam loss rate online optimization problem.
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code, etc). Instead, one could focus on the optimization logic (the
optimize function) that really matters. On the other hand, the
algorithm used does not have to figure out the usage of the
optimization algorithm, which could vary greatly across different
algorithms. The only thing that needs to be done on the user’s side
is to write an evaluate function in one’s preferred/available
language. Once the evaluator and the optimizer are available,
Teeport will handle the rest.

Another principle that drove the design of Teeport is that the
algorithm should be kept as original as possible. A popular
approach to applying the same famous optimization algorithm
on problems that are written in different languages is to port the
algorithm to the target language. This porting process could bring
in hard-to-detect errors that would cause significant performance
issues under particular circumstances. Figure 3 demonstrates a
real-life example. We compared the performance of the original
NSGA-II (Deb et al., 2002) in C and a popular (downloaded more
than 40,000 times since published) NSGA-II implementation in
Matlab (Seshadri, 2009, since) against the ZDT1 (Zitzler et al., 2000)
test problem. As shown in the plots, the Matlab version performed
much worse than the original one. After a careful examination, the
authors found the issue in the Matlab implementation–one line of
code is missing that causes the incomplete gene mixing in the
offspring. Therefore, it is not guaranteed that when you use a ported
version of some specific optimization algorithm, the performance
would be identical to the original one. Teeport resolves this problem
by using the original algorithm/problem directly as it provides an
adapter for each language so that all the algorithms/problems
written in that language could be integrated effortlessly. It is
much more efficient and practical compared to porting one
algorithm to each language.

The third principle is to keep the interfaces minimal. It not
only provides a minimal number of APIs but also minimizes the
number of modifications that are needed to make the user’s code
work with Teeport. In the simplest but still typical case, the user
only needs to change 2 lines of code to integrate the optimization
algorithm/problem into Teeport.

In the next section, we discuss the implementation details that
enable Teeport to meet the above principles.

3 KEY DESIGNS

3.1 Task-Based Optimization
Teeport connects the evaluators, the optimizers, the monitors,
and the processors through a real-time communication (RTC)
protocol so that they can exchange information with each other in
real-time. The architecture of Teeport is illustrated in Figure 4.
As shown in the architecture, the various clients connect to the
Teeport backend service through the websocket (Fette and
Melnikov, 2011) protocol. To group the clients by the
optimization process so that the messages are forwarded to the
expected targets, Teeport employs the task concept.

In Teeport, every optimization process is a task. A task needs
at least two participants: the evaluator and the optimizer. Each
task will be assigned a unique Id when initialized, and the
messages between the evaluator and the optimizer will carry
this Id information along the whole optimization process. The
task-based optimization data flow is shown in Figure 5.

When an optimization task starts, the Teeport backend
service will send a signal to the optimizer, the optimizer
then calls its optimize function to start the optimization
process. The optimize function would decide which data
points (X) in the decision space to evaluate in the next step,
and the data X is sent to the Teeport server, which is in turn
forwarded to the corresponding evaluator. The evaluator calls
its evaluate function to evaluate X, obtains the returned result
Y and sends it to the Teeport server. The evaluated result Y is
then forwarded back to the optimizer to complete one
evaluation loop of the optimization. The optimization loop
is repeated until the termination condition (which is usually
coded in the optimize function) is satisfied.

Since the Teeport backend service forwards the messages
between the clients to enable the optimization data flow, it
could control the optimization process by holding the
messages to be forwarded. It means that once the optimization
algorithm and problem are integrated into Teeport, Teeport
automatically grants the user the ability to pause, resume and
stop the optimization process, without any additional code on the
user’s side.

FIGURE 3 | Performance comparison between the original NSGA-II in C (orange dot) and a popular NSGA-II implementation in Matlab (blue cross). Each plot
shows the Pareto fronts of the two algorithms at a certain evaluation number (number of evaluated individuals in the optimization process). The initial population is
identical for the two algorithms, as indicated in the leftmost plot. The two objectives are to be minimized so a lower Pareto front is preferable. It’s obvious that the original
NSGA-II performs much better than the Matlab one along the whole optimization process.
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The optimization data X and Y that flows through the Teeport
backend server are monitored by the monitors, to provide a real-
time optimization process visualization to the users. The data are
also temporarily stored in the Redis database and are archived in
the PostgreSQL database after the optimization task is done, as
shown in Figure 5.

3.2 Minimal Interfaces
Teeport defines a set of interfaces to deal with various situations.

For algorithm developers:

• Use an evaluator: evaluate_T: function � use_evaluator (id:
string)

• Ship an optimizer: id: string � run_optimizer (optimize:
function)

• Monitor an optimizer: optimize_T: function �
use_optimizer (optimize: function)

For algorithm users:

• Use an optimizer: optimize_T: function � use_optimizer (id:
string)

• Ship an evaluator: id: string � run_evaluator (evaluate:
function)

• Monitor an evaluator: evaluate_T: function � use_evaluator
(evaluate: function)

For both:

• Use a processor: process_T: function � use_processor (id:
string)

• Ship a processor: id: string � run_processor (process:
function)

The basic idea behind these APIs is to make it effortless to
convert an evaluator/optimizer/processor from a local one to a
remote one, and vice versa. Assume that you have your
optimization algorithm (optimize function) locally on your
laptop, and you would like to optimize a remote evaluator.
The Teeport way to accomplish this is to use the
use_evaluator (id) API to get a local version evaluate_T (a
local function that is returned by the Teeport API may be
called a Teeportized function) of that remote evaluate
function. Since function evaluate_T is just a regular local
evaluator that is written in the same language as your
algorithm, the optimization task can be performed by calling
optimize (evaluate_T) directly. A similar workflow applies to the
situation that you have a local evaluator that waits to be optimized
by a remote optimizer: just get the Teeportized optimizer and
perform the optimization task locally as usual.

To ship or share a local evaluator/optimizer/processor is also
straightforward: just use the run_evaluator (evaluate),
run_optimizer (optimize), or run_processor (process) API
accordingly to convert the local function to a remote one.
These APIs will return an Id, which could be used to refer to
the remote evaluator/optimizer/processor when someone wants
to use your function.

It is worth noting that when using a Teeportized function in an
optimization task, the actual calculation still happens where the
remote function lives in, even though it just feels like it is the
Teeportized function that does the calculation. This illusion is by
design to minimize the impact of Teeport on the existing code/
workflow. The internal logic in Teeport that creates this illusion
when a Teeportized evaluator being called is shown in Figure 6.
As mentioned in Section 2.5, a processor is not related to any
optimization task. The data flow when a Teeportized process
function gets called by a human being/evaluator/optimizer is

FIGURE 4 | Architecture of Teeport. The Teeport clients are connected to the Teeport backend server through the WebSocket protocol. The Teeport backend
server processes and forwards the messages between the clients, while storing the optimization related data that flows through it in the storage, such as the Redis and
PostgreSQL database for data persistence.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 7346505

Zhang et al. Introduction to Teeport

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


FIGURE 5 | Task-based optimization data-flow in Teeport.
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FIGURE 6 | Multi-threading logic that happens when calling the Teeportized evaluate function from the use_evaluator (id) API to get some data X evaluated.
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shown in Figure 7, note the much simpler internal logic
compared to Figure 6, which is the consequence of being
independent of the optimization tasks.

The monitoring usage of the Teeport APIs could look a little
confusing, as the APIs accept a local function and return a
Teeportized function. Let’s assume the following scenario
where both the optimization algorithm and the problem are
available locally and we would like to monitor the

optimization process in real-time without writing any
visualization code. In such a case the use_evaluator (evaluate)
or use_optimizer (optimize) APIs are useful to wrap either the
evaluate function or optimize function with the corresponding
API to get a Teeportized version, and use it to perform the
optimization normally. The optimization process will then be
monitored in real-time on the Teeport GUI, as shown in Figure 8.

3.3 Fully Decoupled Frontend and Backend
All Teeport features except the optimization controller/monitor
are available with the Teeport backend service. On top of that,
Teeport ships a default web-based GUI to enhance the user
experience under some common situations, such as
benchmarking optimization algorithms, testing user-developed
algorithms against different problems, or simply monitoring the
optimization process. While the GUI is very useful, it is
optional–the Teeport backend service is designed to be a
standalone service that could work without a frontend.

The frontend and backend of Teeport are completely
decoupled. The Teeport backend service provides a set of
standard APIs to enable the clients to control and monitor the
optimization process through WebSocket. Those APIs include:

• List all the optimizers/evaluators/processors (including the
configurations)

• List all the tasks
• Get a detailed view of one specific task (including the history
data)

FIGURE 7 | Data-flow in Teeport when calling the Teeportized process function from the use_processor (id) API to get some data processed.

FIGURE 8 | Using Teeport to monitor the optimization process without
writing visualization-related code. The user in this cartoon used the
use_optimizer (optimize) API upon the optimize function (green cube) to get a
Teeportized optimize function (yellow cube). An alternative way to
achieve the same goal is to wrap the evaluate function.
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• Create a new task
• Start/pause/resume/terminate a task
• Archive/restore a stopped task
• Update the metadata (name, description, etc) of a task

• Subscribe the updates of a task (including the metadata
changing, the optimization data updating, etc)

The default Teeport frontend connects to the Teeport
backend service and sends and receives messages over the
socket. Take the following scenario as an example. A user
wants to create a new task with optimizer A and evaluator B,
then monitor the optimization process. To do this, the user
clicks the “New Task” button and selects/configures optimizer A
and evaluator B. The user then clicks the “Create” button, which
sends a Create a new task message to the backend. The backend
responds with a Task created message when the task
initialization is done. Once the frontend receives the Task
created message, it should create a new card on the GUI to
notify the user that the task has been initialized. When the user
clicks the new card, a Subscribe the task message will be sent to
the backend and the frontend will be able to receive all the
updates of the task from now on. When the “Start” button is
clicked, a Start the task message would be sent and the
optimization begins. The Teeport frontend gets all the
optimization data generation by generation and visualizes the
data on the fly. The user sees the optimization process in real-
time. The process described above is visualized in Figure 9.

This fully-decoupled design of Teeport enables flexible
interaction between the user and the optimization task. The
actions that the user could do are not limited by the built-in
GUI–instead, they can make use of the APIs provided by the
Teeport backend service to achieve the goals, for example,
exporting the optimization data and performing their own
data analysis and visualization.

3.4 Flexible Deployment
Teeport was designed with a range of typical use cases in mind.
When the users are dealing with some local optimization
problems, Teeport should work as a normal local package that
provides the tools that help the users to connect their optimizers
and evaluators, without the burden to set up a server, configure
domain names, etc. When a cross-lab optimization is needed, say,
optimizing some property of a machine in one laboratory with an
algorithm developed and deployed in another laboratory, Teeport
should provide the options to be configured as a mature cloud-
based service. Teeport is highly configurable regarding
deployment. It could be deployed as simple as a local service
that runs on the laptop, or it could be configured on the cloud to
provide service across the internet. This flexibility in the
deployment method enables a wide range of usage of Teeport
under different circumstances.

4 FEATURES

Teeport is an optimization platform, and thus provides the
features that are commonly available in an optimization
platform: integrating new algorithms/test problems, running
optimizations with particular configurations, logging/viewing
the optimization data, etc. However, Teeport has several
special properties that distinguish it from the rest. A few

FIGURE 9 | Signal sequence when a user creates and runs an
optimization task through the built-in Teeport GUI.
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signature features of Teeport would be discussed in the following
paragraphs.

4.1 Effortless Integration
A big difference between Teeport and other optimization
platforms is that Teeport doesn’t ship with any built-in
evaluators and optimizers. Instead, Teeport provides excellent
integrationality. As discussed in Section 2.6, Teeport only
requires the users to wrap their algorithm/problem into a
function with a specific signature. The users don’t have to
learn the way that how the platform works to integrate their
optimization code. Instead, they only need to focus on the core
logic of their algorithm/problem, and shape the code to a better
and more natural form (the optimize, evaluate, and process
functions). For most cases we have faced, it only takes a few
minutes to reorganize the code into a function that Teeport
requires, so the user could get their optimizer and evaluator
running on Teeport and perform the optimization with minimal
effort. This effortless integration nature of Teeport enables itself
to function as a bridge that connects different kinds of algorithms
and problems since it’s much easier to integrate both sides into
Teeport, rather than adopt one side to the other. Thanks to the
effortless integration feature, a large number of optimization
algorithms and test problems from various platforms, such as
PyGMO (Biscani and Izzo, 2020), pymoo (Blank and Deb, 2020),
PlatEMO (Tian et al., 2017) and Ocelot Optimizer (Tomin et al.,
2016), have already been integrated into our cloud-hosted
Teeport instance.

4.2 Anonymous Optimizer/Evaluator
For a typical optimization platform, the algorithm/problem code has
to be put into the code base of that platform before being used. This
could bring some troubles. Sometimes the evaluation code contains
confidential information, such as the token to communicate with the
machine control system or the critical internal control knobs that
could be dangerous to expose. Teeport solves this issue by making the
optimizer/evaluator anonymous. The implementation details of the
algorithm and the problem remains unknown to Teeport during the
whole life cycle of an optimization process. The optimize/evaluate
function that is passed to the Teeport APIs just provides Teeport away
to call the optimizer to do the optimization/evaluator to do the
evaluation. The actual computation/measurement happens where
the optimizer/evaluator lives, not on the server that hosts the
Teeport backend service. This anonymity of the optimizer/
evaluator guarantees that the implementation details of the
algorithm/problem would not be unnecessarily exposed, as well as
prevents unintentionally changing to the evaluation code which may
lead to serious consequences.

Theway that Teeport integrates the optimizer/evaluator also grants
users full ownership and control over the shipped optimizer/evaluator.
Imagine a remote collaboration scenario where user A applies an
algorithm to deal with a machine property optimization problem
provided by user B through Teeport. Then user B decides when to
start/stop running the evaluator, user A has no control over the
evaluator shipped by user B, which makes it impossible for the
optimizer to accidentally changing the machines operation through
the evaluator.

4.3 Embeddability
Teeport is not only designed to be a platform on which the users
integrate their optimizers and evaluators then perform optimizations,
but also aflexible solution that could be inserted into the user’s existing
workflow without much effort and interruption. It is normal that the
user already built an optimization workflow while struggling to add
new algorithms to the workflow, due to various limitations. Teeport
could help in this case by acting as a proxy–just integrate the
algorithms of interest into Teeport first, then use the use_optimizer
(id: string) API to select the corresponding algorithm, and use the
Teeportized optimize function in the workflow. Teeport would not
force the users to run everything on itself, instead, Teeport tries to help
the users to solve their optimization communication/integration
problems–by properly extending the existing system.
Embeddability also means that Teeport supports nested optimizers/
evaluators. Specifically, one could do hyper-parameters tuning with a
nested optimizer/evaluator setup. Let’s denote optimizer A as the
optimizer of which the hyper-parameters to be tuned, evaluator B as
the test evaluator on which to run optimizer A with a specific set of
hyper-parameters, and optimizer C as the optimizer used to tune the
hyper-parameters of optimizer A. Thenwe couldmake an evaluatorD
of which the input being the hyper-parameters of optimizer A, once
evaluating, an optimization task with optimizer A and evaluator B will
be created and run, then several performance indicators would be
calculated and returned as the output. Finally, creating and running an
optimization task with optimizer C and evaluator D would get the
hyper-parameters tuning task done. One caveat of this approach is
that each time a new set of hyper-parameters is proposed by optimizer
C and evaluated on evaluator D, a new optimization task with
optimizer A and evaluator B would be created and run. Therefore
if 100 points were evaluated by evaluator D, there would be 100 sub-
tasks created and run, along with the main task.

4.4 Auto-Granted Visualization and Control
When doing optimization with Teeport, the optimization data flow
through the Teeport backend service. The Teeport backend service
provides a set of APIs to hold/release the data flow and forward the
data flow. The built-in Teeport GUI makes use of these APIs to grant
visualization and control abilities to the users. Once the users ship the
optimizer/evaluator by the Teeport adapter and start an optimization,
theywill be automatically granted a set of features through the Teeport
GUI, such as monitoring the optimization progress, pausing, or
resuming the optimization, terminating the optimization, and so
on. Figure 2 left plot shows a monitored single objective
optimization task, the user could use the toolbar to control the
optimization process.

4.5 Easy-Comparison Among Multiple Runs
Teeport stores the recent optimization tasks in memory and
archives the older runs. So the data of an optimization task
that has been performed through Teeport would never get lost.
Teeport supports lazy-loading of the history data, which means
Teeport would load the optimization data from the database
when it’s needed. The built-in Teeport GUI provides a feature
that lets users select multiple optimization tasks (including the
actively running ones) and compare the multiple runs in the same
frame. With this capability, users can easily compare the
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performance of an optimizer on a series of testing evaluators, or
compare the efficiency of different optimizers against the same
to-be-optimized evaluator, as shown in the right plot in Figure 2.

Through the comparison feature of Teeport, the user could
determine how efficient each optimizer could be for the specific
evaluator on the fly during the experiment, and adjust our
optimization strategy accordingly.

4.6 Background Algorithm Benchmarking
Once a local optimize function is shipped as an optimizer to Teeport,
Teeport knows how to run it, stop it, and handle exceptions. Based on
these basic control, Teeport provides the functionality to run the
optimizermultiple times against a test evaluator and collect the data of
the multiple runs to analyze the algorithm performance. Teeport
backend supports to run an optimization task in the benchmarking
mode, and the users could get several meaningful performance
visualizations (such as objective mean and variation, Pareto front
distribution formulti-objective optimizations, etc) through the built-in
Teeport GUI. Users could also query the benchmark run data from
the Teeport backend and perform customized data analysis. The
multiple runs that are needed to do the benchmark are run in the
background and managed by the Teeport backend service. The user
only needs to initialize the benchmark task then forget about it. Once
the benchmark is done, the user could come back and check out the
visualized result or collect the data.

4.7 Optimization Tasks Management
A task in Teeport not only contains the optimizer/evaluator
information and the history data, but also metadata such as task
name, task description, and task creation/completion time. With
these metadata embedded, the user could easily filter out the tasks of
interest (such as all optimizations run with some specific optimizer
within a particular date range) with the search query API of Teeport.

Teeport also provides the data exporting/importing
functionalities so the users completely own their data and
wouldn’t be locked within the Teeport framework. Teeport
can be used as a pure optimization runner where the users
extract the optimization data afterward and perform their own
analysis/visualization; It could also be used as an optimization
data analysis/visualization tool that takes the imported data and
lets users explore/compare the optimization runs.

4.8 Planned Features: Breakpoint Recovery
If anything can go wrong, it will. Murphy’s law is particularly correct
for a remote online optimization scenario. Teeport relies on the
network to exchange information between the evaluator and the
optimizer. What if the network connection was interrupted? What if
the evaluator crashed in the middle of the optimization? What if the
experimental condition went south and produced several invalid
points? The usual answer would be doing the optimization again,
however for the online optimization case, measurement on one point
is usually expensive–either in terms of time or money, sometimes
both. A much better way to deal with these bad situations is to roll
back the optimization process to the latest checkpoint and continue
from there. The architecture of Teeport makes breakpoint recovery
and “time-traveling” realistic. By reconstructing the algorithm in a
loop-basis way as shown below:

state � loop(evaluate, state, configs) (4)

Where state is the internal state of the algorithm, evaluate and
configs share the same definition as in Eq. 2, in each loop the
algorithm performs calculations and updates its internal state, the
loop is repeated until meeting the termination condition. Teeport
caches the internal states during the optimization process loop by
loop, and if anything bad happened, Teeport could simply
backtrack the optimization to the last loop that everything
worked, then resume the optimization from there. The
breakpoint recovery idea is visualized in Figure 10.

The relationship between the regular form of an optimize
function as shown in Eq. 2 and the loop-basis form as shown in
Eq. 4 is explained in the pseudo code below.

def optimize (evaluate, configs):
state � configs [‘init_state’]. copy ()
while not state [‘terminate’]:
state � loop (evaluate, state, configs)

The optimize function is basically composed by a sequence of
the loop function calls. The loop function determines the
granularity of the optimization backtracking system–it is the
smallest unit of that backtracking system. The reason why the
optimizer has to be rewritten in the loop-basis form to support
the backtracking feature is that Teeport has no access to the
internal states of the optimizer once the optimize function is
called, so it would not be possible to tell the optimizer to go back
to a history state since Teeport does not have that information. A
loop-basis form would resolve this issue by exposing the internal
states of the optimizer to Teeport. Embedding the state
information into the configs argument of the regular form
optimize function would not work, due to the fact that only X
and Y are forwarded each generation by Teeport, not the configs3,
so Teeport is not aware of the changes in the configs.

Breakpoint recovery and time-traveling is a planned feature
for Teeport, which would be implemented and tested soon.

5 APPLICATIONS

5.1 Remote Online Optimization
One of the most straightforward applications of Teeport is doing
online optimization remotely. In the accelerator field, the big
machines that generate, accelerate, and store the electron/proton
beams usually require a highly complicated control system to
work. Most of the work that regarding interacting with the
control system occurs in the accelerator control room (ACR).
The routine to perform an online optimization task on these big
machines is as follows: 1) Clone the algorithm from the local
computer to the computer in the ACR; 2) Adapt the algorithm to
work with the evaluation script of the property to be optimized; 3)
Run the algorithm in the ACR and wait there until the
optimization is done.

3configs is only forwarded once at the beginning of the optimization task.
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With Teeport, performing an online optimization remotely is
effortless. Below is the routine of the online optimization of the
SPEAR3 beam loss rate with Teeport (Zhang et al., 2020):

1. Run the beam loss rate evaluation script as an evaluator
through the Teeport adapter for Matlab in the ACR

2. Get the corresponding local evaluator through the Teeport
adapter for Matlab on the local laptop

3. Call the optimize function with the local evaluate function

More details can be found in the corresponding paper (Zhang
et al., 2020).

In general, performing a remote online optimization is as
simple as doing a local optimization with Teeport. The workflow
to do an online optimization remotely usually looks as follows:

1. Code the experimental evaluator, and integrate it to Teeport
with the run_evaluator API. Teeport will generate an Id and
assign it to the evaluator.

2. On the local computer, use the Teeport adapter for the
language of the optimizer, and get a local evaluate function
through the use_evaluator (id) API, with the Id from the
last step.

3. Call the local optimize function on the local evaluate function
to perform the optimization.

After going through the above steps, the user will be
automatically granted a set of nice features through the
Teeport GUI, such as monitoring the optimization progress,
pausing or resuming the optimization, terminating the
optimization, and so on. Teeport also makes it easier for the
user to do several dry runs before performing the real online
optimization. The only action needed is to change the evaluator id
in the use_evaluator (id) API accordingly. This process is
visualized in Figure 11.

5.2 Use Packages in a Different Language
During Algorithm Development
During algorithm development, it’s almost indispensable to use
well-written packages to boost the development process.
However, it’s also common that the best package for a specific
task appears to be not available in the language of the algorithm.

Since Teeport is capable to convert an arbitrary function to an
online processor4, it could be applied in this case to “borrow” the
functionalities of a package in a different language.

When we were developing MG-GPO (Huang et al., 2020),
initially we were not able to find a good Matlab Gaussian process
package, which is important as the GPmodeling part is at the core
of the algorithm. In Python, there does exist an excellent GP
package called GPy (GPy, 2012, since). The problem was, how to
use GPy to handle the GP modeling part while keeping all other
logic in Matlab? This is solved with Teeport by running GPy’s GP
modeling function as a processor on Teeport, applying the
use_processor API to get a Matlab version of the GP modeling
function, and using it in our algorithm evolution loop. This
approach is demonstrated in Figure 12.

5.3 Extend the Ability of Other Optimization
Platforms
Ocelot optimizer (Tomin et al., 2016) is a platform for automated
optimization of accelerator performance. There are two core
abstractions in Ocelot: the machine interface that communicates
with an accelerator control system and contains all machine-related
specifics, and the optimization method that does the optimization

FIGURE 10 |Breakpoint recovery in Teeport. Left: The optimizer crashes in the middle of optimization, which breaks the whole optimization process; Right: A loop-
basis optimizer could recover the optimization from the breakpoint.

FIGURE 11 | Fast switching between the simulation evaluator and the
experimental evaluator. The user can select the evaluator to be optimized
upon by the corresponding id, get the specific local evaluator through the
use_evaluator (id) API, and perform the optimization.

4As long as the function is pure (Jones, 2003) and the arguments and returns of the
function are serializable.
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with a few built-in optimization algorithms. Ocelot optimizer works
great in the ACR, while it has one drawback: it’s hard to integrate a
new machine interface or an optimization method into the Ocelot
optimizer since the integration process involves some non-trivial
modifications to the Ocelot source code. Teeport was used as a
plugin to tackle this issue.

The idea is shown in Figure 13. The Ocelot source code was
modified once to integrate with the Teeport machine interface and the
Teeport optimizationmethod, then all the newmachine interfaces (the
evaluators) and the optimization methods (the optimizers) can be
integrated into Teeport, and being called from the Ocelot optimizer
through the use_evaluator (id) and use_optimizer (id) APIs.

There is an alternative approach that instead of using Teeport
as an Ocelot plugin, the Ocelot optimizer is used as a plugin for
Teeport. In this way, all the built-in optimization methods and
machine interfaces can be used by the external evaluators and
optimizers, accordingly, to perform the optimization task.

5.4 Work as a Standard Algorithm
Benchmarking Platform
When developing new algorithms, the developer usually needs to
benchmark the newly developed algorithm against a set of
standard test problems implemented in the same language as
the algorithm. The benchmarking results obtained in this way,

unfortunately, could be vague, confusing, and misleading from
time to time, therefore degrades the convincibility of the
algorithm performance. This is caused by multiple slightly
different implementations of a test problem, and it’s
sometimes not clear how the parameters of the test problems
were set when performing the benchmark. If there is a standard
benchmarking platform that provides various test problems with
clear definitions/descriptions of the internal parameters, then the
benchmarking result would be more trustworthy, since it’s
provided by a third-party test platform. The platform should
also provide a simple way to let developers ship and test their
algorithms without too much effort.

A cloud-hosted Teeport is a perfect candidate for this
application. Optimizers and evaluators on Teeport are
anonymous, so the developer would not need to worry about
exposing the unpublished algorithm. The standard evaluators
cannot possibly be modified outside of the server that hosts them
(which should be kept in a secret place), so the benchmarking
process with Teeport is strict and fair. When reporting the
algorithm performance in the paper, the benchmarking result
could be referred to by its task id. With the task id, one (most
likely the reviewer of the paper) could locate the corresponding
benchmark runs on Teeport and verify the algorithm
performance easily. With Teeport as a standard algorithm
benchmarking platform, it would be much easier for the
developer to benchmark the newly developed algorithm, as
well as for the user/reviewer to verify the stated performance
of the algorithm of interest.

6 CONCLUSION

We developed a real-time communication-based online
optimization platform, Teeport, to break the communication
wall between the optimization algorithms and the application
problems that live in different environments or written in
different languages. Teeport abstracts various algorithms and
problems as functions with specific signatures, which are
called optimizers and evaluators, respectively. Teeport provides
a set of APIs to let the users effortlessly ship their optimizers and
evaluators. Once the optimizers and evaluators are shipped to
Teeport, the users are automatically granted a rich feature set
through the built-in Teeport GUI, including optimization process

FIGURE 12 | Use the functionality from the GPy Python package in the
MatlabMG-GPO algorithmwith Teeport. A process function is implemented in
Python to make use of the modelling and predicting features provided by the
GPy package. The needed data (X0, Y0, X1) to build the GP model is
passed to the processor through the Matlab version of the process function
from the use_processor (id) API and the prediction (Y1) is returned to the MG-
GPO algorithm.

FIGURE 13 | Teeport as an Ocelot plugin. Left: Extending the machine interfaces in Ocelot through Teeport; Right: Extending the optimization methods in Ocelot
through Teeport.
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controlling, monitoring, and benchmarking. A large number of
optimization algorithms and test problems from various
platforms, such as PyGMO, pymoo, PlatEMO, and Ocelot
Optimizer, have been integrated into Teeport. Teeport can be
used as a local package or deployed as a cloud-hosted service
to enable remotely optimization collaborations. We applied
Teeport to perform and control remote online optimizations,
monitor and benchmark the performance of the optimization
algorithms, and help to develop and enhancing algorithms.
Teeport has been tested and deployed at SLAC and ANL. We
plan to implement the optimization rollback feature in
Teeport soon.

DATA AVAILABILITY STATEMENT

The source code of Teeport can be found in the following
repositories: Teeport backend: https://github.com/SPEAR3-ML/
teeport-backend, Teeport frontend: https://github.com/SPEAR3-
ML/teeport-frontend, Teeport Python adapter: https://github.
com/SPEAR3-ML/teeport-client-Python, Teeport Matlab
adapter: https://github.com/SPEAR3-ML/teeport-client-matlab,
Teeport plugins: https://github.com/SPEAR3-ML/teeport-
plugins. More documentations of Teeport are available in the
following links: Teeport introduction slides: https://teeport.ml/
intro, Teeport tutorial: https://github.com/SPEAR3-ML/teeport-
test, Teeport API docs: https://teeport-client-Python.
readthedocs.io. A demo website is also available at: Teeport
demo: https://teeport.ml/tasks.

AUTHOR CONTRIBUTIONS

ZZ came up with the idea of Teeport. ZZ designed and
implemented the whole base framework (the backend, the
frontend, the plugins, and most of the adapters). XH and MS
provided useful discussions and suggestions during the
development. MS tested the prototype of the Teeport
framework and contributed code to the Teeport Matlab
adapter. ZZ, XH, and MS performed the experimental Teeport
tests on various real-life online storage ring optimizations
together.

FUNDING

This work is supported by DOE, Office of Science, Office of Basic
Energy Sciences, DE-AC02-76SF00515 and FWP 2018-SLAC-
100469 Computing Science, Office of Advanced Scientific
Computing Research, FWP 2018-SLAC-100469ASCR.

ACKNOWLEDGMENTS

The authors would like to thank Adi Hanuka, Hugo Slepicka, and
Hairong Shang for being the early users and testers of Teeport, as
well as providing lots of insightful ideas and feature suggestions
during the development of Teeport. The authors also gratefully
acknowledge the helpful discussions with Yaodong Yang which
solidified the architecture of Teeport.

REFERENCES

Bergan, W. F., Bazarov, I. V., Duncan, C. J., Liarte, D. B., Rubin, D. L., and Sethna,
J. P. (2019). Online Storage Ring Optimization Using Dimension-Reduction
and Genetic Algorithms. Phys. Rev. Acc. Beams 22, 054601. doi:10.1103/
physrevaccelbeams.22.054601

Biscani, F., and Izzo, D. (2020). A Parallel Global Multiobjective Framework for
Optimization: Pagmo. Joss 5, 2338. doi:10.21105/joss.02338

Blank, J., and Deb, K. (2020). Pymoo: Multi-Objective Optimization in python.
IEEE Access 8, 89497–89509. doi:10.1109/access.2020.2990567

Dalesio, L. R., Kraimer, M. R., and Kozubal, A. J. (1991). “Epics Architecture,” in
The International Conference on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS).

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A Fast and Elitist
Multiobjective Genetic Algorithm: Nsga-Ii. IEEE Trans. Evol. Computat. 6,
182–197. doi:10.1109/4235.996017

Duris, J., Kennedy, D., Hanuka, A., Shtalenkova, J., Edelen, A., Baxevanis, P., et al.
(2020). Bayesian Optimization of a Free-Electron Laser. Phys. Rev. Lett. 124,
124801. doi:10.1103/physrevlett.124.124801

Fette, I., andMelnikov, A. (2011). TheWebSocket Protocol. RFC 6455, RFC Editor.
Available at: http://www.rfc-editor.org/rfc/rfc6455.txt.

GPy 2012). GPy: A Gaussian Process Framework in python. Available at: http://
github.com/SheffieldML/GPy [Dataset].

Huang, X., Corbett, J., Safranek, J., and Wu, J. (2013). An Algorithm for Online
Optimization of Accelerators. Nucl. Instr. Methods Phys. Res. Section A: Acc.
Spectrometers, Detectors Associated Equipment 726, 77–83. doi:10.1016/
j.nima.2013.05.046

Huang, X. (2016). “Development and Application of Online Optimization
Algorithms,” in Proc. North Amer. Part. Accel. Conf (NAPAC), Chicago, 1–5.

Huang, X., Song, M., and Zhang, Z. (2020). Multi-objective Multi-Generation
Gaussian Process Optimizer for Design Optimization. [Dataset].

Jones, S. P. (2003). Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press.

Olsson, D. K. (2018). “Online Optimisation of the max-iv 3 Gev Ring Dynamic
Aperture,” in Proc. IPAC2018, 2281.

Pang, X., and Rybarcyk, L. J. (2014). Multi-objective Particle Swarm and Genetic
Algorithm for the Optimization of the Lansce Linac Operation. Nucl. Instr.
Methods Phys. Res. Section A: Acc. Spectrometers, Detectors Associated
Equipment 741, 124–129. doi:10.1016/j.nima.2013.12.042

Seshadri, A. (since 2009). Nsga-ii: A Multi-Objective Optimization
Algorithm. Available at: https://www.mathworks.com/matlabcentral/
fileexchange/10429-nsga-ii-a-multi-objective-optimization-algorithm
[Dataset].

Tian, K., Safranek, J., and Yan, Y. (2014). Machine Based Optimization Using
Genetic Algorithms in a Storage Ring. Phys. Rev. Spec. Topics-Accelerators
Beams 17, 020703. doi:10.1103/physrevstab.17.020703

Tian, Y., Cheng, R., Zhang, X., and Jin, Y. (2017). PlatEMO: a Matlab Platform for
Evolutionary Multi-Objective Optimization [Educational Forum]. IEEE
Comput. Intell. Mag. 12, 73–87. doi:10.1109/mci.2017.2742868

Tomin, S., Geloni, G., Zagorodnov, I., Egger, A., Colocho, W., Valentinov, A., et al.
(2016). Progress in Automatic Software-Based Optimization of Accelerator
Performance. Proc IPAC’16, 3064–3066.

Zhang, Z., Song, M., andHuang, X. (2020). Online Accelerator Optimization with a
Machine Learning-Based Stochastic Algorithm. Mach. Learn. Sci. Technol. 2,
015014. doi:10.1088/2632-2153/abc81e

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 73465014

Zhang et al. Introduction to Teeport

https://github.com/SPEAR3-ML/teeport-backend
https://github.com/SPEAR3-ML/teeport-backend
https://github.com/SPEAR3-ML/teeport-frontend
https://github.com/SPEAR3-ML/teeport-frontend
https://github.com/SPEAR3-ML/teeport-client-Python
https://github.com/SPEAR3-ML/teeport-client-Python
https://github.com/SPEAR3-ML/teeport-client-matlab
https://github.com/SPEAR3-ML/teeport-plugins
https://github.com/SPEAR3-ML/teeport-plugins
https://teeport.ml/intro
https://teeport.ml/intro
https://github.com/SPEAR3-ML/teeport-test
https://github.com/SPEAR3-ML/teeport-test
https://teeport-client-Python.readthedocs.io
https://teeport-client-Python.readthedocs.io
https://teeport.ml/tasks
https://doi.org/10.1103/physrevaccelbeams.22.054601
https://doi.org/10.1103/physrevaccelbeams.22.054601
https://doi.org/10.21105/joss.02338
https://doi.org/10.1109/access.2020.2990567
https://doi.org/10.1109/4235.996017
https://doi.org/10.1103/physrevlett.124.124801
http://www.rfc-editor.org/rfc/rfc6455.txt
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
https://doi.org/10.1016/j.nima.2013.05.046
https://doi.org/10.1016/j.nima.2013.05.046
https://doi.org/10.1016/j.nima.2013.12.042
https://www.mathworks.com/matlabcentral/fileexchange/10429-nsga-ii-a-multi-objective-optimization-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/10429-nsga-ii-a-multi-objective-optimization-algorithm
https://doi.org/10.1103/physrevstab.17.020703
https://doi.org/10.1109/mci.2017.2742868
https://doi.org/10.1088/2632-2153/abc81e
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Zitzler, E., Deb, K., and Thiele, L. (2000). Comparison of Multiobjective
Evolutionary Algorithms: Empirical Results. Evol. Comput. 8, 173–195.
doi:10.1162/106365600568202

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Zhang, Huang and Song. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 73465015

Zhang et al. Introduction to Teeport

https://doi.org/10.1162/106365600568202
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Teeport: Break the Wall Between the Optimization Algorithms and Problems
	1 Introduction
	2 Philosophy
	2.1 Evaluator
	2.2 Optimizer
	2.3 Adapter
	2.4 Monitor/Controller
	2.5 Processor
	2.6 Design Principles

	3 Key Designs
	3.1 Task-Based Optimization
	3.2 Minimal Interfaces
	3.3 Fully Decoupled Frontend and Backend
	3.4 Flexible Deployment

	4 Features
	4.1 Effortless Integration
	4.2 Anonymous Optimizer/Evaluator
	4.3 Embeddability
	4.4 Auto-Granted Visualization and Control
	4.5 Easy-Comparison Among Multiple Runs
	4.6 Background Algorithm Benchmarking
	4.7 Optimization Tasks Management
	4.8 Planned Features: Breakpoint Recovery

	5 Applications
	5.1 Remote Online Optimization
	5.2 Use Packages in a Different Language During Algorithm Development
	5.3 Extend the Ability of Other Optimization Platforms
	5.4 Work as a Standard Algorithm Benchmarking Platform

	6 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


